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Abstract

This paper explores the development of a scalable, nonlinear, fully-implicit sta-
bilized unstructured finite element (FE) capability for 2D incompressible (reduced)
resistive MHD. The discussion considers the implementation of a stabilized FE for-
mulation in context of a fully-implicit time integration and direct-to-steady-state
solution capability. The nonlinear solver strategy employs Newton-Krylov methods,
which are preconditioned using fully-coupled algebraic multilevel preconditioners.
These preconditioners are shown to enable a robust, scalable and efficient solu-
tion approach for the large-scale sparse linear systems generated by the Newton
linearization. Verification results demonstrate the expected order-of-accuracy for
the stabilized FE discretization. The approach is tested on a variety of prototype
problems, including both low Lundquist number (e.g., an MHD Faraday conduc-
tion pump and a hydromagnetic Rayleigh-Bernard linear stability calculation) and
moderately-high Lundquist number (magnetic island coalescence problem) exam-
ples. Initial results that explore the scaling of the solution methods are presented
on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4.
Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for
the MHD Faraday pump problem on 24,000 cores is presented.

1 Introduction

The magnetohydrodynamics (MHD) model describes the dynamics of charged fluids in the presence
of electromagnetic fields. MHD models are used to describe important phenomena in the natural world
(e.g., solar flares, astrophysical magnetic field generation, Earth’s magnetosphere interaction with the
solar wind) and in technological applications (e.g., spacecraft propulsion, magnetically confined plasma
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for fusion energy devices such as tokamak reactors, and plasma dynamics in pulsed reactors such as Z-
pinch devices) [1]. The mathematical basis for the continuum modeling of these systems is the solution
of the governing partial differential equations (PDEs) describing conservation of mass, momentum, and
energy, augmented by Maxwell’s equations for the electric and magnetic field. This system of PDEs is
non-self adjoint, strongly coupled, highly nonlinear, and characterized by multiple physical phenomena
that span a very large range of length- and time-scales. These interacting, nonlinear multiple time-scale
physical mechanisms can balance to produce steady-state behavior, nearly balance to evolve a solution
on a dynamical time scale that is long relative to the component time-scales, or can be dominated by just
a few fast modes. These characteristics make the scalable, robust, accurate, and efficient computational
solution of these systems over relevant dynamical time scales of interest (or to steady-state solutions)
extremely challenging.

For multiple-time-scale systems, fully-implicit methods can be an attractive choice that can of-
ten provide unconditionally-stable time integration techniques [2,3]. The stability of these methods,
however, comes at a cost, as these techniques generate large and highly nonlinear sparse systems of
equations that must be solved at each time step. In the context of MHD, the dominant computational
solution strategy has been the use of explicit [4–9] and partially implicit methods that include implicit-
explicit [10–14], semi-implicit [15–19], and operator-splitting [20–22] time integration methods. With
the exception of fully-explicit strategies, which are limited by stability restrictions to follow the fastest
component time scale, all these temporal integration methods include some implicitness to enable a
more efficient solution of MHD systems. Such implicitness is aimed at removing one or more sources
of numerical stiffness in the problem, either from parabolic diffusion or from fast wave phenomena.
While these types of techniques currently form the basis for most production-level resistive MHD sim-
ulation tools (see e.g. [19,13,23]), a number of outstanding numerical and computational issues remain.
These include conditional stability limits, operator-splitting-type errors, and limited temporal orders
of accuracy [17,18,24].

Recently, considerable progress has been made in the development of fully-implicit formulations that
attempt to robustly and accurately integrate these systems while following the dynamical time-scales
of interest [20,25,11,10,26–31]. In [20] for example, a nonlinear implicit MHD solver is proposed based
on a implicit-operator-split (IOS) approach. The IOS algorithm employs Krylov solvers for required
inversions in each split step, and is iterated upon in a Gauss-Seidel manner to achieve some degree of
nonlinear consistency. However, for large implicit time steps, large numerical errors are reported to be
possible with this algorithm in transient calculations unless enough nonlinear iterations are taken [20].
In [11,10], incomplete-LU-preconditioned Krylov methods are employed to invert the linearly implicit
(and also implicit-explicit) set of MHD equations in the context of the Versatile Advection Code.
CPU speedups vs. explicit of ∼ 40 are reported [10]. An unpreconditioned Newton-Krylov solver for
3D compressible MHD is explored in [26], which also reports order-of-magnitude speedups vs. explicit
approaches for fine enough grids. More recently, the same researchers have developed an “operator-
based” parallel preconditioner for 3D MHD, based on directional splitting of the implicit operator
followed by a characteristic decomposition of the resulting directional PDE operators [32]. The work
in [27] explores a Newton-Krylov-Schwarz parallel approach for the reduced Hall MHD model, where
gains of an order of magnitude with respect to explicit approaches and good parallel scalability are
reported. Finally, [28–31] develop optimal “physics-based” preconditioning strategies for a fully implicit
Newton-Krylov treatment of 2D and 3D extended MHD, and report excellent parallel scalability and
algorithmic speedups ranging from one to two orders of magnitude.

In the specific context of stabilized finite element methods used for spatial discretizations for MHD,
Salah et. al. [33] developed a formulation for the constant resistivity magnetic induction equation
with a given velocity field. They use a Lagrange multiplier to enforce the solenoidal constraint on
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the magnetic field, B and thus develop a system with four unknowns, the three components of B
and the Lagrange multiplier, r. This system requires compatible spaces for B and r that respect the
Ladyzhenskaya-Babuska-Brezzi (LLB) condition, that is analogous to the velocity and pressure spaces
(v, p) in the Stokes flow system (see e.g. [34,35]). An inconsistent stabilized formulation [36] following
Brezzi and Pitkaranta [37] is used to allow equal-order interpolation for B and r. These methods were
subsequently extended to an incompressible, constant resistivity MHD system, with both a Lagrange
multiplier formulation for B as described above, and a vector potential formulation [38]. The solution of
the resistive MHD system in [33,38] uses an outer decoupled nonlinear solution strategy. This decoupled
strategy solves the flow and magnetics system separately in each sub-step and couples the system by the
outer iteration that can sub-cycle the component solves. An ILU preconditioned Newton-Krylov type
solver is used for the flow equations and a direct sparse solver is used for the linear magnetics equation.
Codina and Silva [39] developed a stabilized FE formulation for resistive MHD, in the curl form of
the equations with constant properties, and develop stability parameters that handle the velocity-
pressure coupling, the solenoidal constraint by a Lagrange multiplier method, and streamline upwind
Petrov-Galerkin (SUPG) like terms that control oscillation due to convection effects. A fixed point
nonlinear solution is employed to resolve the nonlinearities and no mention is made of the component
linear solver(s) that are used. These authors present a coercivity result for the system that enables
development of the stabilization parameters. Other studies of stabilized FE methods applied to resistive
MHD systems include Gerbeau [40], who considered the coercivity of a stabilized FE formulation
for steady state systems and employed a fixed-point (Picard) type nonlinear solution strategy, and
Lankalapalli et. al. [41], who developed a vorticity-streamfunction vector potential formulation that
uses a SUPG FE discretization and a fixed-point nonlinear solver with a GMRES iterative method.

The current study complements previous work by providing a robust, efficient, fully-coupled stabi-
lized FE formulation for resistive MHD with solution methods that enable both fully-implicit transient
and direct-to-steady-state solutions. Our solution method relies on inexact Newton-Krylov methods
[42,43] to solve the resulting large-scale nonlinear algebraic systems. For preconditioning, we compare
well-known variable-overlap, additive, one-level Schwarz domain-decomposition methods [44,45] with
a relatively new algebraic multilevel technique employing a graph-based aggressive-coarsening aggre-
gation method applied to the nonzero block structure of the Jacobian matrix [46,47]. The algebraic
multilevel method effectively uses corrections that are computed by a sequence of coarse operators to
accelerate the convergence of the iterative Krylov method on the fine mesh. Employing a multilevel
preconditioner is intended to enable the development of scalable solution methods for MHD.

In this study, we focus on a 2D incompressible resistive MHD formulation with an associated internal
energy equation. This formulation is suitable for high-Lundquist-number reduced MHD models [48–50]
as well as low magnetic-Reynolds-number liquid metal MHD [51,52]. As in standard reduced MHD,
the magnetic field dynamics is described in terms of a single component of the vector potential (which
is also the magnetic flux function). Unlike standard reduced MHD, however, we choose to describe the
flow in primitive variables and solve directly for the flow velocity-vector and pressure. We discretize
the resulting MHD system using a simplified form of a consistently stabilized FE method [36], based
on the general approach of Hughes et. al. (see [53] and references therein). The stabilized formulation
circumvents the LBB condition for a compatible discretization of the saddle-point problem arising
from discretization of the incompressible MHD equations using mixed finite element formulations. In
particular, the stabilized FE formulation allows for equal-order interpolation of the incompressible MHD
equations while avoiding spurious pressure modes and reducing oscillations for convection-dominated
problems. In the current context of incompressible resistive MHD systems, an additional benefit of
stabilized FE is the use of equal-order interpolation for all quantities. This simplifies the data structures
of the parallel unstructured FE code, and the linear algebra interface for the iterative solution methods
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that are employed.
The remainder of this paper is organized as follows. Section 2 presents our formulation of the resistive

reduced MHD model. The stabilized FE formulation of the governing 2D resistive MHD equations is
presented in Section 3. In Section 4 a brief overview of the fully-implicit Newton-Krylov solution method
is presented with a discussion of the domain decomposition and multilevel preconditioners. Section 5
presents representative order-of-accuracy verification studies and performance, scaling and simulation
results for some illustrative resistive MHD problems. Most of these problems are formulated in the
low-Hartmann number regime, as our solution method is optimal for parabolic and elliptic problems.
However, as discussed earlier, MHD becomes truly multiscale in the high-Lundquist-number regime. For
this reason, we have also included in this study a high-Lundquist number test, the island coalescence
problem. Future work will explore the implementation of physics-based preconditioning ideas to deal
with the strongly hyperbolic MHD regime [28–31]. In physics-based preconditioning, the hyperbolic
MHD system is effectively parabolized by a block factorization, thus rendering the associated systems
amenable to the algebraic multigrid iterative technology demonstrated in the present study. Finally,
Section 6 closes with a few conclusions.

2 Reduced MHD Model Equations

Our base MHD model is the one-fluid visco-resistive MHD system [1]. This model provides a con-
tinuum description of charged fluids in the presence of electromagnetic fields. Formally, visco-resistive
MHD augments the Navier-Stokes fluid description with a Lorentz force term J×B in the momentum
equation and a Joule heating source term η‖J‖2 in the specific internal energy equation. The system
is closed with Faraday’s law, Ampere’s law, and the solenoidal constraint for the magnetic field. The
resulting system of equations is:

∂(ρv)

∂t
+∇ · [ρv ⊗ v −T]− J×B− f(T ) = 0 (1)

∂ρ

∂t
+∇ · [ρv] = 0 (2)

∂(ρe)

∂t
+∇ · [ρve+ q]−T : ∇v − η‖J‖2 = 0. (3)

∂B

∂t
−∇× (v ×B) +∇× (

η

µ0

∇×B) = 0. (4)

Here v is the plasma velocity; ρ is the ion mass density; T is the stress tensor; B is the magnetic field;
T is the plasma temperature; J = 1

µ0
∇×B is the current density; f is a body force term that we have

allowed to vary with temperature (as in our example of thermal buoyancy driven flow in Sec. 5.2); e
is the plasma specific internal energy; η is the resistivity; and µ0 is the magnetic permeability of free
space. In its simplest form, the MHD equations are closed with simple constitutive equations for the
stress tensor, T, and the heat flux q,

T = −P I + Π = −
(
P +

2

3
µ(∇ · v)

)
I + µ[∇v +∇vT ], (5)

q = −χ∇T, (6)

and a caloric equation of state, e = ĈPT . Here, P is the plasma pressure, Π is the viscous stress tensor,
I is an identity tensor, µ is the plasma viscosity, χ is the thermal conductivity, and ĈP is the specific
heat at constant pressure.
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For the purposes of this study, we focus on a 2D geometry in the incompressible limit (∇ · v = 0).
This limit is useful in the modeling of various applications such as low-Lundquist-number liquid-metal
MHD flows [51,52], and high-Lundquist-number, large-guide-field fusion plasmas [48–50]. In the 2D
incompressible regime, it can be shown that the in-plane and out-of-plane dynamics decouple (i.e., Bz,
vz, with z the ignorable direction, do not impact the evolution of the system in the x − y plane) . As
a result, the system in (1) – (4) simplifies considerably, as it can be expressed in terms of a few scalar
quantities like the vorticity component in the ignorable direction, the in-plane streamfunction, and the
poloidal flux (or, alternatively, the vector potential component in the ignorable direction) [48–50]. For
our implementation, however, it is of interest to keep a primitive description of the fluid flow, and to
enforce the incompressibility constraint explicitly (as is often done in the CFD community [see [53] and
references therein]). Thus, we preserve a 2D form of (1), and we replace the continuity equation (2) by
∇ · v = 0.

In regards to the magnetic field evolution equation, we replace (4) by an evolution equation for the
vector potential component in the ignorable direction, A = (0, 0, Az), which reads:

∂Az
∂t

+ v · ∇Az −
η

µ0

∇2Az + E0
z = 0. (7)

This equation is completely equivalent to (4) in two dimensions, but exhibits a standard convection
diffusion form that is more convenient for developing stabilized FE formulations.

Satisfying the solenoidal involution ∇ ·B = 0 in the discrete representation to machine precision is
a topic of considerable current interest in both structured and unstructured finite-volume and unstruc-
tured finite-element contexts (see e.g. [9,54,55]). It should be noted that the discrete FE representation
of (7), despite describing the vector potential dynamics, does not automatically enforce the solenoidal
constraint. In the case of linear nodal elements in 2D, this property can be shown to hold on element
interiors. However the non-continuity of the normal derivatives at element edges in a C0 FE approxi-
mation allows violation of this condition on the skeleton of the FE mesh, which is a set of measure zero.
This implies that the divergence condition holds point-wise on element interiors and in an L2 sense
over any finite sub-region of the domain. In addition, it can be shown that at element edges B · n̂ is
continuous, a condition that is also required on any surface in the continuous problem [56].

Finally, the desire to use low-order FE basis functions for the vector potential necessitates the
consideration of the representation of the Lorentz force term in the momentum equation and the
Joule heating term in the energy equation. In the context of the momentum equation, as presented
in (1), the straightforward use of the vector potential term yields a second order operator J × B =
( 1
µ0
∇×∇×A)× (∇×A). Due to the nonlinear nature of the term and the higher order derviatives on

J this term is difficult to integrate by parts to sufficiently reduce the order of the weak form operator.
This same issue is present in our 2D formulation, where we now have Jz = − 1

µ0
∇2Az. To avoid this

difficulty, an alternate divergence form (obtained using ∇ ·B = 0) is employed to compute the Lorentz
force as

J×B = ∇ ·
[

1

µ0

B⊗B− 1

2µ0

‖B‖2I

]
. (8)

However, such a reformulation is not possible for the Joule heating source term in the specific internal
energy (3). Presently, this term is approximated by computing the curl of a field, B̂ that is obtained
from an L2 projection of the piecewise discontinuous approximation obtained from B = ∇×A.
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3 A Stabilized Finite Element Formulation for 2D Resistive MHD

Table 1 presents the governing equations, for momentum, total mass, temperature, and vector poten-
tial in residual notation. The continuous PDE problem, defined by the 2D resistive MHD equations in
Table 1, is approximated by a stabilized FE formulation. This formulation allows for stable equal-order
velocity-pressure interpolation and provides for convection stabilization, as described below.

We employ stabilized FE methods to avoid stability and algorithmic limitations of mixed Galerkin FE
formulations. In particular, in a mixed Galerkin FE formulation of the momentum-continuity equations
of the Navier-Stokes part of the MHD system, there is a stability requirement that the discrete spaces
satisfy the the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition (see e.g. [34] or [35]).This
condition prevents the use of equal-order finite element spaces, defined with respect to the same partition
of the computational domain in finite elements. In addition the linearization of the nonlinear mixed
Galerkin FE formulation also leads to indefinite linear systems, which are more difficult to solve by
iterative methods (see the Appendix - Section 8.2). Finally, an additional difficulty is that the mixed
Galerkin formulation is prone to instabilities for highly convected flows, even if the LBB condition is
satisfied by the finite element spaces.

Consistently stabilized 4 finite element methods for Navier-Stokes address the issues above by using
a combination of properly weighted residuals of the governing balance equations. These methods simul-
taneously relax the incompressibility constraint and add streamline-diffusion (and sometimes nonlinear
discontinuity-capturing-type operators) to the weak equations to limit oscillations in highly convected
flows [57–61]. The specific stabilized FE formulations employed in this study are shown in Table 2. The
intrinsic-time-scale stability parameters (τ̂m, τ̂T , and τ̂Az) are based on the formulations of Hughes and
Mallet [62], Shakib [63], Hughes [64], and Tezduyar [65] for Navier-Stokes with an adaptation of the
stabilized formulation of Codina and Hernandez-Silva [39] for a resistive MHD system. The definition
of the stabilization parameters are provided in the Appendix in Table 8 for momentum, temperature,
and the vector potential.

It should be noted that our stabilized FE formulation, as presented, has some caveats. Firstly, the
definition of the least squares operators is a simplification of proposed formulations for system advection-
diffusion-type equations [62]. And secondly, it features no stabilization contribution for strong source
terms, and no nonlinear discontinuity-capturing terms (see [53] and references therein).

4 Fully-implicit Fully-coupled Solution by Parallel Newton-Krylov Methods

4.1 Fully-implicit Time Integration and Direct to Steady-state Solutions

For stiff (multiple-time-scale) PDE systems such as MHD, fully-implicit methods are an attractive
choice that can often provide unconditionally-stable time integration techniques. These methods can be
designed with various types of stability properties that allow robust integration of multiple timescale
systems without the requirement to resolve the stiff modes of the system (which are not of interest
since they do not control the accuracy of time integration [2,3]). In this study we employ a second-order
A-stable implicit midpoint rule [2,3].

The result of a fully-implicit and direct-to-steady-state solution technique is the development of
very large-scale, coupled highly nonlinear system(s) that must be solved. Therefore, these techniques
place a heavy burden on both the nonlinear and linear solvers and require robust, scalable, and efficient
nonlinear solution methods. In this study, Newton-based iterative nonlinear solvers [66] are employed

4 Consistent in the sense that the exact solution to the PDE equation satisfies the weak-form residual equations.
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Momentum Rm = ρ
∂v

∂t
+ ρ(v · ∇v) +∇ ·

(
− 1

µ0
B⊗B−Π + (P +

1

2µ0
‖B‖2)I

)
− f

Total Mass RP = ∇ · v

Temperature RT = ρĈp
∂T

∂t
+ ρĈp (v · ∇T ) +∇ · q− η‖J‖2

2D Vector
Potential Eq.

RAz =
∂Az
∂t

+ v · ∇Az −
η

µ0
∇2Az + E0

z

B = ∇×A; A = (0, 0, Az)

Table 1
Residual form of governing low Mach number resistive MHD equations with the 2D form of the vector po-
tential evolution equation in advection-diffusion form. The primitive variables are the velocity vector u, the
hydrodynamic pressure P , the temperature T , and the Az component of the vector potential in 2D. Ĉp is the
specific heat at constant pressure.

Momentum
Fm,i =

∫
Ω
ΦRm,idΩ +

∑
e

∫
Ωe

ρτ̂m(v · ∇Φ)Rm,idΩ

Total Mass
FP =

∫
Ω
ΦRPdΩ +

∑
e

∫
Ωe

ρτ̂m∇Φ ·RmdΩ

Temperature FT =

∫
Ω
ΦRTdΩ +

∑
e

∫
Ωe

ρĈpτ̂T (v · ∇Φ)RTdΩ

Z-
component
Vector
Potential

FAz =

∫
Ω
ΦRAzdΩ +

∑
e

∫
Ωe

τ̂Az(v · ∇Φ)RAzdΩ

Table 2
Stabilized finite element formulation of transport/reaction PDEs, where the residual equations Ri are presented
in Table 1 and the stabilization parameters τ̂i are defined in the Appendix in Table 8. Here Φ is a global
weighting function used to formally define the weak form. Here the sum

∑
e indicates the integrals are taken

only over element interiors Ωe and integration by parts is not performed.

to solve the challenging nonlinear systems that result in this application. These solvers can exhibit
quadratic convergence rates independently of the problem size when sufficiently robust linear solvers
are available. For the latter, we employ Krylov iterative techniques. A Newton-Krylov (NK) method
[67,42] is an implementation of Newton’s method in which a Krylov iterative solution technique is
used to approximately solve the linear systems that are generated at each step of Newton’s method.
Specifically, to solve the nonlinear system F(U) = 0, we seek a zero of F : RN → RN where U ∈ RN is a
current approximate solution. The Krylov iterative solver is applied to the linearized residual equation

Jksk+1 = −Fk, (9)

where Jk is the Jacobian matrix and Fk is the nonlinear residual, both of which are evaluated at
the previous Newton step solution Uk. The solution for the Newton direction vector, sk+1, is used to
update the previous solution in the sequence as Uk+1 = Uk + θsk+1, where θ is a step length reduction
or backtracking parameter. Backtracking algorithms improve the robustness of the nonlinear solver by
scaling the Newton correction vector by the parameter, θ, chosen to ensure a sufficient reduction of the
nonlinear residual before the step is accepted [66,68].
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For efficiency, an inexact Newton method [69–71] is usually employed, whereby one approximately
solves (9) by choosing a forcing term ηk+1 and stopping the Krylov iteration when the inexact Newton
condition

‖Fk + Jksk+1‖ ≤ ηk+1‖Fk‖ (10)

is satisfied. In general, nonlinear residual information is used to determine the forcing ηk+1. In our
Newton’s method implementation, a constant value is used for ηk+1.

In this study, the Jacobian matrix Jk that is used for the Jacobian-vector products in the Krylov
solvers, and as the basis for computing the preconditioners described in Section 4.2, is developed from
automatic differentiation (AD) techniques. These methods are applied to the programmed functions
representing the weak form residuals outlined in Table 2 by employing the SACADO package from
the Trilinos framework [72]. The specific form of this discrete system is discussed in the Appendix in
Section 8.2, along with the impact of the block structure of the Jacobian and the implications for the
design of solution methods for this system of equations.

4.2 Schwarz Domain Decomposition and Multilevel Preconditioners

For the considered class of linear systems described above, convergence is not achieved without
preconditioning due to ill-conditioning in the underlying matrix equations [73]. In the current work,
we consider Schwarz domain decomposition preconditioners, where the basic idea is to decompose the
computational domain Ω into overlapping subdomains Ωi and then assign each subdomain to a different
processor [44,45]. One application of the algorithm consists of solving on subdomains and then combin-
ing these local solutions to construct a global approximation throughout Ω. The ith subdomain problem
is usually defined by enforcing homogeneous Dirichlet boundary conditions on the subdomain bound-
ary, ∂Ωi. In the minimal overlap case, the algebraic Schwarz method corresponds to block Jacobi where
each block contains all degrees of freedom (DOFs) residing within a given subdomain. Convergence
is typically improved by introducing overlap, which can be done recursively. Incomplete factorization,
ILU(k), is employed to approximate the solution of the local Dirichlet problems and avoid the large
cost of direct factorization [73,74]. We note that the one-level preconditioner is black-box in that the
overlapping subdomain matrices are constructed completely algebraically.

One possible drawback of the one-level Schwarz method is its locality. A single application of the
algorithm transfers information between neighboring sub-domains. This implies that many repeated
applications are required to combine information across the entire domain. Thus, as the number of
subdomains increases, the convergence rate deteriorates for standard elliptic problems due to the lack
of global coupling [44]. The convergence rate also deteriorates as the number of unknowns per subdomain
increases when ILU(k) is used for a subdomain solver. The results that we present in Section 5.2 will
demonstrate such deterioration for the specific problems of interest in our study. To improve algorithmic
performance, coarse levels can be introduced to approximate global coupling [75,76]. The use of a coarse
mesh to accelerate the convergence of a one-level Schwarz preconditioner is similar in principle to the
use of a sequence of coarser meshes in multigrid methods [77,78].

In this paper, only algebraically generated coarse levels are considered. These are significantly eas-
ier to implement and integrate with a complicated unstructured simulation than geometric coarse
grids [75,76,79]. In particular, there is no need to represent complex geometric features on all levels,
e.g. faces, edges, and corners to define the domain boundary. There is also no requirement to interact
with the simulation’s geometric data structures. Most algebraic multigrid methods (AMG) associate
a graph with the matrix system being solved. Graph vertices correspond to matrix rows for scalar
PDEs, while for PDE systems it is natural to associate one vertex with each nodal block of unknowns,
e.g. velocities and pressures at a particular grid point. A graph edge exists between vertex i and j if
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there is a nonzero in the block matrix which couples i’s rows with j’s columns or j’s rows with i’s
columns. In some situations, it may be advantageous to omit edges if all entries within the coupling
block are small [80]. In this study, METIS and ParMETIS [81] are used to group fine mesh vertices into
aggregates so that each aggregate effectively represents a coarse mesh vertex. These graph partitioning
packages subdivide the matrix graph so that each partition has no more nodes than a user supplied
parameter and that each partition is somewhat spherically shaped. This graph partitioning is then
applied recursively until the user specified number of levels has been achieved. Once the coarse mesh
is determined, an initial grid transfer is constructed corresponding to piecewise constant interpolation.
The grid transfer matrix, P , contains only zeros and ones. In the scalar PDE case, Pij equals one only
if the ith fine grid point has been assigned to the jth aggregate. Within a PDE system, the grid transfer
is a block system with an identity matrix for the (i, j)th block if the ith fine grid point has been assigned
to the jth aggregate. This initial grid transfer can then be improved by smoothing the corresponding
basis functions [82,83]. In this study, we employ a Petrov-Galerkin smoothed aggregation algorithm as
implemented in the ML multilevel packages in Trilinos and described in [84].

Finally we note that we orient the graph partitioning algorithm so that they generate somewhat
larger aggregates than those typically used in standard smoothed aggregation. This aggressive coarsen-
ing significantly reduces the number of unknowns between consecutive levels. This generally limits the
total number of levels (≤ 5) which we find better suited for parallel computations [46,85]. Addtionally,
larger aggregates are consistent with using a sub-domain solver based on Schwarz/ILU(k) which in
the multigrid context corresponds to a somewhat heavyweight smoother (compared to Gauss-Seidel
often used in standard multigrid). That is, one can coarsen more aggressively when a more substantial
smoother is employed. The same ILU(k) algorithm is used as a smoother on each level and on the
coarsest level the KLU [86,87] sparse direct solver is employed.

The multilevel implementation described above is provided by ML [75,88]. ML has been employed
successfully in a number of applications that include stabilized FE discretizations of Navier-Stokes
and transport-reaction type systems [89,79,47], as well as drift-diffusion systems for semi-conductor
modeling [90,91]. Aztec, Ifpack, KLU, ML, KLU, and Zoltan are available through the Trilinos frame-
work [72].

5 Results and Discussion

In this study we present two general classes of results. The first class of results, presented in Section
5.1, are for assessment of the accuracy and order-of-accuracy of the stabilized FE formulation described
above by a comparison with analytic solutions. The problems in this section include, (1) a flux expulsion
problem that qualitatively evaluates the accuracy of the FE formulation in solving the vector potential
transport equation on a fully unstructured mesh; (2) a steady-state MHD duct flow with strong coupling
between the momentum and the Lorentz forces that provides a detailed assessment of the order-of-
accuracy of the solution and a discussion of the effectiveness of the SUPG convection stabilization; and
(3) a transient MHD Rayleigh flow and Alfvén wave propagation problem that allows evaluation of the
space-time accuracy and order-of-accuracy of the stabilized FE formulation.

The second class of results, presented in Section 5.2, are intended to present initial representative
results for the robustness, efficiency and scalability of the fully-coupled AMG preconditioned NK solu-
tion method described above. The problems in this section include, (1) a MHD duct flow that models
an idealized MHD Faraday pump and is used to study the scalability of the solvers in the context of
a direct-to-steady-sate solution method, (2) a classic MHD Hydromagnetic Rayleigh-Bernard problem
provides a test of the robustness of the direct-to-steady-state solver and also presents another compar-
ison of the accuracy of the formulation with an analytic linear stability result by Chandrasekhar, and
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(3) a transient magnetic island coalescence problem, of recent scientific interest, for which we present
initial results for the scalability of the solution methods.

5.1 Representative Verification and Order-of-Accuracy Results

In this subsection, detailed numerical verification results are presented for a set of 2D resistive MHD
problems that admit analytic solutions. Two nonlinear convergence criteria are used to ensure that the
numerical solution error is below discretization error. The first is a sufficient reduction in the relative
nonlinear residual norm, ‖Fk‖/‖Fo‖ < 10−2. In general, this requirement is easily satisfied. The second
convergence criterion is based on a sufficient decrease of a weighted norm of the Newton update vector.
The latter criterion requires that the correction, ∆χki , for any variable, χi, is small compared to its

magnitude,
∣∣∣χki ∣∣∣, and is given by √√√√ 1

Nu

Nu∑
i=1

[
|∆χi|

εr |χi|+ εa

]2

< 1,

where Nu is the total number of unknowns, εr is the relative error tolerance between the variable
correction and its magnitude, and εa is the absolute error tolerance of the variable correction, which
sets the magnitude of components that are to be considered to be numerically zero. In this study,
the relative-error and absolute-error tolerance are 10−8 and 10−10 respectively. Each linear system in
Newton’s method is solved to a level of η = 10−8.

5.1.1 Flux Expulsion Problem
This problem admits an analytical solution, which is commonly used for verification of resistive

MHD implementations [92,38]. The problem consists of an infinitely long, rotating cylindrical conductor
immersed in a conducting medium in a uniform magnetic field (B0, 0, 0). The cylinder rotates with the
velocity field v = (−ω0y, ω0x, 0), where ω0 is a constant rate of rotation. The flow is zero, v = 0,
outside the cylinder. The dependent variable is A = (0, 0, Az). The geometry is taken as a cylinder of
radius, r0 = 0.2 within a computational domain Ω = [−2, 2] × [−1, 1]. The analytic solution for the
vector potential is given, in terms of Bessel functions as:

Az = Im[B0 f(r) eiθ],

where

f(r) = r +
C

r
, r > r0

f(r) = DJ1(pr), r ≤ r0

and

p =
(1− i)k0√

2
, k0 =

√
Rem
r0

C =
r0[2J1(pr0)− pr0J0(pr0)]

pJ0(pr0)
, D =

2

pJ0(pr0)
.

The computational solution is produced on an unstructured mesh, a coarse example of which is
presented in Figure 1. The boundary conditions on all edges of the computational domain are taken
from the analytic solution. As the rotational rate is increased in the conductor, the linear Az (uniform
Bx) field is distorted. At high rotation rates, the field is expelled from the cylinder and the effects of
diffusion modify the flux field in the region about the rotating conductor. Figure 1 shows contours of
Az as a function of the magnetic Reynolds number, Rem = ω0r

2
0/η. In this study, the resistivity η = 1.0
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Fig. 1. Flux expulsion verification problem. The top left figure shows a coarse computational unstructured
mesh Ω = [−1, 1]× [−1

2 ,
1
2 ] . The remaining figures show filled-color contour plots of numerical solution of Az

for Rem = 6, 12, 24, 48, 12288 from the top center image to the lower right image. Red values are high and blue
values are low in each image.

Fig. 2. Flux expulsion verification problem. Figures show profiles of analytic solution of Az(0, y) (left)
and Az(x, 0) (right) along with numerically computed solutions from the vector potential solution in
Ω = [−2, 2] × [−1, 1] with 20K unstructured quad elements. The red squares are for Rem = 6 and the
green triangles are for the more highly convected case of Rem = 96, the black line is the analytic solution due
to Moffat [92].

and the rotational rate, ω0, is selected to achieve the desired magnetic Reynolds number. The noisy
solution for the highest Reynolds number case is due to the highly convected flow being solved on a
very coarse unstructured mesh. The SUPG-type stabilization does decrease the unphysical oscillations
but it is not a monotonicity-preserving method. Section 5.1.2 presents a more careful study of the
effectiveness of the SUPG stabilization for controlling unphysical oscillations due to convection effects.
A comparison of the analytical solution for the flux expulsion problem with the numerical solution is
provided in Figure 2, where Az(x, 0) and Az(0, y) are shown in a region about the conductor. Figure
3 presents the results for the post-processed variables Bx(0, y), By(0, y) and Jz(0, y) computed on the
20K element unstructured mesh. There has been no significant optimization of the mesh to resolve
the highly localized induced magnetic field and plasma current internal layers near the rotating inner
cylinder. These comparisons indicate a very good agreement between the computed solutions and the
exact analytical solution of Moffat [92] on a reasonably coarse unstructured mesh.
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Fig. 3. Flux expulsion verification problem. Figures show profiles of analytic solution of Bx(0, y) and By(0, y)
(left) along with Jz(0, y) (right) along with numerically computed solutions from the vector potential solution
in Ω = [−2, 2] × [−1, 1] with 20K unstructured quad elements. The black line is the analytic solution due to
Moffat [92].

5.1.2 A Modified Hartmann Flow Vector Potential Problem
This problem also admits an analytical solution [51] which is often used for MHD verification [33,93].

In the classical form, the solution is one-dimensional, with dependent variables (v, P,B). The geometry
is taken as a square box with (x, y) ∈ [−L,L]× [−L,L] with an assumed pressure gradient that drives
the flow of ∂P

∂x
= −G0. The analytic asymptotic solution is of the form B = (Bx, B0, 0) and v = (vx, 0, 0),

where By = B0 is an applied external magnetic field whose tension retards the flow. The solution is
given by

vx = −ρG0Ha

µ0B2
0

[
cosh(Ha)− cosh(y Ha/L)

sinh(Ha)

]

Bx = −B0Rem
Ha

[
sinh(y Ha/L)− (y/L) sinh(Ha)

cosh(Ha)− 1

]
.

In vector potential form, the solution for the modified Hartmann problem reads:

Az = −B0x−
G0y

2

2B0

+
G0

B0

[Ha cosh(y Ha) csch(Ha)] ,

and must be sustained by an external electric field with

E0
z =

G0

B0

[Ha coth(Ha)− 1].

In Figure 4, plots of the spatial variation of the numerical solution for vx and Az are presented
along with the post-processed quantity Bx. The 1D nature of vx and Bx are evident along with the 2D
variation of the vector potential Az. The order of accuracy of the numerical formulation is computed by
comparison with the analytic solution. As before, the analytic boundary conditions are used on com-
putational boundaries. In Figure 5, profiles from the computed numerical solution are compared with
the analytic solution for vx and Bx at x = 0 for various values of Re = U(2L)/ν = Rem = µ0U(2L)/η,
where U is the maximum x-direction velocity, and the Hartmann number is Ha = B0(2L)/

√
ρνη. In

this study, we have taken L = 1, ρ = 1, ν = η = 1, µ0 = 1. The values of G0 and B0 are then selected
to produce the desired Reynolds and Hartmann numbers. Figure 5 shows excellent agreement with
the analytical solution. Figure 6 shows a detailed spatial convergence study for a mesh with spacing
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∆x = ∆y. The expected second-order accuracy for vx and Az, which are interpolated with linear nodal
elements, is confirmed by these results. Bx, which is computed by taking the curl of the vector po-
tential and then reconstructed at the nodes by the a lumped mass L2 projection (as stated in Section
2), also shows second-order convergence. Formally, derivative quantities computed from linear nodal
basis functions are only first-order accurate. However, on a uniform mesh, the lumped mass projec-
tion recovers a second-order accurate approximation, demonstrating super-convergence [94]. In general,
super-convergence behavior does not occur for fully-unstructured meshes.

Fig. 4. Modified Hartmann flow verification problem, Re = Rem = 1 and Ha = 1. Figures show color plots
of spatial variation of numerical solution of vx (left), Az (center), and Bx (right) to visualize the computed
solution that corresponds to the analytic solution. Red values are high and blue values are low in each image.

Fig. 5. Modified Hartmann flow verification problem, Re = Rem. Figures show profiles of analytic solution of
vx (left) and B0Bx (right) along with numerically computed solutions at x = 0.0 from the vector potential
solution.

Finally, we proceed to illustrate the effect of the convection stabilization by the SUPG-type terms for
a strongly convecting flow. The geometry is a rectangular channel with (x, y) ∈ [0, 5]× [−1, 1]. A very
coarse mesh of 10×20 elements is employed. The inlet has velocity vx(0, y) = V0 with V0 = 100, 200, 400
and as above, we have taken L = 1, ρ = 1, ν = η = 1, µ0 = 1. The boundary conditions on Az
consist of no-flux (natural) boundary conditions on the y = −1, 1 boundaries, and Az(0, y) = −5 and
Az(5, y) = 5. The outflow conditions on the momentum equation are taken as the surface integral
terms that naturally arise from integration by parts of the momentum equation in Table 1. In the
surface integrals, the viscous stress is neglected (a standard traction-free outflow boundary condition
assumption), and the magnetic stress and fluid pressure are integrated values that are computed just

13



Fig. 6. Modified Hartmann flow verification problem, Re = Rem. Figure shows L1 relative error of the computed
numerical solution for vx, Az and the derived quantity Bx from the vector potential solution. The relative error
is computed point-wise to the exact solution.

inside the exit boundary. These approximate outflow boundary conditions attempt to truncate the
domain while still providing a reasonable test of SUPG’s ability to control oscillations in the presence
of strong convecting flows on coarse meshes. For a cell based Rec = U∆x/ν = Recm = µ0U∆x/η > 1,
the Galerkin discretization can become unstable and produce oscillations. Figure 7 clearly illustrates
such nonphysical behavior for large flows. As expected, the SUPG stabilization helps to control and
localize these oscillations. Note that, for large velocities, the Dirichlet condition at x = 5 results in a
very sharp flow boundary layer. This layer is not a numerical artifact, and in fact demonstrates the
SUPG discretization is adequately capturing the physics. While there still appears to be some very
slight outflow boundary condition effects, seen in the velocity profile for the stabilized case at the
last two points, this most likely is due to the use of an inaccurate lumped mass projection to recover
the high-order derivatives that are used to reconstruct terms in the PDE residual for the stabilized
formulation. This approximate projection technique has problems at boundaries. A consistent mass
projection is being explored.

5.1.3 MHD Rayleigh Flow and Alfvén Wave Propagation Problem
This prototype problem also features an analytical solution [51] which has been used for MHD

verification [33]. In the classical form, this is a 1D transient problem that has an infinite plate bounding
a conducting fluid in a semi-infinite domain above y = 0. There is an externally applied magnetic field in
the y-direction with magnitude B0. The plate is initially at rest and then is suddenly set in motion with
a velocity vx = U . A viscous boundary layer flow is developed where the velocity profile is modified
from the classical Rayleigh flow profile [95] by the existence of the magnetic field. As the velocity
profile is developed, a self-induced magnetic field in the x-direction, Bx, is developed and an Alfvén
wave with velocity A0 = B0/

√
µ0ρ propagates into the fluid. In the numerical solution, the infinite

half-space is approximated as a square box with (x, y) ∈ [0, 5]× [0, 5]. For the case where the magnetic
Prandtl number Prm = ν/η = 1, the analytic asymptotic solution is of the form B = (Bx, B0, 0) and
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Fig. 7. Test of the SUPG-type stabilization of convective effects. Figures show profiles of Az (left) and vx (right).
The Hartmann number for this case is 4. Note that in the left figure the SUPG results are indistinguishable
for all Rem.

v = (vx, 0, 0), and is given by

vx =
1

4
U

[
e−

A0y

d

(
1− erf

(
y − A0t

2
√
dt

))
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(
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2
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dt
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In terms of the vector potential, the solution (v, P, Az) reads:

Az = −B0 x+
U
√
dt
√
µρ

2
√
π

(
e−
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2

4dt − e−
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,

and must be sustained by an external electric field with E0
z = B0 U

2
.

The parameters in this problem are taken as in [33] to be U = 1.0 m/s, B0 = 1.4494e−4 kg/s2A,
ρ = 0.4e−4 kg/m3, µ0 = 1.256636e−6 kg m/s2A2, η = 1.256636e−6 kg m3/s3A2, and µ = 0.4e−4 kg/m s
with d = η/µ0 = µ/ρ = 1. The initial conditions and boundary conditions are defined by the analytical
solution above. In Figures 8 and 9, line plots of the analytic and numerical solution for vx, and Az,
as well as the post-processed quantity Bx, are presented at various discrete times. In these plots, the
Hartmann layer in vx near the plate surface at y = 0, and the plateau region influenced by the magnetic
field is evident. These figures show excellent agreement with the analytical solution. Figure 10 shows a
detailed spatial and temporal order-of-accuracy study. It should be noted that the temporal accuracy
computations displayed on the right begin at a CFL = 40 based on the Alfvén velocity. These results
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indicate that the second order in time method is already achieving the expected order of accuracy. The
expected second-order accuracy for vx and Az, which are interpolated with linear nodal elements, is
confirmed by these results. Again, as in the last verification problem, the results for Bx exhibit second-
order accuracy due to super-convergence. The figure also exhibits the expected order-of-accuracy for the
backward Euler (BE, first order) and Crank-Nicolson (mid-point, second order) temporal integration
schemes.

Fig. 8. Modified Rayleigh flow and Alfvén wave verification problem. Figures show plots of x-velocity (left)
and x-magnetic field (right). The mesh has 50× 250 elements and the time step is 5× 10−4 time units.

Fig. 9. Modified Rayleigh flow and Alfvén wave verification problem. Figure shows plots of Az. The mesh has
50× 250 elements and the time step is 5× 10−4 time units.

5.2 Prototype Resistive MHD Problems and Linear Solver Performance

This section briefly describes three prototype resistive MHD problems that are intended to challenge
the stabilized FE 2D vector potential formulation and the fully-implicit, fully-coupled solution methods
presented in this paper. They are also intended to assess the parallel performance (in a weak scaling
sense) of these solution methods to very large problem sizes on thousands of processors. One of the
tests demonstrates the solvers in the large-Lundquist-number regime.
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Fig. 10. Order of accuracy study for modified Rayleigh flow and Alfvén wave verification problem. A spatial
convergence study for Az, vx, Bx, is shown on the left with a comparison to second order reference lines for
∆t = 1.0 × 10−4. The expected order-of-accuracy is obtained followed by a region where the error begins to
plateau as the temporal integration error begins to dominate. Figure on the right shows convergence of the
computed numerical solution for the backward Euler and midpoint rule time integrator for ∆x = 5.0× 10−3.
In the midpoint rule results, the error also begins to plateau as the error in the spatial discretization begins
to dominate at small time step sizes.

The first problem is a steady-state MHD duct flow configuration representing an idealized Faraday
conduction pump. The MHD pump induces flow by the action of an applied magnetic and electric
field. The second problem is a coupled thermal-convection buoyancy-induced flow that is modulated
by an externally applied magnetic field and produces internally generated fields. The corresponding
linear stability problem is the classical hydromagnetic Rayleigh-Bernard problem. The final example is
a driven magnetic reconnection problem where a Fadeev magnetic field equilibrium [96], which features
islands embedded in a Harris current sheet, undergoes a transient reconfiguration of the magnetic field.
The computational timing results presented in this section were obtained on the Red Storm Cray
XT3/4 computer at Sandia National Laboratories. The Newton convergence criterion is specified in the
discussion of each specific problem. In all these examples, the linear systems generated by Newton’s
method have been left-scaled by a diagonal matrix that contains the inverse of the row sum of absolute
values of all entries in the row.

5.2.1 An Idealized MHD Faraday Pump
As an illustration of the parallel performance of the one-level additive Schwarz domain decomposition

and multilevel preconditioners, a weak scalability study is presented for a 2D idealized Faraday MHD
conduction pump. This problem models an MHD pump that induces flow in a conducting fluid by
applying an external magnetic field in the y-direction and an electric field in the z-direction. The
domain is Ω = [0, 10] × [−1, 1]. There are no-slip fluid velocity conditions applied on the upper and
lower surfaces with natural boundary conditions for the system applied at both the inlet and outlet
of the domain. On the lower and upper surfaces, a constant external magnetic field B = (0, B0, 0) is
applied by application of a linear variation in Az in the x-direction in the range of x ∈ [2.5, 7.5], while
outside of this range the magnetic field is zero. A constant electric field, E0

z is applied in the z-direction.
The interaction of these fields produces a Lorentz force that pulls fluid in from the x = 0 boundary
with a parabolic profile, contorts the velocity field into a common “M” profile for these types of flows
[97–99], and then the flow exits with a parabolic profile (see Figure 11 and 12). The simple geometry
of this problem facilitates scalability studies as different mesh sizes can be easily generated.
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In our numerical study, we briefly consider the effect of ILU fill-in for the one-level preconditioner and
the benefit of employing multilevel methods with coarse operator solves as described above. The Krylov
method is a non-restarted GMRES technique. This choice eliminates the degradation of convergence
that can occur from restarting of the GMRES iteration, and allows the scalability of the preconditioners
to be addressed. For the one-level DD preconditioner, an incomplete factorization ILU(k) sub-domain
solver was used with k = 1, 3, 7. For the 3-level preconditioner, the fine and medium meshes use an
ILU(1) smoother and the coarsest problem was solved by the KLU sparse direct solver. For this problem,
the inexact Newton forcing term is taken as ηk+1 = 10−4.

Fig. 11. Color plots of spatial distribution of Az (upper left), velocity vector magnitude (lower left), Bx (upper
right) and By (lower right) for idealized Faraday conduction MHD pump. The red color is high and the blue
color is low for each variable.

Fig. 12. Vx velocity profiles for the developing flow in an idealized Faraday MHD pump. The locations of the
profiles are shown graphically in Figure 11.

As an initial illustration of parallel efficiency, we consider the weak scaling of the one-level DD
ILU preconditioner as presented in Table 3. In this study, the 16 processor case solves the problem on
a 800 × 80 mesh. The weak scaling study keeps the work per processor fixed as the problem size is
increased. This study is for a low Re = Rem = 0.7 flow with Ha = 1. Figure 13 graphically presents the
parallel and algorithmic scaling of the one- and three-level preconditioners for the MHD Faraday pump
presented in Table 3. Figure 13 (left) summarizes the results for the average iteration count per Newton
step as a function of problem size. As the number of unknowns, N (as well as the number of processors,
P , in this scaled study), is increased, the number of iterations to convergence for the one-level schemes
increases significantly: roughly N1/2 in two dimensions. Note that an optimal convergence property,
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proc fine 1-level ILU(1) 1-level ILU(3) 1-level ILU(7) 3-level V(1,1)

unks avg its/ time avg its/ time avg its/ time avg its/ time

Newt (sec) Newt (sec) Newt (sec) Newt (sec)

step step step step

16 256K 136[9] 9.8 86[8] 8.6 62[9] 9.7 47[8] 7.6

64 1M 313[9] 22.8 198[9] 15.1 154[9] 14.8 80.1[9] 9.3

256 4M 714[11] 82.4 701.4[11] 44.9 392[8] 36.3 136[9] 16.9

1024 16M 1583[10] 318 1158[12] 191 888[10] 123 129[10] 16.4

4096 64M 2667[20] 750 1951[16] 488 1766[14] 429 147[13] 31.9

Table 3
Comparison of 1-level and 3-level PGSA method for MHD Faraday pump example problem. The 3-level non-
smoothed aggregation method uses an aggregation size of 80 and an ILU(1) smoother on the fine and medium
meshes with the KLU direct solver on the coarsest problem. The table entry above for 136[9] indicates the
number of GMRES iterations followed by the number of Newton steps in brackets.

i.e., an iteration count independent of problem size, is roughly obtained for the 3-level preconditioner.
On the coarsest level, a serial sparse matrix direct solver, KLU, was used to factor the coarse matrix.
Since the fine grid smoother is highly parallel and the fine grid work per processor is roughly constant,
the cost of producing the coarse grid problem and executing the direct solve (KLU) on the increasingly
larger coarse grid causes an increase in the CPU time for the larger problems. While this CPU time
increase is non-optimal, the 3-level method remains significantly faster (a factor of about 10–20x)
than the corresponding one-level methods. The CPU time growth due to the coarse grid solve can be
mitigated by using either approximate coarse grid methods (e.g. [76]) or more levels.

Fig. 13. Weak scaling results for MHD Faraday pump problem. Comparison of 1-level and 3-level PGSA
method. The scaling of the average number of iterations per Newton step (left) and the average CPU time per
Newton step (right).

As a proof-of-capability of the multilevel preconditioner, we provide an initial demonstration of the
solution of a very large scale problem on tens-of-thousands of processors. Specifically, a problem with
1.05 billion unknowns for the MHD pump is solved on the Cray XT3/4 using 6,000 nodes with 4 cores
per node for a total of 24,000 cores. For this problem size, the one-level method cannot be applied. The
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details of this calculation are presented in Table 4. These results are very encouraging. They indicate
convergence of the Newton iteration in O(10) iterations and of the linear solver in O(100), values that
are not too far from the more complete weak scaling study of Table 3 that employes three levels and a
larger aggregation size of 80. Finally the ability of the multilevel preconditioned Newton-Krylov solver
to scale to 1+ billion unknowns on 24,000 cores is an indication that the underlying solution strategy
is reasonably robust and scalable for this low Rem prototype problem.

cores Fine Mesh Intermed. Intermed. Coarse Newton Avg. No. Total

Level 0 Level 1 Level 2 Level 3 Its. Linear Its. / Time

Unkns. Unkns. Unkns. Unkns. Newton (min.)

24,000 1.05 billion 23.3M .5M 11.2K 18 86 33

Table 4
Details of 1.05 billion unknown MHD Faraday pump calculation. The simulation used a mesh of size 51, 200×
5, 120 with roughly 260M quad elements. The 4-level multilevel PGSA preconditioner used an aggregation size
of 45 at each level to produce the coarsened operators.

5.2.2 A Classical Hydromagnetic Rayleigh-Bernard Stability Computation
This resistive MHD prototype problem consists of a buoyancy induced thermal convection flow that

is modulated by the existence of an externally applied magnetic field. It combines the classical Rayleigh-
Bernard buoyancy induced thermal convection flow problem with an externally applied B field. The
magnetic field induces Maxwell stresses that add additional stabilizing effects to the traditional damping
provided by the viscous forces in Navier-Stokes. These coupled mechanisms are, for example, critical
components of large-scale geo-dynamo simulations that model the time dependent behavior of the
Earth’s magnetic field (e.g.[100,1]). This problem solves for the unknowns (v, P, T, Az) from the system
outlined in Table 1 where the density variation is modeled by a Boussinesq approximation [100]. This
approximation uses a constant density in all the terms of the balance equations with the exception
of the momentum equation source term. In this term, a linear approximation is used with f(T ) =
ρ0g + β(T − T0)g, where ρ0 and T0 are a reference density and a reference temperature respectively,
and β is the thermal expansion coefficient.

The rectangular domain for this problem is Ω = [0, 10] × [0, 1]. There are no-slip fluid velocity
conditions applied on the upper and lower surfaces with natural boundary conditions for the system
applied at both the left and right boundary of the domain. A temperature difference is maintained in
the vertical direction by holding the lower surface to a high temperature TH and the upper surface at the
lower temperature TC that is separated by a distance d. This temperature difference ∆T = (TH − TC)
produces an unstable density stratification that interacts with gravity in the negative y-direction. In
the classical Rayleigh-Bernard problem, flow is induced when the non-dimensional Rayleigh number,
Ra = ρ2Ĉp gβ∆Td3/(µχ), becomes sufficiently large to have buoyancy effects overwhelm the stabilizing
viscous forces [100]. Here d is a characteristic length scale aligned with the gravity vector. In the case
of the hydromagnetic Rayleigh-Bernard (HMRB) problem, a stabilizing constant external magnetic
field B = (0, B0, 0) is applied by application of a linear variation in Az in the x-direction on the lower
and upper surfaces. For a thermal convecting flow at fixed Rayleigh number, convective flow will be
damped when the non-dimensional magnetic field strength is increased beyond a critical Chandrasekhar
number, Q = Ha2. Beyond this limit, the Maxwell stresses existing in the curved magnetic field lines
shut down the convective cellular flow. A typical stable nonlinear solution where cellular flow and fields
exist is presented in Figure 14.
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As an example of the robustness and efficiency of the fully-coupled multi-level preconditioned NK
solution technology, we present the results in Figure 15 for convergence of the nonlinear Newton iteration
(left image) and the preconditioned Krylov linear solver (right image). In this study we have taken
ρ = ν = µ0 = Ĉp = d = χ = β = 1 with the Ra set by adjusting ∆T and Q set by B0. The
convergence of the outer fully-coupled nonlinear Newton solver in Figure 15 (left) indicates that, as
the Chandrasekhar number increases, the nonlinearity of the problem increases and the convergence
of the nonlinear iteration becomes more difficult. Without the use of backtracking techniques [68],
convergence is not obtained past Q = 4. Beyond Q = 11, a direct-to-steady-state solution was not
obtained and the use of continuation and/or transient solution methods would need to be considered
if a direct-to-steady-state solution is required for larger Chandrasekhar numbers. In the context of
the linear solver convergence, Figure 15 (right) indicates that the multilevel preconditioned Krylov
method converges substantially faster to the solution in the first two Newton steps. In addition, the
ability of the 3-level methods to provide a sufficient linear residual decrease in the sub-problems for
Newton’s method allows for a more robust iterative nonlinear solver. This is indicated in Table 5 for the
hydromagnetic Rayleigh-Bernard problem. Note that the one level DD preconditioner failed to solve
this problem in less than 40 Newton steps. For this case, the linear solver failed to reach its convergence
criterion of η = 10−3 in 2000 iterations for 36 out of the 40 Newton steps. We have seen many such
examples where a direct-to-steady-state nonlinear calculation fails for very ill-conditioned large linear
systems when an ineffective preconditioner causes the iterative linear solver to converge too slowly to
be practical, or does not converge at all. For this reason, effective scalable preconditioners, such as the
multilevel preconditioner described in this study, are not only required for efficiency but also often for
robustness in solving very large-scale problems.

Fig. 14. Color plots for the hydromagnetic Rayleigh-Bernard stability type calculation. The images show the
stable nonlinear flow and fields at Ra = 2500 and Q = 9 for temperature (upper left), Vy (center left), Vx
(lower left), and Jz with the magnetic field vectors (upper right), By (center right), and Bx (lower right). At
Q = 9 the critical Rayleigh number is ≈ 1922. The red values are high and blue values are low in each image.

As an additional verification of the accuracy of the resistive MHD formulation presented above, we
present a comparison of the computed critical Rayleigh number from simulation, and the theoretical
value in Chandrasekhar [100]. In this study, a computational eigenvalue analysis of the linear stability
problem is computed as in [79] with the results summarized in Table 6, where the accuracy of the
formulation is clearly apparent. It should be noted that by employing the direct-to-steady-state solution
capability based on Newton-Krylov-type techniques as presented in this study, additional advanced
solution methods such as parameter continuation, bifurcation tracking, and automated linear stability
analysis algorithms can be effectively developed to analyze the complex nonlinear solution spaces for
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the HMRB problem.

Fig. 15. Hydromagnetic Rayleigh-Bernard problem. A convergence plot of the nonlinear scaled norm in New-
ton’s method with the 3-level ML PGSA preconditioner (left) and the linear scaled norm in non-restarted
GMRES for DD and ML preconditioner (right).

proc fine grid fine grid 1-level ILU 3-level V(1,1) ILU-ILU-KLU

size unknowns avg its/ total medium coarse avg its/ total

Newt time unkns unkns Newt time

step (sec) size size step (sec)

2048 500× 5000 12.5M 1910[40] > 7200* 412450 13745 115[17] 226

Table 5
Comparison of convergence for the 1-level and 3-level PGSA multilevel preconditioner for Hydromagnetic
Rayleigh-Bernard problem. *The 1 level DD preconditioner failed to solve this problem in less than 40 Newton
steps.

Q Ra∗ Racr [Chandrasekhar[100]] % error

0 1707.77 1707.8 0.002

101 1945.78 1945.9 0.006

102 3756.68 3757.4 0.02

Table 6
Comparison of the computed critical Rayleigh number, Ra∗, by a computational linear stability eigenvalue
analysis with theory, Racr , from Chandrasekhar [100]. The mesh is a rectangular 200× 2000 mesh.

5.2.3 A Transient Simulation of Driven Magnetic Reconnection: Island Coalescence
As a final test, the numerical and computational performance of the implicit stabilized FE resistive

MHD formulation presented here is applied to a driven magnetic reconnection example, the island
coalescence problem. This is an example of a current, scientifically relevant, and computationally chal-
lenging application of resistive MHD. Unlike earlier examples in this study, this problem explores the
moderately-high Lundquist number regime, in which the MHD equations are dominated more by hyper-
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bolic couplings. Accordingly, we do not expect our current preconditioning approach, which is tailored
to parabolic and elliptic PDEs, to perform optimally. Nevertheless, the solver has demonstrated to be
reasonably robust, even in this regime. We believe that improving on these results will require the
implementation of physics-based preconditioning ideas, as proposed in [28–30].

Magnetic reconnection is a fundamental process whereby a sheared magnetic field is topologically
altered via some dissipation mechanism, resulting in a rapid conversion of magnetic field energy into
plasma energy and significant plasma transport. Magnetic reconnection dominates the energetics and
dynamics of many space and laboratory plasmas, and is at the root of explosive phenomena such as solar
flares, coronal mass ejections, plasmoid ejection from the Earth’s magnetotail, and major disruptions in
magnetic fusion energy (MFE) experiments [101]. However, plasmas in all the above-mentioned cases
are known to have very small electrical resistivities, which cannot explain the observed reconnection
timescales. This theoretical conundrum has drawn significant attention of the theoretical and numerical
simulation plasma physics community for the last 50 years [101].

The computational challenges of studying magnetic reconnection phenomena are many. The presence
of such small resistivities implies the formation of very thin current sheets, which need to be adequately
resolved to capture the phenomena accurately. Temporally, time scales for magnetic energy build-up
and release scale like a power of the Lundquist number (reciprocal of the normalized resistivity), and
are therefore very long compared to normal-mode time scales. Therefore, the problem is intrinsically
multiscale in time and space. Addressing the spatial resolution aspect requires mesh adaptation, while
the temporal aspect is a textbook case for the use of implicit methods. Recently, the development of an
efficient, implicit resistive-MHD capability in a mapped, structured-mesh finite-volume context has led
to new computational scientific results that have verified the Sweet-Parker [101,102] asymptotic scaling
of the reconnection rate in the very small resistivity regime. The key to the computational verification
of this regime is the ability to effectively time-integrate the multiple-time-scale resistive MHD system
[102].

The island coalescence equilibrium is described by the Fadeev solution [96], which features islands
embedded in a Harris current sheet. The structure of this equilibrium can be seen in the upper left plot
of Figure 16 with iso-lines of Az. The combined magnetic field produced by the two magnetic islands
produces Lorentz forces that pull the islands together, and at finite resistivity the islands coalesce
(join) to form one island. Figure 16 shows three iso-line plots of Az and filled color contours of the
the plasma current Jz during the reconnection event. Clearly evident is the formation of the x-point
between the islands (see upper right image), the development of a thin current sheet at that same x-
point location, and the movement of the center of the islands (o-points) towards the x-point [101,102].
The dynamics of island coalescence changes as a function of resistivity. For larger resistivities, the x- and
o-points monotonically approach each other. For low resistivities, fluid-plasma pressure builds up as the
islands approach and a sloshing or bouncing of the o-point position is encountered that leads to lower
reconnection rates (for more details on the physics see e.g. [101,103]). Next, a very brief description of
the island coalescence setup is presented, with details provided in [102].

This problem solves for the unknowns (V, P, Az). The initial conditions for the island coalescence
problem consists of zero fluid velocities (v0 = 0), and a Fadeev magnetic equilibrium [96]. The descrip-
tion of this problem is in terms of the magnetic vector potential. The initial conditions, A0

z, and the
resulting balancing plasma fluid pressure, P 0 are given by

A0
z(x, y, 0) = δ ln

[
cosh

(
y

δ

)
+ ε cos

(
x

δ

)]
, (11)

P 0(x, y, 0) = P0 +
[1− ε2]

2
[
cosh

(
y
δ

)
+ ε cos

(
x
δ

)]2 , (12)
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Fig. 16. Plots for the island coalescence driven magnetic reconnection at times t = 0.0, 9.0, 10.0, 12.6 computed
on the unstructured mesh above. The images show isolines of the magnetic potential Az and filled contours of
the current Jz. The red values are high and blue values are low in each image.

where δ = 1/(2π) and P0 = 1.0. To assure that the initial condition is a resistive equilibrium, an
external applied electric field in the z-direction, E0

z , of the form

E0
z (x, y) =

η [1− ε2]

δ
[
cosh

(
y
δ

)
+ ε cos

(
x
δ

)]2 (13)

is included. Using symmetry as in [102], a 1/4 computational domain [0, 1]×[0, 1] is considered. Symme-
try boundary conditions are used on the x = 0, x = 1 and y = 0 boundaries. These conditions enforce
zero normal velocity and zero tangential stress for the momentum equation and no flux or Neumann
conditions for Az. On the upper y = 1 boundary, there is a zero tangential stress, the vector potential
Az is set by (11), and P0 = 1. In this study, we have also taken ρ = 1, ν = η = 1, µ0 = 1 and using
the spacing of the o-points we have L = 1. As in [102] these choices imply that the resistivity η = 1/S,
where S is the Lundquist number and is defined as S = µ0LVA/η, with VA = B0/

√
µ0ρ the Alfven

velocity.
Our interest in this brief study is to reproduce the results previously carried out with the fully-

implicit mapped FV capability in [102], where the peak magnetic reconnection rate was computed as
a function of the fluid resistivity for a range of resistivities, spanning various reconnection regimes.
The peak magnetic reconnection rate is found as the maximum value of the time derivative of the
vector potential at the x-point, i.e. Ψt ≡ ∂Az/∂t for all time. Figure 17 (left) presents the result of
a set of stabilized FE simulations to determine the reconnection rate at the x-point for 3 different
resistivity values that illustrate the different nature of the reconnection process as a function of η.
Clearly evident in this figure is the peak value for each time history and the oscillatory (or sloshing)
behavior of the reconnection rate for lower resistivities as in [102]. In Figure 17 (right) the scaling
of the peak magnetic reconnection rate as a function of the resistivity is presented. The Lundquist
number varies from 50 to 105. The FE results are seen to compare very well with the results of Knoll
and Chacon [102]. In this plot, results are presented for non-uniform structured meshes of size 130,000
FE nodes with a distribution of 512 × 256 in (x, y). In this mesh, the FE elements are clustered by
the x-point and geometrically increase in size away from this point, which roughly corresponds to the
meshes used in [102]. In addition, results are also presented from an unstructured mesh with 40,000 FE
nodes, which highly resolves the x-point region with a uniform mesh and then transitions to a coarse
unstructured mesh away for the x-point. A plot of an unstructured mesh and the iso-lines of Az is
presented in Figure 18. It is clear from this study that the stabilized FE results closely correspond to
the mapped FV results for both the structured and unstructured meshes. In addition, the existence of
the theoretical Sweet-Parker slow magnetic reconnection regime where Ψt ≈

√
η is also confirmed. A

power law fit to the FE results indicate a 0.48 power scaling over this interval.
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Fig. 17. Left: Time history of the reconnection rate at the x-point in the island coalescence problem for
various resistivities. Oscillations in the reconnection rate are evident for lower resistivities as a consequence of
the sloshing of magnetic islands. Right: Peak resistive magnetic reconnection rate for the island coalescence
problem. Graph includes data for stabilized FE formulation and a comparison to FV resistive MHD data from
Knoll and Chacon [102].

Fig. 18. Detail of unstructured mesh for island coalescence problem. This image also has iso-lines of Az
represented at time t = 9.0.

A preliminary study of the scaling for the multilevel preconditioner for the transient solution of the
island coalescence problem at a resistivity of η = 10−3 is presented in Table 7. Here, factoring out the
increase in nonlinear iterations per time step, the general block aggregation based algebraic multilevel
preconditioner appears to be reasonably effective at keeping the growth in iterations per time step under
control as the mesh size is increased. While the scaling of the multilevel preconditioned Newton-Krylov
method is not optimal with problem size, the increase in the number of linear iterations per Newton
step is gradual with the problem size, and represents a reasonable step towards a scalable algebraic
multilevel method.

6 Conclusions

This paper has presented a performance study of an unstructured fully-implicit stabilized FE for-
mulation for 2D incompressible reduced resistive MHD, both in regards to the accuracy of the dis-
cretization and the efficiency of the associated solver. The solution methods used in this formulation
are based on a fully-coupled Newton-Krylov approach employing algebraic multilevel preconditioners.
The study includes verification and order-of-accuracy results, which confirm the expected convergence
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Procs Mesh Nunks Newton/ Gmres/ Time/ Gmres/ Time/

∆t Newton Newton ∆t ∆t

1 64× 64 16K 3.9 4.4 2.1 17.2 8.1

4 128× 128 64K 4.6 5.8 2.6 26.7 11.9

16 256× 256 0.25M 4.9 6.3 2.9 30.9 14.2

64 512× 512 1M 6.2 8.8 4.0 54.6 24.6

Table 7
Weak scaling of the block AMG preconditioned Newton-Krylov solver for the stabilized resistive MHD for-
mulation on the island coalescence problem. The time step is ∆t = 0.1 time units. The smoother in the
Petrov-Galerkin smoothed aggregation method is an ILU(1) and it is a V(1,1) cycle. In this study the linear
solver convergence criteria is 10−3 for each step of the Newton solver.

rates for the numerical representation. As an illustration of the robustness, scalability, and efficiency
of the solution techniques advocated in this paper, performance results have been presented for both
low Lundquist number (MHD duct flow, a hydromagnetic Rayleigh-Bernard linear stability calcula-
tion), and moderately-high Lundquist number (magnetic island coalescence) problems. The efficiency
and scalability results of this study are very encouraging, and underscore the robustness of the fully-
coupled Newton-Krylov nonlinear solver. In particular, the results clearly demonstrate the improved
convergence properties of block aggressive coarsening, fully-coupled parallel multilevel preconditioners
over more standard parallel additive-Schwarz domain-decomposition methods. Future work will focus
on the implementation of physics-based preconditioning ideas to deal more effectively with the large
Lundquist number regime, and the extension of this work to a full 3D compressible resistive MHD
model.
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8 Appendix

8.1 Stabilization Parameters

The specific definition of the intrinsic-time-scale stability parameters are provided in Table 8 for
momentum, thermal energy, and the vector potential. The specific form of the intrinsic time scales τ ’s
are an adaptation of the quadratic form by Shakib [63] for the Navier-Stokes equations and the Lorentz
form stabilization operator from Codina and Hernandez-Silva [39] for a resistive MHD system. In the
form by Shakib, the estimate of the inverse constant for linear nodal elements is taken as C1 = 3 [63] for
the diffusive operator. Additional forms for the intrinsic-time-scale stability parameters are discussed
in [53] and the references contained therein for Navier-Stokes. The contribution to the intrinsic-time-
scale operator for the Lorentz force term uses the same form as in [39] with C2 = 10. We have run
limited numerical studies with the choice of C1 = 1− 10 and C2 = 5− 20 as well as alternate forms for
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Momentum τ̂m =

[(
2ρ

∆t

)2

+ ρ2vGcv + C2
1µ

2‖Gc‖+ C2
2‖B‖

√
‖Gc‖

]− 1
2

Thermal
Energy

τ̂T =

[(
2ρCp
∆t

)2

+ (ρCp)
2vGcv + C2

1λ
2‖Gc‖

]− 1
2

Z-
component
Vector
Potential

τ̂Az =

[(
2

∆t

)2

+ vGcv + C2
1η

2‖Gc‖

]− 1
2

Table 8
Definition of stabilization parameters used in stabilized equations, which use the contravarient metric tensor
Gc (Equation (14)) to define an element-level streamwise length scale. In this study C1 = 3 and C2 = 10.

the Lorentz force intrinsic-time-scale operator contribution. The results indicate negligible variation in
problems for which we carry out order-of-accuracy studies. In all the examples in this study, the most
sensitive case was the island coalescence problem. This is not surprising since this problem has the
least amount of natural diffusion and uses a rather coarse nonuniform mesh of size 512 × 256. In our
limited studies, for a resistivity η = 10−4 the results for the maximum of reconnection rate, Ψt, varied
by < 0.75%.

It should be pointed out that the multidimensional effect of convection is incorporated into the stabil-
ity parameters by the use of the contravariant metric tensor, Gc (Equation (14)), of the transformation
from local element coordinates {ζα} to physical coordinates {xi}.

[Gc]
ij =

∂ζα
∂xi

∂ζα
∂xj

. (14)

Shakib [63] considers the one dimensional limiting case of this multidimensional definition for the
advection-diffusion equation and presents a comparison with the original SUPG technique.

8.2 Brief Overview of Discrete Systems of Equations

To give context to the discussion of solution methods and linear algebra techniques that we employ
in the linear solution methods above, we present a brief discussion of the structure of the equations that
result from the FE discretization of the weak form of the resistive MHD equations. In this discussion,
the Newtonian stress tensor is expanded to include the hydrodynamic pressure, P , and the viscous
stress tensor term, Π . The resulting stabilized form of the total mass residual equation in expanded
form is given by

FP =
∫

Ω
Φ

[
∂ρ

∂t
+∇ · (ρv)

]
dΩ+

∑
e

∫
Ωe

ρτ̂m∇Φ ·
[
ρ
∂v

∂t
+ ρ(v · ∇v) +∇ ·

(
− 1

µ0

B⊗B−Π + (P +
1

2µ0

‖B‖2)I

)]
dΩ.

(15)

This expansion includes the weak form of a Laplacian operator acting on pressure,

L =
∑
e

∫
Ωe

ρτ̂m∇Φ · ∇PdΩ, (16)

which is produced by the stabilized formulation of the total mass conservation equation.
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A finite element (FE) discretization of the stabilized equations gives rise to a system of coupled,
nonlinear, non-symmetric algebraic equations, the numerical solution of which can be very challenging.
These equations are linearized using an inexact form of Newton’s method as described in Section 4.1.
A formal block matrix representation of these discrete linearized equations is given byK G

D L


 û′

P̂′

 = −

 Fu

FP

 . (17)

where the block diagonal contribution of the stabilization procedure has been highlighted by a specific
ordering. In this representation, the vector, u′, contains the Newton updates to the nodal solution
variables, (v̂, T̂, Âz), with the exception of the nodal pressures, P̂′. The block matrix, K, corresponds
to the combined discrete transient, convection, diffusion and stress terms acting on the unknowns û′;
the matrix, G, corresponds to the discrete gradient operator; D, the divergence operator; and the
matrix, L, corresponds to the discrete “pressure Laplacian” operator discussed above. The vectors Fu

and FP contain the right hand side residuals for Newton’s method. The existence of the well conditioned
nonzero matrix, L, in the stabilized FE discretization is in contrast to Galerkin methods using mixed
interpolation that produce a zero block on the total mass continuity diagonal. The existence of the block
matrix L helps to enable the solution of the linear systems with a number of algebraic and domain
decomposition type preconditioners that rely on non-pivoting ILU type factorization, or in some cases
methods such as Jacobi or Guass-Seidel as sub-domain solvers [104,76].

The difficulty of producing robust and efficient preconditioners for Galerkin (as well as centered
finite difference and non-staggered finite volume) formulations has motivated the use of many different
types of decoupled solution methods. Often, transient schemes combine semi-implicit methods with
fractional-step (operator splitting) approaches or use fully-decoupled solution strategies. In these cases,
the motivation is to reduce memory usage and to produce a simplified equation set for which efficient
solution strategies already exist. Unfortunately, these simplifications place significant limitations on
the broad applicability of these methods. For example, fractional-step methods such as pressure pro-
jection [105–107] and operator splitting [108] require time step limitations based on the explicit part
of the time integration process as well as on the stability and accuracy associated with the decoupled
physics [109–114]. This restriction can severely limit the step size, and direct-to-steady-state simula-
tions with these methods are not possible. Fully-decoupled solution strategies (e.g., the SIMPLE [115],
SIMPLER [116], and PISO [117] class of methods) use a successive substitution (or Picard) iteration
to simplify the coupled systems of equations. Nonlinearities at each time step are resolved by an outer
nonlinear iteration. Unfortunately, while this technique should improve time step limitations, time steps
are frequently reduced to facilitate the nonlinear iteration. Convergence of these decoupled methods
can often be problematic. In particular, the nonlinear iteration has only a linear rate of convergence
and in practice can often exhibit very slow convergence. In addition, since all the equations have been
decoupled artificially, this strategy can sometimes result in non-convergence for difficult problems in
which the essential coupling of the physics has been violated (see for example [118,119], and the ref-
erences contained therein). A detailed presentation of the characteristics of current solution methods
is far beyond the scope of this brief overview. The intent of our method of fully-coupling the resistive
MHD PDEs in the nonlinear solver is to preserve the inherently strong coupling of the physics with
the goal to produce a more robust solution methodology. Preservation of this strong coupling, however,
places a significant burden on the linear solution procedure to solve the fully coupled algebraic systems.

Finally it should be noted that in our actual linear algebra implementation we use a specific ordering
of the unknowns locally at each FE node with each degree of freedom ordered consecutively. A single
coupled matrix problem, Js = −F, is solved at each Newton step with sophisticated algebraic domain
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decomposition and multilevel preconditioned Krylov methods as described in Section 4.2.
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[80] J. Ruge, K. Stüben, Algebraic multigrid (AMG), in: S. F. McCormick (Ed.), Multigrid Methods, Vol. 3
of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987, pp. 73–130.

[81] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs, ACM/IEEE
Proceedings of SC96: High Performance Networking and Computing.
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