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Abstract
In this paper, a phenomenological model for a magnetic drive source term for the momentum and total

energy equations of the Euler system is described. This body force term is designed to produce a Z-pinch
like implosion that can be used in the development and evaluation of shock-hydrodynamics algorithms
that are intended to be used in Z-pinch simulations. The model uses a J×B Lorentz force, motivated
by a 0-D analysis of a thin shell (or liner implosion), as a source term in the equations and allows for
arbitrary current drives to be simulated. An extension that would include the multi-physics aspects
of a proposed combined radiation hydrodynamics (rad-hydro) capability is also discussed. The specific
class of prototype problems which are developed is intended to illustrate aspects of liner implosions into
a near vacuum and with idealized pre-fill plasma effects. In this work, a high-resolution FCT method
implemented on structured overlapping meshes is used to demonstrate the application of such a model to
these idealized shock-hydrodynamic studies. The presented results include an asymptotic solution based
on a limiting-case thin-shell analytical approximation in both (x, y) and (r, z) . Additionally, a set of
more realistic implosion problems which include density profiles approximating plasma pre-fill and a set of
perturbed liner geometries that excite a hydro-magnetic like Rayleigh-Taylor instability in the implosion
dynamics are demonstrated. Finally as a demonstration of including and evaluating multiphysics effects
in the Euler system, a simple radiation model is included and self-convergence results for two types of
(r, z) implosions are presented.

1 Introduction

In a typical Z-pinch magnetic implosion, a very large total current I (e.g. 20 MA) with a characteristic
rise time of about 100ns is carried initially by either a thin cylindrical metallic liner or a cylindrical array
of metallic wires that ablate and produce a plasma [1]. The current flowing through the conductor/plasma
produces a corresponding strong azimuthal magnetic flux, Bθ . The induced local plasma current, J and
magnetic flux density, B , produces a strong J×B Lorentz force which accelerates a highly energetic
plasma to stagnate on axis in about 100 ns. This stagnation and subsequent magnetic energy conversion
produces an intense 10 ns X-ray radiation pulse [2, 3]. The intense X-ray pulse can then be used for
radiation-material interaction studies [4, 1, 5], environments for indirect drive inertial confinement fusion
(ICF) applications [1, 5, 2], or for pursuing laboratory-based astrophysics environments [5, 6, 7, 8, 9, 10].
An important limiting mechanism for the amount of radiation energy produced by a Z-pinch is the Magnetic
Raleigh-Taylor (MRT) instability which distorts the outer and inner interfaces of the collapsing plasma shell
and broadens the pulse width [1, 5, 11]. A thorough understanding and control of the MRT instability is key
to achieving optimal performance of Z-pinch implosions, and for designing the next generation pulsed-power
driven Z-pinch machines.

Ideal shock-hydrodynamics (shock-hydro) is a critical foundational technology for simulations of mag-
netic Z-pinch implosions for computational high energy density physics (HEDP) studies. A minimal Z-pinch
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simulation capability built on this foundation also includes, a multi-material formulation, inclusion of some
type of radiation model (rad-hydro), two-temperature physics with plasma thermal conduction phenomena
(2T-rad-hydro) and, finally, electromagnetic plasma effects (rad-MHD). This paper presents a phenomeno-
logical model for a magnetic drive source term that is designed to help guide development and evaluation
of proposed shock-hydro, rad-hydro and finally 2T-rad-hydro simulation capabilities intended for Z-pinch
simulations.

One major benefit of this approach is that this evaluation can be carried out for a reasonably realistic
set of Z-pinch-like magnetic implosions without requiring a corresponding electro-magnetics capability. For
example, this simple source term model can be used in a basic Euler solver for inviscid compressible gases to
generate implosions that have the essential character of actual z-pinch implosions. These problems include
simple idealized implosions that can be used as verification type problems, for code development purposes,
and also for complex implosions with high material velocities, strong-shocks and compressive heating that
may generate a radiation power pulse. This paper demonstrates the quantitative use of the proposed J×B
source model included in an Euler system solver in two contexts. The first is a verification problem that
provides a comparison to an asymptotic analytic 0-D cylindrical solution to the ideal MHD equations. The
second type of quantitative study generalizes the Euler system to include a simple radiation-emission term
and presents a self-convergence study of the produced radiation pulse for a 1-D cylindrical implosion for
the specific shock-hydro algorithm used in this study. This paper also presents results for various forms of
cylindrical implosions that contain Rayliegh-Taylor like instabilities and more complex dynamical structures
that challenge shock-hydro algorithms. Using these types of problems and various potential extensions, pro-
posed shock-hydro algorithms and solution methods can be verified and evaluated for challenging implosion
environments much earlier during algorithmic development without the need for a rad-MHD capability.

In the development that follows, Section 2 briefly states the assumed simplified model of interest which
is based on the Euler equations with the possible inclusion of a corresponding radiation model and thermal
conduction effects. In Section 3, a classical thin-shell magnetic implosion problem is presented which forms
the basis for the development of the phenomenological source term presented in Section 4. This source term
is then applied in Section 5 to verification problems based on the thin-shell model and to various prototype
magnetic implosion problems. Concluding remarks are then made in Section 7.

2 General Conservation Law System

The general format of the conservation law system under consideration is

∂U
∂t

+∇ • F + S = 0. (1)

In this equation, a general source term S has been included and will eventually be defined for each individual
system of interest. In the following, a few specific forms for such a system are presented.

2.1 Euler System with 1-Temperature Conduction and Simple Radiation Loss
Model

The specific system of interest is defined generally by

U =

 ρ
ρv
ρE

 , F =

 ρv
ρv ⊗ v −T

ρEv −T · v + q

 ,
S =

 0
f

f · v +Qrad


(2)

where the total energy E is defined as the sum of internal energy e and the kinetic energy 1
2‖v‖

2 as

E = e+
1
2
‖v‖2. (3)
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The constitutive equations for the material define the stress tensor T and the heat flux vector q . The
source term vector includes the external force per unit volume f , the mechanical work term f · v , and the
radiation energy source term Qrad . The body force term f will be used in the development of the magnetic
drive forcing term of interest for the study in Section 3.

For a thermodynamically simple material, the equation of state (4)-(5) is given by the relations

P = P̂ (ρe, ρ) (4)

T = T̂ (ρe, ρ) (5)

where P is the pressure and T is the temperature. For a specific material, Equations (1)-(2) are closed by
the specification of the constitutive relationships for the stress tensor T, the heat flux vector q , and the
specific form of the equation of state (4)-(5).

2.1.1 An Ideal Gas System

In this section, the system is completed by defining the material dependent constitutive equations and the
appropriate equation of state. For an ideal shock-hydrodynamical system

T = −P I (6)

q = 0 (7)

where T is the stress tensor, and P is the pressure from (4). In the case of a simple ideal gas system, the
conduction heat flux is zero and so q = 0 . For such an ideal gas the equation of state is given by

P = (γ − 1)ρe (8)

where γ is the ratio of specific heats. Finally the caloric equation of state for an ideal gas is given by

ρe = ρCvT (9)

where Cv is the specific heat of the gas at constant volume.

3 0-D Analysis and the Lorentz Force Term

In this model, the conducting plasma is considered to be concentrated (or lumped) into a thin shell of inner
radius R , thickness ∆ , and constant initial density ρL . A schematic of the geometry is shown in Figure 1
and the overall system density distribution is depicted graphically in Figure 2. This model also allows for an
optional region of plasma pre-fill with density ρpre−fill which is considered to be non-conducting, as well
as a region of non-conducting foam with density ρfoam . The ability to model a conducting outer shell with
inset regions of differing density non-conducting material, allows for developing prototype problems that
model aspects of dynamic hohlraums (see e.g. [12, 13, 14]).

Here a lumped mass analysis with the thin shell approximation ∆
R << 1 is considered. Employing these

assumptions, the momentum equation in the conservation law is given by Newton’s Law of motion for the
liner

F = ma = ρLV
d2R

dt2
. (10)

Here ρL and V are the liner density and the liner volume respectively, m is the mass, a is the acceleration,
and F is the total force given by the Lorentz force term as

F = (J×B)V. (11)

In this model the current is confined to the conducting liner material and is oriented in the z -direction
so that J = (0, 0, Jz) . Neglecting the displacement current from Ampère’s law then gives
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Figure 1: Schematic of prototype thin-shell implosion model.

Figure 2: Schematic geometry of the liner with optional pre-fill plasma and inner foam material region for
dynamic hohlraum model.

J =
1
µ0
∇×B.

As a limiting case consider a model in which the liner is assumed to implode in an axisymmetric manner and
thus there is assumed to be no variation in z or θ . Therefore Ampère’s law reduces to the simpler form

∂ (rBθ)
∂r

= rJzµ0

with flux density Jz = I(t)/(2πR∆) where I(t) is the total drive current in the liner shell. Integrating and
applying the thin shell approximation gives the azimuthal magnetic field

Bθ =
µ0I(t)
2πR

(12)

and the total force per unit volume is then given by the Lorentz force term as

f = − µ0I(t)2

4π2R2∆
êr. (13)
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Combination of Equations (10) and (13) with the approximate momentum equation produces the thin shell
lumped analysis momentum equation

ρL
d2R

dt2
= − µ0I(t)2

4π2R2∆
. (14)

3.1 Traditional Thin Shell Analysis

To recover the more traditional/standard analysis of the thin shell model we consider a per unit axial length
analysis of the 0-D model [1]. This analysis takes the mass per unit length, which is often used as a variable
by which to calibrate experiments, as a parameter of the system. This analysis is also useful for estimating
the approximate energy release for various lengths of cylindrical Z-pinch type implosions. In analyzing the
implosion model, the force per unit length is

fl = −(2πR∆)
µ0I(t)2

4π2R2∆
êr = −µ0I(t)2

2πR
êr (15)

where β = ρL [2πR∆] is the mass per unit length of the liner. Then the equation of motion on a mass per
unit length basis becomes

β
d2R

dt2
= fl · êr = −µ0I(t)2

2πR
. (16)

To develop a non-dimensional form for the equation of motion (16), the following characteristic scales
are employed. The length scale is taken as the initial liner radius R0 , and the velocity scale as the Alfvèn
speed VA = B̄

(ρ̄µ0)1/2
, where ρ̄ is the average mass density. Here ρ̄ is selected as ρ̄ = β/(2πR2

0) and then
using Equation (12) the characteristic time scale becomes the Alfvèn transit time

tA = RO/VA =

√
2πR2

0β

µ0I2
max

.

Therefore, the source term in the nondimensional form of the equation of motion is

−
(
I(t)
Imax

)2 1
R∗ êr,

which corresponds to a non-dimensional acceleration, and the non-dimensional thin shell equation of motion
(16) becomes

d2R∗

dt∗2
= −

(
I(t)
Imax

)2 1
R∗ . (17)

To produce the thin shell total energy equation, the Lorentz force per unit length (15) is used and the
mechanical work term fl · v is computed as

β
dE

dt
= fl · v. (18)

The non-dimensional form of the equation is obtained by defining E∗ = E/(2πVA)2 , and of course V ∗ =
V/VA . With these choices the non-dimensional work can be written as(

I(t)
Imax

)2
V ∗

R∗

and the total energy equation becomes

dE∗

dt∗
=
(
I(t)
Imax

)2
V ∗

R∗ . (19)
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Finally note that using Equation (17) in Equation (19) and integrating it is easily verified that

Ê∗ = E∗(t)− E∗(t = 0) =
1
2
V ∗2 (20)

where it is clear that there is no conversion of kinetic energy to internal energy. This occurs because of the
absence of any P dv work. In the more realistic simulations in Section 5.3 the gradients in the solution
are non-negligible and this work term is no longer zero. The result is that for those situations there is a
conversion of kinetic energy to internal energy which is indicated by an increased thermal energy.

Remarks on Sections 3.1

• This analysis ignores the mass of the optional pre-fill and the foam regions.

• Only the liner material is considered to be a conducting plasma.

• Only the mechanical work is included in the total energy equation. The contribution from Joule heating
is considered negligible in this analysis.

• The axisymmetric assumption clearly does not hold for long time in physical Z-pinch implosions when
either liner non-uniformities or nonuniform magnetic forces perturb the axisymmetric implosion. How-
ever, we will use source terms motivated by this limiting case analysis to produce prototype Z-pinch
like implosions. It would appear that since the applied force, in this model, is always assumed to be
in the negative radial direction this forcing term would not further enhance non-axisymmetric modes.

3.1.1 Closed Form Solutions of Interest

In the literature there are closed form solutions to Equation (16) for a number of special cases. The constant
current case is presented here as well as the case where the radial position of the shell, R(t) , is assumed to
be a power law relation and the corresponding current, I(t) , is derived which satisfies the thin-shell equation
of motion.

Constant Current: For the case I(t) = Imax , the following relationship for the radius as a function of
time holds [1]

t

tA
=
(π

2

)1/2

erf

[[
ln
(
R0

R

)]1/2
]
. (21)

This can be inverted to solve for the normalized implosion trajectory R(t)/R0 as

R(t)
R0

=
1

e

h
erf−1

“
t

τimp

”i2 (22)

where τimp = tA(π/2)1/2 is the non-dimensional implosion time. The velocity as a function of time is then
given by

V = −R0

tA

√
2 ln

(
R0

R(t)

)
. (23)

Power Law Radial Compression: For this case, a power law solution for the radius as a function of
time is assumed to be given and then the current required to produce such a solution is derived. Assume a
power law compression given by

R(t)
R0

=
[
1−

(
t

τimp

)q]
(24)

for q ≥ 2 . The definition of the required current is easily derived from Equation (17) as

I(t) = Imax

√
q(q − 1)

(
1−

(
t

τimp

)q)(
t

τimp

)(q−2)

(25)
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with the velocity given by

V = − qR0

τimp

(
t

τimp

)(q−1)

. (26)

As a special case of the power law radial compression (26), consider the case where q = 4 . In this case
the current becomes

I(t) = Imax
√

12
(

t

τimp

)√
1−

(
t

τimp

)4

(27)

which produces a radial implosion with normalized implosion trajectory of

R(t)
R0

=

[
1−

(
t

τimp

)4
]

(28)

and velocity of

V = − 4R0

τimp

(
t

τimp

)3

. (29)

In the results that follow in Section 5.2, current drive (27) is used in conjunction with a liner density profile
that approximates a thin shell as a verification problem for our Euler equation model.

Linear Current: As a final example it is clear that for t << 1 the q = 4 case produces a linear current
drive behavior with

I(t) = Imax
√

12
(

t

τimp

)
. (30)

In some more realistic prototype implosions of Section 5.3, this linear current is used to drive implosions with
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Figure 3: Various analytical results for thin-shell analysis. Frame (a) shows the current versus time while
(b) shows the shell radius versus time.

pre-fill as well as problems which are intended to approximate magnetic Rayleigh-Taylor like effects. Using
such a drive produces implosions that stagnate on the axis of symmetry in non-dimensional time O(1) while
maintaining the property that the current is rising as the material stagnates. Finally, Figure 3 presents a
few forms of current drives and normalized implosion trajectory. that are solutions of the thin-shell analysis.
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Various forms of the power law current model can be used to produce qualitative correspondence to actual
Z-pinch experiments (see e.g. Figure 6 in [12]).

Remarks on Section 3.1.1

• The idealized solutions are only for the thin-shell model (16) and they have the same limitation as
described above in Remarks on Section 3.1

• These solutions predict an infinite compression ratio and an infinite magnitude Lorentz force at the
origin which is unphysical. In practice the equations are only used at points which lie outside some ε
radius of the origin where ε is some small positive number.

• Other solutions of the thin shell model are also possible and produce a nonlinear equation for the
normalized implosion tragetory as a function of time.

4 Description of Models

This section briefly describes two types of models for a magnetic drive source term for the momentum and
energy equations based on the thin-shell models developed above in Section 3. These Lorentz body force
and work terms are used to produce a Z-pinch like prototype implosion problem that can be used in the
development and evaluation of shock-hydrodynamics simulation tools. Initially a modified form of the thin-
shell Lorentz force term which removes the singularity at r = 0 is presented. The model then adds a scalar
transport equation to the conservation law system which is used to define a region approximating a “current
sheet” that localizes the action of the Lorentz force term.

4.1 A Model for the Magnetic Drive J×B Force

One significant issue in the simple thin-shell analysis is the singularity of the solution at t = τimp . This
singularity produces an infinite magnitude for the Lorentz force as well as the strength of the magnetic
field at r = 0 , which produces an infinite velocity and kinetic energy. In order to avoid this behavior, the
thin-shell Lorentz force term is modified to produce an effective limiting compression ratio as

f∗λl = λρ∗
(
I(t)
Imax

)2 1
r∗eff

êr. (31)

In this term, the non-dimensional r -coordinate r∗eff is used to define the strength of the source term locally
and to remove the singularity at r = 0 with the definition

r∗eff = max (r/R0, r
∗
min) . (32)

Further, the scalar 0 ≤ λ(r∗, t∗) ≤ 1 is used to control the magnitude and localize the application of the
non-dimensional Lorentz force term. In the simulations presented in this work r∗min = 1.0−4 is typically
used. Notionally the scalar λ(r∗, 0) is considered to define the initial “current sheet” and to localize the
application of the source term during the evolution of the implosion. Therefore by including this force term,
in a suitably non-dimensionalized form of the Euler equations, a parameterized set of prototype magnetically
driven shock-hydro problems can be developed. In this way a typical Euler code and a proposed shock-hydro
implementation which is based on this Euler code can be evaluated on prototypical Z-pinch like implosions
without the addition of any electromagnetics capabilities.

Finally, it should be noted that while the source term (31) has a discontinuous first derivative, this
discontinuity is only a source term in the equations and therefore does not require higher order continuity.
Additionally, this relationship preserves the behavior of the Lorentz term from the thin-shell analysis with
an effective compression ratio of αmin = r∗min for t ≥ τimp . Figure 4 presents a schematic diagram showing
a cross-section of a geometry where a sheath-like “current sheet” is shown at time t = 0 .
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Figure 4: Schematic cross-section of the initial geometry where the sheath region is shown.

4.2 A Combined Scalar Transport Model for J×B

To implement this model in a single temperature Euler system, the definition of the source term, f , in
(2) is assumed to be given by the non-dimensional Lorentz force (31) with the interpretation of ρ as a
density per unit length which has been non-dimensionalized by the initial linear density ρ0

L . The Euler
single temperature system with the advected scalar, λ , is then defined by

U =


ρ
ρv
E
ρλ

 , F =


ρv

ρv ⊗ v −T
Ev −T · v + q

vρλ



S =


0
−f

−f · v +Qrad
0

 .
(33)

A clear advantage of tracking an advected scalar in this way is that the Lorentz source term f = J × B
can be evaluated by direct evaluation of r∗eff in the denominator of Equation (15) at every point in the
fluid. That is to say that one can consider λ to define a current sheet at t = 0 and an active region for
the Lorentz force term in the evolution of the implosion of the liner material. Thus by specifying I(t) the
forcing term magnetically drives the Z-pinch like implosion with the required 1/r behavior in the active
region where the Lorentz force term per unit length is non-zero.

5 Numerical Results

To give some idea of the applicability of the models developed in this paper, a number of numerical results
using the scalar transport localization of Section 4.2 are presented. Results are obtained through the use of a
flux-corrected-transport (FCT) flow solver and explicit time stepping which has been built into a composite
overlapping grid framework.

5.1 Numerical Method

The numerical method used for the solution of the conservation law system (1) which has been utilized in
this work is built within an overlapping grid solver framework. An overlapping grid is a collection of grids,
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Figure 5: (Color) The top view shows an overlapping grid consisting of two structured curvilinear component
grids. The bottom views show the component grids in the unit square parameter space. Grid points are
classified as discretization points, interpolation points (green or blue dots), or unused points (open disks).
Ghost points (green or blue triangles) are used in the application of boundary conditions.

in this case all logically rectangular, that cover the computational domain in some overlapping fashion and
communicate at this overlap through interpolation. A simple example of an overlapping grid is demonstrated
in Figure 5 which shows an overlapping grid consisting of a blue Cartesian grid and a green annular grid. In
this figure one can see the blue and green dots which represent the interpolation points where the solution is
communicated from one grid to the other, as well as the open circles which represent unused points where no
computation needs to be performed. Also it should be noted that for our application all grids are logically
rectangular which leads to increased computational efficiency. Extensive use is made of adaptive mesh
refinement (AMR) so that highly resolved grids are used only near regions of rapid change such as shocks or
contact surfaces. This combination of logically rectangular grids with AMR makes for an extremely efficient
method which enables very finely resolved computations. A more detailed discussion of overlapping grids
and AMR can be found in [15, 16].

Within this overlapping grid context, a flux-corrected transport (FCT) algorithm is used for the flow
solver [17, 18]. The basic FCT algorithm was originally developed in [19, 20, 21] and has seen much success
since that time. The FCT algorithm used here follows closely the ideas in [22, 23] but has been extensively
modified for operation in the overlapping grid context as well as to produce more robust behavior in the
presence of very strong shocks [18]. The end result is a monotone scheme which necessarily exhibits low order
convergence near extrema or discontinuities in the characteristic variables, but which converges at second
order for large regions of the flow which are smooth. This type of non-linear stability result is critical when
simulating flows with extreme jumps such as the 7 order of magnitude jumps in density experienced in our
simulations.

5.2 Asymptotic Thin-shell Implosion Problem

This section presents two challenging magnetically driven implosion problems that are intended for quan-
titative and qualitative evaluation of shock-hydro algorithms intended for z-pinch type simulations. The
problems are based on the classical 0-D thin shell cylindrical implosion analysis (Section 3.1). This analysis
produces an analytic asymptotic solution to the ideal MHD equations. In the development of a computa-
tional capability for modeling Z-pinch systems these problems can be used in the following ways. First a

10



1.25

0

0                                                  1.25

Figure 6: (Color) Left: Computational grid used for the magnetic implosion simulations. Here an annular
grid (blue) is used for much of the domain with the singularity covered by a square patch (green) in the center.
Right: Initial condition of density for for the highest resolution simulation of the simple implosion. Notice the
thin shell of high density surrounded by nearly rarefied regions interior and exterior. The non-dimesnional
values for these densities are ρL = 1.0 , ρpre−fill = 1.0× 10−6 and ρexterior = 5.0× 10−7 .

quantitative assessment or verification of the solution of the ideal Euler equations with source terms can
be made in both (r, z) and (x, y) geometries as demonstrated in Sections 5.2.1 and 5.2.2. This simple
problem would constitute a necessary condition for Euler solvers intended to model z-pinch type systems.
Additionally these problems can be used to qualitatively evaluate shock-hydro algorithms for robustness in
handling very large density jumps, the development of excess numerical diffusion at contact surfaces, the
maintenance of symmetry for cylindrical implosions, and the ability to handle accurately and robustly the
singular point at the origin in the (x,y) converging geometry. In this context this type of problem can be
used as a decision point to make a go or no-go assessment of the proposed shock-hydro algorithm.

5.2.1 Thin-shell Implosion in the x-y Plane

The simple (x, y) implosion problem uses the initial geometry presented in Figure 1. In order to give a
reasonable sense of the expectations of such a model, the non-dimensional initial conditions are choosen
with an interior density of ρpre−fill = 1.0 × 10−6 , a liner density of ρL = 1.0 , and an exterior density
of ρexterior = 5.0 × 10−7 . The initial pressure throughout the domain is p0 = 1.0 × 10−6 and the flow is
initially stagnant. The current drive is chosen to be I(t) =

√
12(1− t4)t2 which results in the power law

implosion R(t) = 1− t4 . In order to give a reasonable intuitive sense for these initial conditions as well as
the computational domain where the simulation is carried out refer to Figure 6. The base computational
grid which is used for these simulations is shown in Figure 6. Here an annular grid (blue in the figure) is used
over much of the domain with the singularity at the origin covered by a square grid (green in the figure).
The grid spacing in the radial direction as well as for the center square patch is chosen to be h = 0.025 ,
and the average grid spacing in the azimuthal direction for the annular grid is h ≈ 0.059 . Solid slip-wall
boundary conditions are applied at the left and bottom, and an inflow condition is applied at the outer
curved boundary. A series of results for a shell of fixed thickness ∆ = 0.05 is presented using increasing
amounts of AMR. For the initial resolution no AMR is used. The second resolution uses one additional level
of AMR with a refinement factor of 4 in each direction giving the effective resolution of h = 0.00625 . The
final resolution takes 2 additional levels of AMR each with a refinement factor of 4 ( h = 1/640 ). The
initial condition for density for the finest resolution simulation is presented in Figure 6. Here the thin ring
of conducting material is seen as pink which represents ρ = 1.0 and λ = 1.0 . Interior and exterior to this
ring the density is so low (≈ 10−6 ) that one cannot distinguish it from a pure vacuum using the included

11



Figure 7: (Color) Density for the highest resolution simulation at t = 0.5 (right), and t = 0.9 (left). The
thin shell is seen to implode in a remarkably symmetric fashion even after the transition from the annular
grid to the square center patch.

colorbar. Figure 7 shows two snapshots of the density at t = 0.5 , and t = 0.9 . These two images show the
imploding conducting shell which appears to remain quite cylindrically symmetric even after its transit from
the annular grid to the center square patch. It can be seen, particularly at the later time t = 0.9 , that the
thin shell model is clearly approximate. The most obvious indication of this is the fact that the peak density
now has a much higher value ρmax ≈ 1.75 , which results from non-uniformities in the simulation as well as
because the shell here is not infinitely thin and compressional effects are induced that are not accounted for
in the thin-shell model of Section 3.

In order to evaluate the degree to which the scalar transport model of Section 4.2 agrees with the
thin shell model, Figure 8 presents the shell radius, R(t) , and the shell velocity V (t) . The values for
these plots are obtained from the simulation results but because we are dealing with simulation results
obtained using a capturing code, the selection of the location, and hence velocity, for the imploding shell is
open to interpretation. In these results the shell location at a given time is defined by the location of the
computational cell nearest to the origin whose density is 1/2 of the maximum density at that time. From
this cell the radius and velocity are selected and used in the plots. In these plots the clustering of the data
about the analytic solution demonstrates good agreement of the simulation with the predicted behavior for
the thin shell model. One can also see the solution for finer mesh resolutions converging to the analytic
solution at all times.

Figure 9 presents an attempt to quantify, with error bars, a measure of the error in the finest mesh
computation using the definition of R(t) and V (t) as described above. The plots here show three locations;
one as before, one with density at 10% of the maximum value, and one with density 90% of the maximum
value. From these locations the radius and velocity are calculated and used as a bracket to indicated possible
measurement error. These plots show the excellent agreement of the simulation with the analytical solution.

5.2.2 Thin-shell Implosion in the r-z Plane

As a further investigation of the model, behavior is investigated for an axi-symmetric geometry. Here the
simulation is carried out in the r-z plane with an axi-symmetric assumption which is a common mode of
operation within the Z-pinch implosion community. As before, an initial investigation is performed in order
to gauge agreement to the thin shell approximation for the exact solution R(t) = 1 − t4 and V (t) = 4t3 .
For this investigation the initial grid shown in Figure 10 is used and has resolution ∆r = ∆z = 0.025 . It
should be noted that a mesh of only 4 cell vertices in the z -direction is used because there is absolutely no
variation in the z -direction for the duration of the simulation and so the width of the grid has no effect on
simulation results. By choosing a thin grid the computational cost is reduced making more finely resolved
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Figure 8: Shell radius against time (left) and shell velocity against time (right). In these plots the black
curve represents the exact solution R(t) = 1− t4 and V (t) = 4t3 , the blue x’s represent the solution with
no AMR, the red x’s represent the solution with one level of AMR, and the green x’s represent the solution
with two AMR levels. We can see the convergence of the solution to the exact thin shell prediction upon
increasing resolution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

ra
d
iu
s

time

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

v
e
lo
c
it
y

time

Figure 9: Shell radius against time (left) and shell velocity against time (right). In these plots the black
curve represents the exact solution R(t) = 1 − t4 and V (t) = 4t3 . The blue x’s represent the solution
with 2 levels of AMR and the error bars indicate the uncertainty in measurement for the given quantity as
outlined in the text. Very good agreement between the numerics and analytic solution is seen and the error
bars nicely bracket the analytic solution.
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z

0 radius 1.25

Figure 10: Base computational grid for simulation in the r-z plane used to compare with the thin shell model.
The axis of symmetry is where the radius r = 0 . This very thin mesh is used because no z-variation is
experienced for the duration of the simulation and so it is of no advantage to use a larger mesh.

Figure 11: (Color) Color contours of density at t = 0 , 0.5 , and 0.9 (top to bottom) for simulation in the
r-z plane. Here it is clear that there is no variation in the z-direction as the simulation progresses.

simulations more practical. As before, the densities are set such that a thin shell is approximated. Thus
ρpre−fill = 1.0× 10−6 , ρL = 1.0 , and ρexterior = 5.0× 10−7 . Figure 11 shows the initial condition and two
later times for the density. Here the base computational grid in Figure 10 is used with two additional levels
of factor 4 AMR refinement and the imploding shell is clearly seen as it approaches the axis of symmetry.
Again it is informative to plot the radius and velocity of the imploding shell as a function of time to compare
with the thin shell analytic model. As before the radius and velocity are determined from the cell closest to
the axis of symmetry where the density has risen to 50% of the maximum value at that time. As well a
measurement error estimate is included by determining the cells where the density has attained 10% and
90% of the maximum value. Figure 12 shows these results as a function of time. As was the case for
the simulations in the x-y plane, these simulations in the r-z plane show good agreement with the analytic
solution. The error bars in both radius and velocity nicely bracket the solution at all times demonstrating
the high level of agreement between the simulation and the thin shell model.

5.3 Initial Extensions to More ”Realistic” Simulations

In this section, initial results are presented that correspond to a number of Z-pinch like prototype problems.
The prototype problems are intended to illustrate different aspects of applying the magnetic drive source
term to produce liner implosions with plasma pre-fill and dynamic hohlraum effects [13, 14]. The intent of
these problems is to more aggressively test proposed shock-hydro algorithms since effects such as vorticity
due to Rayleigh-Taylor and/or Richtmyer-Meshkov type instabilities will be generated. The result is that
these tests will require the use of remapping in proposed arbitrary Lagrangian Eulerian (ALE) methods and
therefore test the Eulerian capabilities of such codes.

The presented problems represent Z-pinch type implosions with the choice of parameters guided by values
found in the literature for actual pinches and pinch simulations. For instance Section 5.2 presents the thin
shell model with a density jump of 6 orders of magnitude and an initial pressure of 1×10−6 with a resultant
sound speed of c =

√
γ in the pre-fill region which is on the same order as the implosion time. Indeed this

is critical in order to obtain accurate agreement with the thin shell approximation, but as is stated in [24],
a real wire array implosion is preceded by significant wire ablation which introduces substantial amounts of
material into the pre-fill region before implosion even begins. In that work it is shown that near the time
implosion actually starts ρpre−fill ≈ 0.05 . Figure 14 shows simulation results using this value for the pre-fill,
ρL = 1.0 , ρexterior = 0.025 and p0 = 0.01 . The base computational grid has a mesh spacing of h ≈ 0.0025
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Figure 12: Shell radius against time (left) and shell velocity against time (right). In these plots the black
curve represents the exact solution R(t) = 1− t4 and V (t) = 4t3 . The blue x’s represent the solution with
2 levels of AMR and the error bars indicate our uncertainty in measuring the given quantity. As before the
simulation results are seen to be in very good agreement with the analytic solution.

and uses two additional levels of factor 4 AMR to give an effective grid resolution of h ≈ 0.0015625 . As
previously stated, these simulations use the linear current drive (30) that remains active during stagnation
of the material on axis. Clearly timplosion 6= 1 for this case because substantial material now exists in
the pre-fill region and the linear current drive I =

√
12t is used rather than I =

√
12(1− t4)t2 . The final

image of Figure 14 has the compressed liner partially past the cylindrical-to-square mesh transition region
with reasonable symmetry maintained by the numerical method.

As another variation, perturbations to the initial geometric configuration of the shell are introduced
for a prototype implosion in the r - z plane. Figure 15 shows a numerical Schlieren of the time evolution
of the initial conditions where a sinusoidal perturbation to the initial interface has been introduced. This
perturbation is intended to promote the growth of a particular unstable Raleigh-Taylor mode and thus
create significant structure as the liner nears stagnation. Here the perturbation has amplitude 0.005 and
period 0.125 and has been introduced along the inner boundary of the conducting shell. The initial pressure
distribution, p0 = 0.01 , is selected to promote growth of R-T spikes ahead of the liner implosion at a
sufficient rate so as to view their effect before stagnation. The instability evolves from the initial conditions
on the right to the stagnation on axis on the left. The FCT AMR solution provides a very well resolved
simulation of multiple unstable modes resulting in a complex pattern of R-T growth with complex interaction
of shock waves at stagnation. It should be noted that the evolution of the R-T instability is qualitatively
different from an actual Z-pinch system in which spikes lag behind the remaining liner material due the larger
current flow in this contiguous material sheet (for example see [25, 11]). This is due to our simplified model
assumption that defines the ”current sheet” by the scalar λ that cannot adequately model the preferential
physical current flow through the contiguous liner material over the penetrating spikes. However the magnetic
force term does produce spikes and sheets of material developed by the R-T effects and R-M instabilities as
the strong-shock interacts with the trailing liner material sheet. These later stages have some qualitative
similarities to actual Z-pinch implosions which gives indication to why such a simple testing procedure can be
very beneficial in benchmarking the flow portion of simulation tools. Alternatively in Figure 16 a sinusoidal
perturbation with amplitude of 2.5 % in the density is introduced in the conducting shell and an initial
pressure, p = 0.01 , is selected to promote growth of R-T spikes ahead of the liner implosion. Clearly the
time evolution here is very similar to that shown in Figure 15 with the main difference being that the onset
of significant spikes is delayed for the density perturbation as compared to the geometric perturbation. Of
course this is expected because for both cases it is the mechanical work of the pre-fill material which provides
the forcing of the instability. In the case of the density perturbation time is required to generate the initial
geometric perturbation and thus the visible geometric growth of instabilities is delayed. In any case the late
time dynamics at stagnation are similar for both cases.
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Figure 13: (Color) Numerical Schlieren images of the perturbed initial condition for the dynamic implosion
(right) and the initial AMR grid structure to capture the density jump (left). Here the blue represents the
base grid, green the second level, and red the finest.

Figure 14: Implosion with ρpre−fill = 0.05 and p0 = 0.01 at t = 0.7 (right) and t = 1.0 (left). Plotted
here is a numerical Schlieren which indicates regions of high density gradient.
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Figure 15: (Color) A prototype Rayleigh-Taylor instability for a perturbed liner geometry for the magnetic
implosion in (r, z) . An initial pressure distribution to promote growth of R-T spikes ahead of the liner
implosion has been selected. The instability evolves from the initial conditions on the right to the stagnation
on the axis on the left. The upper images are a numerical Schlieren and the lower images show the density
at times (from left to right) t = 1.2 , t = 1.0 , t = 0.8 , and t = 0.0 .
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Figure 16: (Color) A prototype Rayleigh-Taylor instability for a perturbed density configuration for the
magnetic implosion in (r, z) . Here a sinusoidal perturbation of amplitude 2.5 % has been introduced in
the density of the conducting shell, and an initial pressure p = 0.01 is selected to promote growth of R-T
spikes ahead of the liner implosion. The instability evolves from the initial conditions on the right to the
stagnation on the axis on the left. The upper images are for a numerical Schlieren and the lower images
represent density at times (from left to right) t = 1.3 , t = 1.1 , t = 0.8 , and t = 0.0 .
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Figure 17: (Color) A prototype Rayleigh-Taylor instability for a perturbed density configuration for the
magnetic implosion in (r, z) which has been designed to promote the formation of trailing mass. Here a
sinusoidal perturbation of amplitude 2.5 % has been introduced on the trailing side of the liner and the
initial pressure distribution is chosen to inhibit growth of R-T spikes ahead of the liner implosion. The
current sheet is initialized Gaussian function centered at mid-plane of the liner. The upper images show a
numerical Schlieren and the lower images the logarithm of the density at times (from left to right) t = 1.02 ,
t = 0.98 , t = 0.8 , and t = 0.0 .

An important issue in actual Z-pinch implosions is the dynamics of trailing mass [26]. Figure 17 presents
a prototype density configuration for the magnetic implosion in (r, z) that has been designed to promote the
formation significant trailing mass. Here a sinusoidal perturbation of the geometry of the liner at the trailing
edge has been introduced with an amplitude of 2.5 % and the initial pressure distribution has been selected
to inhibit growth of R-T spikes ahead of the liner implosion ( p = 1.0 × 10−6 ). In addition, the current
sheet as been initiated as a Gaussian function centered at the mid-plane of the liner with the specific form
λ = exp

[
−
(

1.025−r
.025

)2] . This particular choice results in approximately a 50 % drop in the Lorentz force at
the edges of the liner. Clearly the effect of the initial localized current sheet with diminished Lorentz force
near the trailing edge of the imploding liner is to promote the development of trailing mass in the implosion.

In this section a series of representative implosion geometries and initial density distributions has been
presented with the intent to produce implosion dynamics of interest in Z-pinch type systems. As presented
these problems can all be modeled with a minimally modified Euler system solver. In the next section a brief
example of what can be expected when including additional physics in the model is presented by considering
a simple radiation emission model.
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6 An Example of Additional Physics in Euler: A Simple Radiation
Model

As described above a significant motivation for the phenomenological magnetic drive source term model is
to allow the evaluation of shock-hydrodynamics algorithms intended to be used as a base to build Z-pinch
type simulation capabilities. This brief section presents the results of an initial study including additional
physics in the Euler shock-hydrodynamics simulations, here a simple radiation emission model. As discussed
in the introduction one important advantage of developing this simple Lorentz force term to drive “Z-pinch
like” implosions is that hydrodynamic and radiation-hydrodynamic algorithms can be tested, evaluated and
stressed on nearly realistic challenging implosions. Below is an example of such a problem using a very
simple radiation emission model. Even with the use of such a simplified model, the results produced by the
Euler system solver with the J×B source term model produce power pulses with qualitative similarities to
experimental and full computational MHD results found in the literature (see e.g. Figure 9 in [12]).

One of the simplest radiation emission models one might consider is

Qrad = σT 4

where T is the temperature obtained from the equation of state (8) and the caloric equation of state (9). In
the literature there are many different forms for σ depending on the model’s intended regime, the specific
material under consideration, etc. For simplicity this work chooses the rather simple form

σ = σ̄ρ
1
T 2

where σ̄ is a constant chosen here to be σ̄ = 100.0 . The radiation emission is set to be active only in the
liner material by multiplication with λ so the final radiation source term becomes

Qrad = σ̄λρT 2.

Obtaining resolved radiation profiles in an actual Z-pinch simulation is a tremendously challenging task due
both to the complexity of the physically realistic radiation models as well as the mesh resolution requirements.
With this difficulty in mind, this section presents two convergence studies where different aspects of this
difficult regime are highlighted. This will illustrate some of the difficulties one might expect to encounter as
well as build an intuitive understanding of the resolution requirements for generating radiation profiles.

The first problem is a pinch in the r - z plane with some small amount of pre-fill material and a stagnation
point off axis at r = 0.1 as for example on a rod. Here the pre-fill and exterior densities are ρpre−fill =
1× 10−3 , ρexterior = 5× 10−4 and the initial pressure is p = 1× 10−5 . A linear current drive I =

√
12t is

used so the current is rising as the material stagnates and radiates. The study is performed at a variety of
uniform mesh resolutions corresponding to h = 1/160 , 1/320 , 1/640 , 1/1280 , 1/2560 and 1/5120 where
h is the grid spacing in the r and z directions. Figure 18 presents the radiation output and the total
radiated power as a function of time for these resolutions and it is clear that the pulse is well behaved and
largely converged at the finest resolution h = 1/5120 .

In order to gauge convergence, consider the convergence rate in two separate norms. The first and perhaps
simplest is to look at is the extrapolated convergence rate as considered by Roy in [27]. In this analysis the
final three data points for total radiated power from Table 1 are considered and an order of convergence is
obtained, as in [27], from this data. For this data the convergence rate is judged to be κ ≈ 1.26 for the
total radiated power at t = 1.0 . For the second measure consider the self convergence in L1 of individual
radiation pulses to the finest computation h = 1/5120 from Figure 18. Table 2 shows these results with a
least squares fit to the convergence rate κ ≈ 1.08 . To put this result in context, convergence rates for smooth
flows using overlapping grids have previously been demonstrated to be κ = O(∆x2) [17, 16]. However, for
flows with solutions dominated by shocks a rate of κ = O(∆x) is expected and for contact surface dominated
flows a rate of κ = O(∆x2/3) , for a second order method, is expected [28]. An extensive set of convergence
results that demonstrate the capabilities of the FCT algorithm employed in this study can be found in [18].
Finally it should be noted that because simulations are run at fixed CFL, spatial refinement and temporal
refinement are carried out in a coordinated manner. For explicit algorithms this is the usual refinement
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Figure 18: (Color) Shown here are the radiation pulses (left) and total radiated power (right) obtained using
the linear current model I =

√
12t on a pinch with ρpre−fill = 1×10−3 and a stagnation point at r = 0.1 .

The simulation is carried out in the r - z plane and the resolutions, from coarse to fine, are represented by
green, cyan, blue, black, red and maroon.

Table 1: Total radiated power, peak power, and time to peak power for the radiation results presented in
Figure 18. Here N is a measure of grid resolution with h = 1/N .

N total radiated power peak power time to peak power
160 2.261 118.7 .9299
320 1.833 172.0 .9267
640 1.528 215.3 .9264
1280 1.311 174.0 .9260
2560 1.203 196.8 .9261
5120 1.158 227.8 .9257

procedure as refinement results for fixed ∆t or fixed ∆x can be difficult to interpret. For example temporal
refinement at fixed ∆x will generally lead to divergent approximations [28].

The second radiation result demonstrates stagnation with the very difficult pre-fill density set at ρpre−fill =
1 × 10−6 , the exterior density ρexterior = 5 × 10−7 and stagnation on the center line. Here the current
drive from (25) with q = 6 and I = 0 for t ≥ 1 is used rather than the linear drive. The softening of
the problem as a result of the q = 6 current drive is more than made up for in the increased difficulty of
resolving the stagnation on axis which makes numerical convergence extremely difficult. Simulations have
been carried out for h = 1/160 , h = 1/320 , 1/640 , 1/1280 , 1/2560 and 1/5120 . The reason for making
h = 1/5120 the finest resolution actually has nothing to do with computational cost, but rather a consid-
eration of the artificial cutoff for the radius. In these simulations the minimum effective radius is chosen to
be 1 e−4 and in order that no discretization points, except the one at the origin, fall within this radius
the finest attainable resolution must have h > 1/10000 . To be consistent with previous resolution studies,
h = 1/5120 is a reasonable choice for the finest resolution. Figure 19 presents the radiation output and total
radiated power as a function of time for these results and indicates strongly that convergence is near at hand
for the finest resolution h = 1/5120 , but shows how difficult this problem is in terms of sufficient resolution
for convergence. Indeed some aspects of the simulation seem to be well resolved such as the peak output
location as a function of time, but even at this fine resolution the peak power is clearly not well resolved.

As before convergence is measured in two ways. The first takes the extrapolated convergence rate for
the total radiated power at t = 1.0 in Table 3 as in [27]. The result here is κ ≈ 0.37 which is obviously
not excellent, but still convergent and for such a difficult problem still considered reasonable. The second
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Table 2: Self convergence results for the L1 norm of the radiation pulses from Figure 18 as compared to
the finest resolution h = 1/5120 . Here κ ≈ 1.08 is a least squares fit for the convergence rate and N is a
measure of grid resolution with h = 1/N .

N self convergence error
160 2.614
320 1.149
640 0.5340
1280 0.2672
2560 0.1275

κ 1.08
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Figure 19: (Color) Shown here are the radiation pulses obtained using the current model (25) with q = 6 .
The simulation is carried out in (r, z) space with r ∈ [0, 1.25] . The radiation output and total radiated
power is plotted as a function of time with the simulations from coarse to fine represented by green, cyan,
blue, black, red and maroon.

measure judges self convergence of individual radiation profiles in Figure 19 using the L1 norm. Table 4
shows these results and demonstrates that even here the convergence rate is κ ≈ 0.75 which is quite good.

7 Concluding Remarks

In this paper a phenomenological model for a magnetic drive source term for the momentum and total energy
equations has been described. This body force term is designed to produce a Z-pinch like implosion that
can be used in the development and evaluation of shock-hydrodynamics algorithms intended to be used as
a basis for a larger Z-pinch simulation capability. The model uses a J×B Lorentz force source term which
has been motivated by a 0-D analysis of a thin shell or liner implosion.

The magnetic drive source term with a power law radial compression, and the corresponding current
drive, was then demonstrated in an Euler system solver based on an FCT algorithm for mapped overlapping
grids. The results of these computations verified the thin shell analysis as a limiting case with the numerical
results showing good agreement with the analytic solution. As was further demonstrated, the magnetic drive
source term was also useful in producing more complex implosion dynamics which we believe will be very
useful in the evaluation of existing and proposed shock-hydrodynamics algorithms and implementations for
Z-pinch type systems. The benefit of this approach is that the evaluation of these numerical methods can be
carried out for a reasonably realistic set of Z-pinch like magnetic implosions without the requirement that a
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Table 3: Total radiated power, peak power, and time to peak power for the radiation results presented in
Figure 19. Here N is a measure of grid resolution with h = 1/N .

N total radiated power peak power time to peak power
160 8.500 186.9 1.015
320 8.790 195.9 1.011
640 9.365 258.5 1.011
1280 9.808 330.4 1.012
2560 10.18 389.7 1.006
5120 10.46 478.5 1.003

Table 4: Self convergence results for the L1 norm of the radiation pulses from figure 18 as compared to
the finest resolution h = 1/5120 . Here κ ≈ 0.75 is a least squares fit for the convergence rate and N is a
measure of grid resolution with h = 1/N .

N self convergence error
160 10.74
320 6.920
640 4.450
1280 2.654
2560 1.290

κ 0.75

corresponding electro-magnetics capability be included into the implementation.
Finally we believe that with the inclusion of various types of radiation models and conduction effects

this approach can also be useful for evaluation of some aspects of multi-physics radiation-hydrodynamics
capabilities that are being considered for use in the context of Z-pinch type simulations. In this context an
example of a simple radiation emission model was presented as well as simple convergence studies for the
maximum power output and self convergence of the radiated power output.
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