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Abstract

In this short note we describe a simple extension to the multi-material shock capturing algorithm
presented in [1] that can be used to maintain sharp material interfaces. The method takes the form of an
artificial compression which is designed so that the material indicator jumps across only a few cells but
which does not excite physical instabilities in the flow. Advantages of the approach include its simplicity
and flexibility in that it provides a parameter that effectively determines captured interface thickness.

1 Introduction

One major criticism concerning the use of shock-capturing methods for multi-material flows is the excessive
smearing of material interfaces which can result. This is particularly troublesome when the materials on
either side of the interface have very different equations of state (EOS). For such cases a smeared interface
can mean that exceedingly fine meshes must be used in order to accurately represent flow features. To
make matters worse, typical shock capturing methods tend to smear linear discontinuities, such as material
interfaces, continually. This means that for a given resolution the material interfaces become more and more
diffuse as the simulation progresses [2].

One common approach to dealing with these issues is to reconstruct a material interface and treat the
materials on either side independently. This is the approach taken for instance by the ghost-fluid method [3].
Typically the application of boundary conditions across reconstructed interfaces is a difficult process and can
lead to lower order approximations near the interface than are used for the bulk of the flow. Furthermore,
for instances when shocks and contacts coincide additional errors can be incurred.

An attractive middle ground is to use a capturing method that is constructed to maintain material
interfaces at a constant width with a small number of cells. To that end we adopt the model used in [1]
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The variables have the meanings of ρ the density, u1 the x1 -velocity, u2 the x2 -velocity, E the total
energy, p the pressure, and φr a material indicator. Initial conditions set φr to either 1 or 0 depending
on the material and because the model does not allow mixing, exact solutions retain this separation for all
time. The total energy is given by E = ρe + 1
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where e = e(ρ, p, φr) is the specific internal
energy, prescribed by an EOS, which for the purposes of this paper this is taken to be the stiffened EOS
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where γ(φr) and π(φr) are the gas constant and stiffening parameter given as functions of the species
indicator. For further details refer to [1, 4].

2 Artificial Compression

Beginning with [5], the virtues of artificial compression methods (ACM) were realized. One of the primary
motivating factors behind the development of the ACM was the desire for numerical approximations with
linear jumps to be able to achieve steady state profiles. Traditional shock capturing schemes continually
smear such jumps and so it is generally not possible to time step to steady state solutions. With the ACM
those jumps remain sharp and steady states can be achieved. However, the disadvantages associated with
compressive schemes can be substantial. Firstly they are often only first order accurate even for smooth
flows. Secondly they can produce erroneous flow features such as artificial steepening of smooth profiles
which can lead to unrealistically high growth rates for physical instabilities. In general we agree that these
are valid concerns, but the current situation is quite special in a number of ways. To begin with the species
indicator only takes discrete values of 1 or 0 in the exact solution. This means that there is never a smooth
transition that could potentially steepen. Also because we apply compression to the evolution equation for
the species indicator only, instability growth requiring a coupling to the mass and momentum equations is

not a concern. Finally, the L1 convergence rate for non-compressive pth order methods for linear jumps is
typically O(∆xp/(p+1)) but compressive schemes can converge as O(∆x) [2]. For these reasons, carefully
constructed first order compressive schemes can produce superior results when applied to advected linear
discontinuities such as material interfaces.

The overall numerical approach to solving (1) follows the discussion in [1]. An overlapping grid approach
is used to treat geometric complexities, adaptive mesh refinement is used to locally increase grid resolution
where needed, and an energy correction is used to eliminate numerical errors associated with captured
material interfaces. This energy correction is non-zero only in the vicinity of material interfaces and so the
convergence to weak shock solutions is not altered. Because our goal is to maintain sharp material interfaces,
the compressive scheme is applied only to the final equation in (1). As was shown in [2], a rather simple
method that has the compressive character we desire uses two times the usual MinMod limiter, also known
as the double MinMod limiter. The method from [1] uses the standard MinMod limiter and so the extension
to use the double MinMod limiter for the last equation of (1) is rather trivial. In the interest of space, only
the critical changes to the scheme in [1] are presented here and the reader is referred to [1] for further details.
At some point in the algorithm the slope correction step is encountered to give high-resolution. As in [1]
this is written
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where WL and WR are the left and right states for an inter-cell Riemann problem, RkΛkR
−1
k is the

eigen-decomposition of the flux Jacobian in the k -direction in index space, i and j are indices into a
computational grid, n indicates the time step, ∆rk and ∆t are spatial and temporal grid sizes, and α
and β are given by
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Equations (2) and (3) are exactly equations (33) and (34) in [1]. In order to implement our compressive
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Figure 1: Pressure and species indicator φr at t = 0.25 . The exact solution and numerical approximations
with 200 cells using the standard scheme ( κ = 1 ) as well as the compressive scheme ( κ = 2 ) are shown.

scheme, equation (2) is altered slightly to
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where

T =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
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0 0 0 0 κ


and κ is a parameter which dictates the treatment of the final equation of (1). For κ = 0 the first order
scheme is used, for κ = 1 the standard MinMod scheme is recovered, and for κ = 2 the double MinMod
scheme is achieved. Note that κ = 2 corresponds to the TVD limit in the Sweby diagram [6] and so
great care must be exercised when using larger values. For κ > 1 , the scheme is compressive and material
interfaces will be maintained across a fixed number of cells. For instance, the choice of κ = 2 typically
results in interfaces captured across two to four cells for all time. An important subtle distinction to note is
that this formulation applies compressive limiting to the final equation, rather than applying the compressive
limiter to the final component of the state vector. This seemingly small difference is in fact quite significant
as will be illustrated via numerical example in section 3.

3 Numerical Examples

We present a few numerical examples to illustrate the effectiveness of the method when applied to two-
material flows. The first is a 1-D flow with substantially different equations of state on either side of the
material interface. The initial condition has uniform density ρ = 1 and uniform pressure p = 1 . To the
left of the origin a velocity of u1 = 1.5 is prescribed and to the right u1 = −1.5 . For |x1| < 0.5 the EOS
roughly describes air with γ = 1.4 and π = 0 . For |x1| ≥ 0.5 a very stiff gas is used with γ = 4.4 and
π = 50 . The flow is symmetric about the origin and the solution is computed only for x1 ∈ [0, 1] (the
other half determined by symmetry if desired). The exact solution can be determined as the solution of
three Riemann problems. Initially a right moving shock forms at the origin. This shock interacts with the
material interface at t ≈ 0.2095 producing a transmitted shock moving right, a reflected shock moving left,
and a left moving material interface.

Computed numerical approximations at t = 0.25 using 200 uniformly spaced cells are shown in figure 1.
The plot of φr shows the relative sharpness (≈ 3 cells) of the material interface when κ = 2 is used as

3



0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

x
1

pr
es

su
re

 

 

exact
standard
compressive

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
1

φ r

 

 
exact
standard
compressive

Figure 2: Pressure and species indicator φr at t = 0.25 . The exact solution and numerical approximations
with 1600 cells using the standard scheme ( κ = 1 ) as well as the compressive scheme ( κ = 2 ) are shown.
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Figure 3: Convergence of the L1 error for pressure and species indicator for the 1-D test problem. Errors
are shown for both the compressive and standard schemes. Reference lines indicating O(∆x) and O(∆x2/3)
are also included.

compared to the usual scheme with κ = 1 . The pressure shows that the standard scheme has significantly
misplaced the reflected and transmitted shocks, a result of overestimation of the sound speed in the smeared
interface. Because the compressive scheme maintains a constant width interface, this type of error does
not accumulate and the shocks are accurately located. Both methods will eventually converge to the exact
solution if sufficiently small computational cells are used, but the rate for the standard method ( κ = 1 )
is extremely slow because the captured material interface continually grows as a function of the number of
time steps. Figure 2 shows the computed pressure and species indicator using 1600 cells. The compressive
scheme still captures the interface with approximately 3 cells but the standard scheme now contains more
than 20 cells. As a result, the shocks for the standard scheme are still significantly misplaced. Figure 3
shows a convergence study of the L1 error for both pressure and species indicator over a range of resolutions
corresponding to 50 through 1600 computational cells. In the figures, reference lines corresponding to the
convergence rates O(∆x) and O(∆x2/3) are included. It is seen that the convergence rates for both pressure
and species indicator correspond to ≈ O(∆x) for the compressive scheme while for the traditional scheme
the convergence rates are ≈ O(∆x2/3) .

Our second example is the impulsively driven cylinder presented in [1] and [7]. Here a cylinder of radius
0.8 containing air on the left ( γ = 1.4 , ρ = 1.0 ) and helium on the right ( γ = 1.67 , ρ = 0.138 ) is
impulsively set into motion with speed 1. The gas has an initially uniform pressure p = 1 . Further details
of the setup, can be found in [1] and [7]. One significant concern when using compressive schemes is the
excitation of physical instabilities such as the Kelvin–Helmholtz or Richtmyer–Meshkov instabilities. The
flow generated by this test case exhibits both of these and the effects of our artificial compression can be
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Figure 4: Pressure (left), species indicator (center), and a zoom of the species indicator (right) for impulsively
driven cylinder at t = 1.0 . On top are results from the standard MinMod limiter ( κ = 1 ) and on bottom
from the compressive scheme ( κ = 2 ).

judged. Figure 4 shows the pressure and species indicator for both the standard MinMod scheme ( κ = 1 )
and the compressive scheme ( κ = 2 ) at the middle resolution presented in [1] with ∆x ≈ 1/400 . Clearly
the material interface is sharper for κ = 2 and occupies ≈ 3 cells, while for κ = 1 it is ≈ 10 cells wide.
More to the point, there are no significant differences in the structure of the computed solution between
the compressive and non-compressive schemes which indicates that instabilities have not been excited as
a byproduct of sharp interface maintenance. To contrast this, figure 5 shows the pressure and species
indicator obtained by a simulation which uses the double minmod limiter for the last component of α and
β in equation (2) rather than the proposed scheme in equation (4). Clearly the results are unsatisfactory
and illustrate both significant growth of instabilities as well as large amounts of numerical noise which have
been produced through the use of a poorly constructed compressive scheme.

The simulations presented here use κ = 1 for the usual scheme and κ = 2 for the compressive scheme.
However, we have found that for more complicated equations of state, such as the JWL EOS used for reactive
flow modeling in [8], an intermediate value may be more appropriate. Typically κ = 2 is preferred, but
this can cause convergence problems for the mixture EOS calculator. For such cases κ is reduced and the
interface widens somewhat. For κ > 1 a steady finite width interface will be achieved and κ can be used
to effectively determine the width, in cells, of the steady state interface.

4 Conclusions

In this brief note we have shown how artificially compressive schemes can be used to maintain sharp material
interfaces in two-material flows. The typical detrimental effects of such schemes are shown not to arise here
because of the special nature of material interfaces. A 1-D flow showed how artificially smeared interfaces can
be detrimental to convergence rates and that an appropriate compressive scheme can mitigate this behavior.
A 2-D example demonstrated how traditional schemes tend to mix material while compressive schemes are
able to keep materials largely separate. At the same time, our compressive scheme was shown not alter
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Figure 5: Pressure (left) and species indicator (center) at t = 1.0 computed using the double minmod limiter
for the last component of α and β in equation (2) rather than the proposed scheme in equation (4).

the excitation of physical instabilities, or to produce erroneous numerical noise. One might be tempted to
extend the compressive scheme to sharpen density jumps but extreme care should be exercised here. It is our
experience that this can be done and density jumps will remain sharp, but physical instabilities, if present,
quickly dominate the flow. Methods that retain a sharp capture of material interfaces for all quantities but
which do not result in excessive instability growth are the subject of ongoing work.
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