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Abstract

The estimation of discretization error in numerical simulations is a key com-
ponent in the development of uncertainty quantification. In particular, there
exists a need for reliable, robust estimators for finite volume and finite differ-
ence discretizations of hyperbolic partial differential equations. The approach
espoused here, often called the error transport approach in the literature, is
to solve an auxiliary error equation concurrently with the primal governing
equation to obtain a point-wise (cell-wise) estimate of the discretization error.
Nonlinear, time-dependent problems are considered. In contrast to previous
work, fully nonlinear error equations are advanced, and potential benefits
are identified. A systematic approach to approximate the local residual for
both method-of-lines and space-time discretizations is developed. Behavior
of the error estimates on problems that include weak solutions demonstrates
the positive properties of nonlinear error transport.
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1. Introduction

For decades, numerical methods of increasing sophistication have been
routinely and successfully used to compute approximate solutions to time-
dependent differential equations. Concurrently, methods have been devel-
oped to estimate the approximation error of such discrete solutions. These
a posteriori error estimation techniques have been traditionally used as indi-
cators for mesh (element) adaptivity in an attempt to reduce discretization
error by employing locally finer meshes. However, the increasing emphasis
on Uncertainty Quantification (UQ) for numerical simulations presents a new
challenge for robust, reliable, and accurate techniques for the quantitative es-
timation of error in quantities of interest (QoI) derived from a simulation.
In many complex multi-physics applications, it is impractical to use highly-
resolved meshes to minimize the contributions of discretization error, and
thus the uncertainty in computed results due to this error must be under-
stood for proper interpretation of uncertainty analyses resulting from other
input and data uncertainties.

In this paper, we are specifically interested in evolutionary methods of er-
ror estimation for finite difference method (FDM) and finite volume method
(FVM) discretizations. In this error estimation approach, auxiliary evolu-
tion equations for the errors are derived, discretized, and solved in tandem
with the approximate primal equations. Therefore, the computational cost
is approximately twice that of solving the primal equation. The result is a
discrete, signed, point-wise (cell-wise) approximation of the error that can
be used subsequently to construct an estimate of the error in any number of
linear or nonlinear functionals of the solution (QoIs). The effects of both er-
ror generation (destruction) and propagation are included, and, in addition,
cancellation of errors in the calculation of QoIs can be obtained. In addition,
when properly formulated, the nonlinear error transport approach is asymp-
totically correct and provides robust error estimates even for approximations
of weak solutions.

Many approaches exist for global error estimation for numerical approxi-
mation of differential equations [1]. Historically, the main objective of error
estimation has been to obtain a more accurate approximate solution by cor-
recting a low-order scheme instead of resorting to a more expensive and po-
tentially less robust higher-order discretization. Within the context of inter-
est here, that is, providing error bounds on a discrete solution or functionals
thereof, comparisons of techniques can be found in [2, 3]. Probably the most
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common technique for FDM and FVM is the venerable mesh-refinement-
based Richardson extrapolation [4]. In this approach, solutions are computed
on at least three meshes in order to fit the free parameters in an asymptotic
error ansatz, typically an assumed power-law form. Grid convergence error
estimation has the advantage that no modifications to the code are required,
although care must be taken to constrain all code inputs properly to obtain
self-consistent results. Richardson extrapolation may produce erroneous re-
sults if the error ansatz inadequately describes the true error behavior [2],
which unfortunately may be the case for simulations that fail to resolve all
scales in the solution. This includes cases where discontinuities are present
and true weak solutions are sought. There have been attempts to consider
richer ansätze with varying degrees of success [5].

In contrast to the mesh refinement strategy, several other classes of single-
grid estimators exist. The finite element method (FEM) literature provides
at least two broad classes of error estimators developed primarily for linear
elliptic and parabolic problems: residual methods and recovery methods [6].
Typically these methods are used to produce error indicators for adaptive
mesh refinement, and as such the error estimates are provided as local or
global bounds in some relevant norm. Because of our focus on FDM and FVM
discretizations of hyperbolic problems, we do not consider these methods
further.

Another class of single-grid estimators is based on the solution of auxiliary
problems. Richardson extrapolation, for instance, can be based on varying
the discretization order (cf., mesh refinement) [2]. Such an approach has not
often been used for finite difference and finite volume methods, most likely
because of the difficulty of implementing multiple, higher-order and stable
discretizations. Adjoint methods [7, 8] estimate the error in a QoI from the
solution of an auxiliary adjoint problem and the residual of the discrete solu-
tion. When coupled with mesh adaptivity, for a small number of QoIs, adjoint
methods can be very efficient at refining only in regions to which the QoI
is sensitive. However, the challenge of formulating the adjoint problem for
complex multi-physics problems, the inefficiency of solving a different adjoint
problem for each QoI, and the expense associated with long time integration
of nonlinear hyperbolic problems can be drawbacks. With implicit residual
methods [6, 9] from the FEM literature, local error estimators are developed
by solving auxiliary equations for the error on a mesh element or on a patch
of elements. The local errors can also be used to construct a computable
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estimate of some global norm of the error. However, the development of the
local error equations is specific to finite element methods.

In the finite difference and finite volume literature, evolutionary error
methods considered herein are often referred to as error transport meth-
ods. These techniques are a form of non-iterative difference or differential
defect correction [1, 10]. In all cases in the error transport literature, the
error equations are linearized, and the focus is typically on the approxima-
tion used to evaluate the local residual, that is, the local source (sink) of
error that drives an error transport equation. Linear error transport tech-
niques have been applied to linear and nonlinear models of advection [11, 12]
and advection-diffusion [12–17] equations, subsonic and supersonic inviscid
flow [11, 18, 19], and subsonic viscous flow [13, 17]. Most investigations have
considered steady-state solutions [14–19], and only a few examples of time-
dependent applications [11, 12] exist. A good review of previous work can
be found in Hay and Visonneau [17].

In the context of this previous work, this paper has several goals. Our
overarching goal is to investigate the viability of the nonlinear error transport
approach as a strategy of a posteriori error estimation for the purposes of un-
certainty quantification. We focus on time-dependent, nonlinear, hyperbolic
problems that admit weak solutions and present a new, simplified procedure
for approximate residual evaluation that is applicable to both method-of-
lines and space-time discretizations. In addition, we argue that solving the
full error equations, including any error nonlinearity, has potential advan-
tages over the more traditional approach of linearization. We demonstrate
instances where the inclusion of these terms increases the robustness of the
error estimates.

The remainder of this paper is structured as follows. In Section 2, we will
introduce the basic concepts of nonlinear error transport for general time-
dependent partial differential equations (PDEs), and in Section 3, we will
present the core ideas of our approach in contrast to previous linear error
transport work. We will specialize in Section 4 to a canonical example of
a non-linear hyperbolic PDE, the 1D inviscid Burgers’ equation. Specific
example discretizations for both method-of-lines and space-time discretiza-
tions are developed. Convergence properties of the method are demonstrated
in Section 5 for strong and weak solutions, and the effects of nonlinearity in
the error equation are explored in both one and two dimensions in Section 6.
In Section 7, we demonstrate the application of the approach to a nonlinear
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system, the 1D Euler equations. Finally, we summarize our results and make
conclusions in Section 8.

2. Basic Concepts

Consider an evolution equation for u(x, t) of the form

∂tu+ F(u) = s, (1)

where F(u) is some linear or nonlinear (spatial) differential operator on
u and s(x, t) is an inhomogeneous term. For convenience, we make the
simplifying assumption that x ∈ R in order to eliminate the need to consider
boundary conditions. The nature of errors introduced via boundary condition
approximation is an interesting subject that will be addressed in future work.
Initial conditions are given as u(x, t = 0) = g(x) .

We now assume that we have a function ũ(x, t) that approximates u but
does not satisfy (1) exactly. Define the approximation error to be

e(x, t) = u(x, t)− ũ(x, t). (2)

Substitution into (1) yields

∂te+ F(e+ ũ) = s− ∂tũ. (3)

A residual is formed on the right-hand side by subtracting F(ũ) from both
sides:

∂te+ G(e; ũ) = − (∂tũ+ F(ũ)− s) , (4)

where G(e; ũ) = F(e + ũ) − F(ũ) . The reason for this last step becomes
apparent when F is restricted to be a linear operator; in this case,

∂te+ F(e) = − (∂tũ+ F(ũ)− s) , (5)

that is, the error is acted on by the same operator as the primal solution and
driven by the residual of that operator acting on the approximate solution.
Though obfuscated somewhat by the explicit time derivative and nonlinear
generalization, the relationship in (4) (or more often (5)) between error and
residual are a well-known result in numerical analysis.

Equation (4) is the error equation that describes the evolution of the ap-
proximation error in space and time. In the nonlinear case, the error evolves
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by a different differential operator than the solution. In the linear error trans-
port approach [11–19], the differential (or corresponding difference) operator
on the left-hand side of (4) is linearized about ũ , which is a reasonable
assumption so long as |e(x, t)| � |u(x, t)| . In practice, and in some very
important cases, this is not valid, and such a linearization becomes question-
able. We will demonstrate some of these failings in Section 6 and show that
use of the nonlinear error transport equation overcomes these problems.

Through this point in the discussion, ũ and e have been treated as
continuous functions of x and t . We now specialize to the problem of
discretization error. In general, we do not know how to solve either the
original PDE (1) or the error equation (4). We can, however, discretize
both and solve each approximately. There are thus three decisions to be
made: the choice of discretization of the primal equation (1), the choice of
discretization of the evolution operator in the error equation (4), and the
choice of an evaluation technique for the residual in the error equation (4).
Appropriate choices for the first two discretizations depend intimately on the
nature of the continuous operator and initial conditions. Typically the same
(or a similar) scheme is used for both the primal and auxiliary equations.

For smooth solutions and consistent, stable, solution-independent dis-
cretizations, we can determine the relationship of the order of the three dis-
cretizations to the rate of convergence of the error approximation. Of course,
for weak solutions or nonlinear schemes, this relationship will provide only
an upper bound. We take a finite-difference viewpoint with uni = u(xi, t

n)
and assume a smooth (infinitely differentiable) exact solution and numerical
approximation; similar constructions can be made in the finite-volume frame-
work. We also assume ∆x/∆t is fixed as ∆x,∆t → 0 in order to simplify
notation. We assume that the primal scheme is order pt in time and px in
space, i.e.,

|e| = |ũ− u| = O(∆tpt) +O(∆xpx) = O(∆xp) , (6)

where p = min(pt, px) > 0 . We write the discretization of the error equation
as

ẽn+1
i − ẽni

∆t
+Gi

(
ẽn; ũn, ũn+1

)
= −R

(
ũn, ũn+1

)
.

If the left-hand side of the discrete error equation is order qt in time and qx
in space, and we set q = min(qt, qx) > 0 , then Taylor series expansion gives

[∂tẽ+ G (ẽ; ũ)]ni = O(ẽ∆xq) = O
(
∆xp+q

)
.
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The ẽ factor appears because the Taylor series terms are derivatives of ẽ ,
we have assumed that the solution is well-resolved, and ẽ approximates e ,
which by (6) is an O(∆xp) quantity. Assume the residual is approximated
to order rt in time and rx in space with r = min(rt, rx) > 0 :

R
(
ũn, ũn+1

)
= R(ũ)|ni +O(∆xr) .

Thus,
[∂tẽ+ G (ẽ; ũ)−R(ũ)]ni = O

(
∆xp+q

)
+O(∆xr) ,

and so the rate of convergence of the approximate error ẽ is

|ẽ− e| = O
(
∆xmin(p+q,r)

)
. (7)

The ratio
||ẽ||
||ũ− u|| = 1 +O

(
∆xmin(q,r−p))

indicates that under the assumed conditions, the error estimate will be
asymptotically correct so long as r > p . Therefore, the use of the same
orders for primal and error equation discretizations results in asymptotically
correct error estimates so long as the residual approximation is sufficiently
accurate, as demonstrated in [11, 17].

The evaluation of the residual has been a primary focus of investigation in
the literature to date. This issue arises for FDM and FVM schemes because
of the discrete nature of the approximate solution to the primal equation. As
identified by Hay and Visonneau [17], there are three approaches commonly
taken:

1. Approximate the residual by a discretization;

2. Approximate the residual by one or more leading truncation error terms
from the modified differential equation of the primal discretization [11,
12, 14, 18];

3. Approximate the residual by reconstructing the approximate solution
and directly applying the differential residual operator [13, 17, 20, 21].

The first is the standard approach for more traditional uses of defect correc-
tion [10, 20, 21] and requires the use of a different and typically high-order
discretization than used in the primal equation. However, because the resid-
ual represents a local source of error as a function of the approximate primal
solution and not the error itself, stability of the error discretization is largely
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independent of the specifics of the discrete residual operator. This discrete
approximation of the residual operator is the approach we adopt because of
its relative simplicity for logically rectangular Cartesian or curvilinear grids.
As it relates to defect correction, the technique is not new, but we have not
seen this approach employed in the error transport literature, even though it
has some advantages.

In contrast, the second choice relies on the asymptotic equivalence of the
residual (differential operator applied to the discrete solution) and trunca-
tion error (difference operator applied to the continuous solution). Typi-
cally, only the leading-order truncation error term is used. This approach
can be challenging because the truncation error for many modern nonlinear
discretizations can be difficult to derive and/or evaluate numerically. As a
further complication, there are cases where the error behavior is not well
represented by the first-order term and so two or more terms of the trun-
cation error may be required. The final approach requires interpolants of
order sufficient to provide both the necessary derivatives and accuracy as
well as consistency with any initial or boundary conditions. We note that
asymptotically, all of these approaches are equivalent, and that, in the case
of linear operators, every choice of linear reconstruction (Option 3) leads to
a particular choice of linear discretization (Option 1).

Before proceeding to the specifics of our residual evaluation strategy for
method-of-lines and space-time discretizations, we will remark that another
error transport approach exists in the literature. Our formalism is based
on the continuous error equation that has been referred to in the literature
as “Continuous Error Transport Equation” or “Exact Operator Residual”
methods. In contrast and in a completely analogous way, one can develop
a discrete error equation directly by beginning with the difference equation
solved exactly by the discrete solution and introducing a discrete form of (2).
In this case, the error equation is driven by the truncation error instead of the
residual, but the evaluation of the source term is still an important issue [12,
14–16, 19]. Such methods have been referred to as “Discrete Error Transport
Equation” or “Approximate Operator Residual” methods. Asymptotically,
the two approaches are equivalent.

3. Residual Evaluation

Our approach defines an approximation of the residual that can be evalu-
ated to arbitrary order without deriving any terms in the modified differential
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equation: we are forming a difference approximation to the continuous resid-
ual operator that is applied to the discrete approximate solution. As such,
the residual is asymptotically equivalent to the truncation error terms from
the primal operator approximation plus the truncation error terms from the
residual operator approximation. In the time-dependent case, the residual
operator contains both time and space derivatives, but we wish to avoid
explicit interpolation in time that would be necessary in a direct reconstruc-
tion method [13, 17, 20, 21]. Furthermore, approximation of the residual
by leading-order truncation error terms [11, 12, 14, 18] is not only scheme-
specific and difficult for complex problems, but also potentially less robust
for under-resolved features where neglected terms may not be negligible.

We consider the two types of temporal discretization approaches com-
mon for hyperbolic PDEs: the method-of-lines approach, where space is dis-
cretized first and then an appropriate ODE discretization is applied in time,
and the space-time approach, where schemes take advantage of the coupled
nature of time and space to cancel leading spatial error terms with leading
temporal error terms. While the method-of-lines formulation is straight-
forward, the construction of a higher-order residual approximation for space-
time schemes requires some additional explanation. In this section, we give
a general overview of the two approaches. Specific examples of each for a
model problem are provided in Section 4.

3.1. Method-of-Lines Formulation

The method-of-lines formulation provides a conceptually simple approach
to the high-order discretization of time-dependent problems because of the
independent treatment of space and time. Indeed, one of the original and
popular approaches to the discretization of the Euler equations combined a
central second-order spatial discretization with the explicit, four-stage fourth-
order Runge-Kutta scheme [22]. We show that the method-of-lines formula-
tion allows for a particularly simple evaluation of the residual.

We discretize the spatial operator of the primal equation (1) to obtain
the semi-discrete form

∂tũh + Fh(ũh) = 0, (8)

where Fh is some discrete operator, h is the spatial discretization parameter,
and ũh(t) is a vector of time-dependent variables. Similarly, we spatially
discretize the error equation:

∂tẽh +Gh(ẽh; ũh) = −∂tũh − F ∗h (ũh), (9)
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where Gh and F ∗h are discrete approximations of G and F , respectively.
Note that we do not assume that Gh = Fh . It should be made clear that
the right-hand side discretization must not be the same discretization used
for the primal equation, because the semi-discrete primal solution ũh exactly
solves that semi-discrete equation (8). To make this explicitly clear, using (8)
in the right-hand side of (9), we find

∂tẽh +Gh(ẽh; ũh) = Fh(ũh)− F ∗h (ũh). (10)

The source of error vanishes for Fh = F ∗h . In addition, using (8) in (9)
analytically eliminates the time derivative from the residual. To obtain a
fully discrete scheme, one applies a suitable ODE integrator and co-evolves
the primal and error approximations.

3.2. Space-Time Formulation

For hyperbolic systems, it is common to discretize the primal equation
using a space-time scheme, by which we mean a one-step scheme (possibly
with predictor stages) that couples the time and space discretizations. The
Lax-Wendroff [23] and MUSCL-Hancock [24, 25] schemes are both of this
type. The construction of space-time schemes is specific to the differential
form of the spatial operator, but the general principle is that successive
derivatives of the governing equation are used to exchange temporal with
spatial derivatives in a Taylor series expansion in time. The resulting spatial
derivatives are then discretized. A similar procedure can be used in the
construction of a difference approximation to the residual operator.

Because the extension is not as clear for space-time formulations as it
was for the method-of-lines in Section 3.1, we consider the more general
hyperbolic system

∂tu+ ∂xf(u) = 0, (11)

where f(u) is a flux function whose Jacobian ∂uf = A(u) has real eigen-
values. Note that the approach is by no means restricted to this form of
operator.

Consider the residual for a continuous approximation to the solution
of (11):

R(ũ) = ∂tũ+ ∂xf(ũ). (12)

Using the approximate solution at two time levels, ũ(x, tn) and ũ(x, tn+1) ,
we can construct the following second-order approximation of R(ũ) at time
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t = tn+1/2 :

R(ũ(x, tn+1/2)) =
ũ(x, tn+1)− ũ(x, tn)

∆t

+ ∂x

(
f (ũ(x, tn+1)) + f (ũ(x, tn))

2

)
+

∆t2

12
∂tttũ

∣∣∣∣
tn+1/2

+O
(
∆t4
)
.

(13)

Following the standard space-time procedure, we use the primal equation to
convert ∂tttu into spatial derivatives; specifically,

∂tu = −∂xf(u), (14a)

∂ttu = −∂txf(u) = −∂x [A(u)∂tu] = ∂x [A(u)∂xf(u)] , (14b)

∂tttu = ∂tx [A(u)∂xf(u)] ,

= −∂x
[
∂A

∂u
(∂xf(u))2 + A(u)∂x [A(u)∂xf(u)]

]
.

(14c)

We thus can construct a formally fourth-order in time difference approxima-
tion of the residual at t = tn+1/2 by combining (13) and (14c):

R(ũ(x, tn+1/2)) ≈ ũ(x, tn+1)− ũ(x, tn)

∆t

+ ∂x

(
f (ũ(x, tn+1)) + f (ũ(x, tn))

2

)
− ∆t2

12
∂x

[
∂A

∂u
(∂xf(ũ))2 + A(ũ)∂x [A(ũ)∂xf(ũ)]

]
tn+1/2

.

(15)

Applying this approach to higher temporal derivatives in the Taylor series
expansion leads to higher-order residual approximations in time. Appro-
priate spatial differences are subsequently used to approximate the spatial
derivatives.

4. Model Nonlinear Problem: Inviscid Burgers’ Equation

The linear error transport approach has been applied to the steady-
state [13, 17–19] and time-dependent [11] Euler and Navier-Stokes systems
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that describe fluid flow. To describe the nonlinear error transport approach,
we first restrict our consideration to a scalar equation for clarity. The inviscid
Burgers’ equation,

∂tu+ ∂x

(
1

2
u2
)

= 0, x ∈ R, t > 0, (16)

is a canonical model to consider because it possesses an advective nonlinearity
similar to that of the Euler and Navier-Stokes equations. We assume an
initial value problem (IVP) with initial conditions given as u(x, t = 0) =
g(x) . Solutions can be constructed using the method of characteristics; see,
for instance Whitham [26].

In practice, strong solutions to (16) exist only for finite time. In partic-
ular, discontinuities can form when the solution steepens through nonlinear
interaction. It is therefore common to consider solutions in a weak sense. For
this reason, the divergence, or conservation, form (16) is commonly used. The
continuous nonlinear error transport equation for an approximate solution
ũ(x, t) to the Burgers’ equations is

∂te+ ∂x

(
1

2
e2
)

+ ∂x (ũe) = −∂tũ− ∂x
(

1

2
ũ2
)
. (17)

The left-hand side is a nonlinear and variable-coefficient advection operator
applied to e . Both of the spatial derivative terms on the left-hand side can
be large, with either one of them dominating in a particular region of the
solution. As a result, both terms must be present in order to describe the
time evolution of the error for some cases. The inclusion of the nonlinear
term ∂x(e2/2) distinguishes our nonlinear error transport approach from the
linear error transport approach that has been used previously. In Section 6,
we will demonstrate advantages of preserving the nonlinearity.

We consider conservative, upwind, finite-difference schemes [24] that are
well suited to this class of problems. Both method-of-lines and space-time
discretizations will be developed. Similar space-time schemes were employed
in [11].

4.1. Method-Of-Lines Discretization

We explicitly specify our semi-discrete scheme for both the primal and
error equations. Temporal discretization for all MOL discretizations through-
out this paper is accomplished using the standard explicit, four-stage, fourth-
order Runge-Kutta scheme.
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4.1.1. Discretization of the Primal Equation

Consider a semi-discrete approximation of (16) on the uniform spatial
grid xi = x0 + i∆x . Spatial approximation is indicated using a subscript
(e.g., ũi(t) ≈ ũ(xi, t) ). A conservative spatial approximation for Burgers’
equation can be written as

∂tũi = − 1

2∆x
∆+

[
(ũi−1/2)

2
]
, (18)

where ∆+[vi] = vi+1 − vi is the forward difference operator and where the
ũi±1/2 are determined through the solution of Riemann problems [26, 27] at
cell faces. Specifically, if we define ũi−1,+ and ũi,− to be the values at the
left- and right- of the (i− 1/2) interface, respectively,

ũi−1/2 =



ũi−1,+, if ũi,− > ũi−1,+ > 0,

ũi,−, if 0 > ũi,− > ũi−1,+,

ũi−1,+, if 1
2
(ũi−1,+ + ũi,−) > 0 and ũi,− ≤ ũi−1,+,

ũi,−, if 1
2
(ũi−1,+ + ũi,−) ≤ 0 and ũi,− ≤ ũi−1,+,

0, otherwise.

(19)

To increase the spatial order of accuracy, piecewise linear reconstruction over
each cell is used to obtain improved approximations to the solution values
ũi,± at cell boundaries:

ũi,± = ũi ±
1

2
ψ (∆+ [ũi] ,∆+ [ũi−1]) .

The limiter function, ψ(·, ·) , is used to change the character of the scheme.
We will consider three choices for ψ :

ψ1(u, v) = 0, (20a)

ψ2(u, v) =
1

2
(u+ v), (20b)

ψMM(u, v) = minmod (u, v) , (20c)

where

minmod (u, v) =


u, if |u| < |v| and uv > 0,

v, if |u| ≥ |v| and uv > 0,

0, if uv ≤ 0.

The first case will give a first-order upwind scheme, the second will give an
unlimited second-order upwind scheme, and the third choice yields a total-
variation-diminising (TVD), limited, high-resolution scheme [24, 28].
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4.1.2. Discretization of the Error Equation

Consider now the numerical approximation of the error equation (17).
As noted previously, in the finite-difference (finite-volume) framework, we
are free to choose the discretization of the left-hand and the right-hand sides
as desired under the constraint that the residual is evaluated with a different
discrete operator from that used for the primal equation (Fh 6= F ∗h ). There
are other accuracy considerations as given by (7): the residual should be
evaluated at higher-order than the primal equation and the error equation
should be discretized at the same or higher order than the primal equation.
Nevertheless, because the error does not appear in the right hand side of
the error equation, we are free to choose high-order stencils without stability
concerns.

The discretization of the differential residual

R(ũ) = ∂tũ+ ∂x

(
1

2
ũ2
)

(21)

for Burgers’ error equation (17) is straight-forward. We assume that ũi is a
discrete approximation of ũ that satisfies (18). Thus, following the discussion
in Section 3.1, the primal discretization (18) provides a discrete expression
of the first term in (21).

We can choose a discrete approximation of the second term in (21) that
uses the same 5-point stencil required for (18). There are two obvious candi-

date fourth-order approximations: ∆x∂x (ũ2) ≈ ∆
(4)
0 [ũ2i ] and ∆x∂x (ũ2) ≈

2ũi∆
(4)
0 [ũi] . Here ∆

(4)
0 = ∆0

(
1− 1

6
∆+∆−

)
is the fourth-order, undivided,

first-difference operator. These two choices correspond to a conservative and
a quasi-linear approximation of this term and will result in error approxima-
tions with different properties. From an accuracy perspective, a truncation
error analysis reveals that

1

2∆x
∆

(4)
0

[
ũ2i
]

= ∂x
(
ũ2
)
− ∆x4

30

(
ũ∂5xũ+ 5∂xũ∂

4
xũ+ 10∂2xũ∂

3
xũ
)

+ · · ·

while
1

∆x
ũi∆

(4)
0 [ũi] = ∂x

(
ũ2
)
− ∆x4

30

(
ũ∂5xũ

)
+ · · · .

For smooth solutions, the latter would be a better choice because of its
smaller truncation error. The discretization of the right hand side is in this
case

R(ũi) = − 1

2∆x
∆+

[
(ui−1/2)

2
]

+
1

∆x
ui∆

(4)
0 [ui] +O

(
∆x4

)
. (22)
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For weak solutions, the conservative choice may be more appropriate, which
would lead to

R(ũi) = − 1

2∆x
∆+

[
(ui−1/2)

2
]

+
1

2∆x
∆

(4)
0

[
(ui)

2
]

+O
(
∆x4

)
. (23)

Other valid choices could be made.

The left hand side of (17) consists of the non-linear Burgers’ term ∂x(e2/2)
and the non-constant-coefficient advection term ∂x (ũe) , representing non-
linear and non-constant coefficient transport of e . We note that in this
nonlinear case, this is not the same operator as in the primal Burgers’ equa-
tion, but it is still amenable to a similar discretization strategy.

As was done for the primal equation, we consider the full left hand side
of the error equation (17) in conservative form. Using the residual discretiza-
tion (22), we form the semi-discrete, conservative, upwind scheme

∂tẽi = − 1

∆x
∆+

[
ẽi−1/2(ũi−1/2 +

1

2
ẽi−1/2)

]
+R(ũi).

The definition of ũi±1/2 follows from the polynomial interpolant of ũ from
ũi that is consistent with the discretization chosen in (22)

ũi−1/2 =
1

16
(−ũi−2 + 9ũi−1 + 9ũi − ũi+1) +O

(
∆x4

)
.

The definition of ẽi±1/2 is similar to the definition of ũi±1/2 in Section 4.1.1.
Approximations to the error at the right and left cell boundaries are defined
as

ẽi,± = ẽi ±
1

2
ψ (∆+ [ẽi] ,∆+ [ẽi−1]) .

Definitions of ẽi±1/2 follow from the solution to the Riemann problem

ẽi−1/2 =


ẽi−1,+, if ẽi,− > ẽi−1,+ > ũi−1/2,
ẽi,−, if ũi−1/2 > ẽi,− > ẽi−1,+,
ẽi−1,+, if 1

2
(ẽi−1,+ + ẽi,−) > ũi−1/2 and ẽi,− ≤ ẽi−1,+,

ẽi,−, if 1
2
ẽi−1,+ + ẽi,−) ≤ ũi−1/2 and ẽi,− ≤ ẽi−1,+,

0, otherwise.

4.2. Space-Time Formulation

We will use a MUSCL-Hancock approach that makes use of a spatial
discretization having many features in common with our method-of-lines for-
mulation.
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4.2.1. Discretization of the Primal Equation

For Burgers’ equation, we write the fully discrete, conservative updates
in the form

ũn+1
i = ũni −

∆t

2∆x
∆+

[(
ũ
n+1/2
i−1/2

)2]
. (24)

Here ũ
n+1/2
i−1/2 is found as the solution to the Riemann problem (19) with left

and right inputs evaluated at the mid-time level. These left and right states
are defined through Taylor expansion in both space and time; formally, to
second-order in space and time,

ũ
n+1/2
i,± = ũni +

1

2

(
±1− ũni ∆t

∆x

)
ψ
(
∆+ [ũni ] ,∆+

[
ũni−1

])
.

4.2.2. Discretization of the Error Equation

In order for the eventual discretization of the error equation to be higher-
order accurate for smooth flows (as was the case for the method of lines
discretization), the discretization of the transport terms must be at least as
accurate as the primal discretization. Here we are considering second-order
primal discretizations, and so a second-order Hancock predictor-corrector
scheme for the error equation can be written as

ẽn+1
i = ẽni −

∆t

2∆x
∆+

[(
ẽ
n+1/2
i−1/2

)2]
−∆tR

n+1/2
i .

We must still specify ẽ
n+1/2
i−1/2 and R

n+1/2
i = R(ũ

n+1/2
i ) with sufficient accu-

racy.

Consider R
n+1/2
i first. Following the approach from Section 3.2, we first

construct a discretization using only two time levels. In order to provide
for up to fourth order accuracy for the error, by (7), a third order accurate
approximation for R(ũ) must be devised. The primal continuous equation
can be used to determine the following:

∂3t u = −6u(∂xu)3 − 9u2∂xu∂
2
xu− u3∂3xu. (25)

Thus, the continuous residual is discretized to third order accuracy as

R
n+1/2
i =

ũn+1
i − ũni

∆t

+
1

24∆x

(
ũni ∆

(4)
0 [ũni ] + ũn+1

i ∆
(4)
0

[
ũn+1
i

])
+

∆t2

24

(
Dttt[ũ

n
i ] +Dttt[ũ

n+1
i ]

)
,

(26)
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where

Dttt[ũ
n
i ] = − 1

∆x3

(
6ũni (∆

(4)
0 [ũni ])3 + 9(ũni )2∆

(4)
0 [ũni ]∆xx[ũni ] + (ũni )3∆xxx[ũni ]

)
,

∆xx = ∆+∆−(1−∆+∆−/12) , and ∆xxx = ∆0∆+∆− .

Next we show how to determine the predictor state, ẽ
n+1/2
i−1/2 . A third-order

estimate of the residual at time level t = tn is required for the predictor. A
Taylor series expansion about t = tn allows us to define

Rn
i = − ũ

n+1
i − ũni

∆t
+

∆t

2
Dtt[ũ

n
i ] +

∆t2

6
Dttt[ũ

n
i ],

where Dttt[ũ
n
i ] is as before and

Dtt[u
n
i ] =

1

∆x2

(
2uni (∆

(4)
0 [uni ])2 + (uni )2∆xx[uni ]

)
.

From here it is straightforward to define left and right states for the Riemann
problem using

ẽ
n+1/2
i,± = ẽni +

1

2

(
±1− (ẽni + ũni )∆t

∆x

)
ψ
(
∆+ [ẽni ] ,∆+

[
ẽni−1

])
+

∆t

2

(
Rn

i −
ẽni
∆x

∆0[ũ
n
i ]

)
.

In addition, the primal approximation at the cell face is defined through
Taylor expansion, for example as

ũ
n+1/2
i−1/2 =

ũni + ũni−1
2

(
1− ∆t

∆x
(ũni − ũni−1)

)
.

Finally, the Riemann problem at cell interfaces is solved as was done for the
method-of-lines case (4.1.2) with all left and right values evaluated at the
mid-time level.

5. Convergence Properties

We demonstrate convergence properties of the nonlinear error transport
technique with direct discretization of the residual when applied to smooth
solutions for several discretizations. We verify that the method produces the
predicted convergence rates for smooth solutions and linear schemes and that
convergence degrades, as expected, for nonlinear schemes even on smooth
problems.
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5.1. Inviscid Burgers Test Problem

Consider the sinusoidal initial value problem (IVP) for Burgers equa-
tion (16):

u(x, t = 0) = a− sin(πx). (27)

For times t < tb = π−1 , the solution remains smooth and is implicitly given
by

u(ξ, t) = a− sin(πξ)

along characteristics

x(ξ, t) = ξ + [a− sin(πξ)]t.

Regions of positive slope expand while regions of negative slope compress.

At t = tb , shocks form at xs(t) = at + 2k for k ∈ Z . For times t ≥ tb ,
the feet of the characteristics arriving at the shock at time t are ξs(t) , which
are found by solving the transcendental equation

ξs(t) = t sin(πξs(t)).

The solution to Burgers’ equation is then

u(x, t) =

{
a− sin(πξ), |ξ| ≥ |ξs(t)|,
a− sin(πξs(t)), otherwise,

(28)

at locations corresponding to

x(ξ, t) =

{
ξ + [a− sin(πξ)]t, |ξ| ≥ |ξs(t)|,
xs(t), otherwise.

(29)

The shocks grow in magnitude until t = 1/2 , when the maxima of the
solution catch the shocks, and decay thereafter.

5.2. Properties for Solution-Independent Discretizations

In Section 2, we derived an upper bound for the convergence rate of the
error given the orders of the primal operator, error operator, and residual
operator discretizations. To satisfy the conditions that lead to that esti-
mate, we consider the smooth solution (28) for t < tb . To avoid nonlinear
upwinding, we take a = 2 and consider the solution at time t = 0.1 . In
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Figure 1: Convergence of the approximate solution and error at t = 0.1 for u(x, t = 0) =
2− sin(πx) for the method-of-lines discretization of Burgers’ equation.

addition, we take ψ to be defined by (20b) in order to obtain a linear, for-
mally second-order spatial discretization. The order relation (7) predicts that
|ẽ− e| = O(∆x4) for method-of-lines and space-time discretizations, since
p = q = 2 and either residual evaluation (22) or (23), which both have r=4.

As a computational example, we simulate on the domain x ∈ [−1, 1)
using N points, apply periodic boundary conditions, and use a time step
determined by a fixed CFL restriction of 0.9:

max
i∈[1,N ]

(|ũni |+ |ẽni |)
∆t

∆x
≤ 0.9.

We consider a sequence of meshes N ∈ {10 · 2m; 2 ≤ m ≤ 9} and perform
convergence studies for both the method-of-lines and space-time schemes.

Figures 1 and 2 show the results of convergence studies for the L1 and
L∞ norms of the error in the approximate solution and the error in the ap-
proximate error at t = 0.1 for the method-of-lines and space-time schemes,
respectively. The non-conservative form for the residual (22) was used.
Second-order convergence is achieved for both norms of the approximate
solution, and fourth-order convergence is achieved for both norms of the
approximate error. This is a demonstration of the convergence rates as pre-
dicted by the order relation (7).

5.3. Properties for Stencil-Changing Discretizations

For upwind discretizations of solutions that change signs, the primal dis-
cretization will switch abruptly at u = 0 , which occurs at x = k for k ∈ Z .
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Figure 2: Convergence of the approximate solution and error at t = 0.1 for u(x, t = 0) =
2− sin(πx) for the space-time discretization of Burgers’ equation.

As shown in Figure 3, the result is that the error develops a kink or dis-
continuity at these points, depending on the sign of ∂xu . Thus, the order
relation (7) is no longer strictly applicable.

Figure 4 shows convergence study results for this case for the method-of-
lines discretization using the non-conservative residual approximation (22).
The primal approximate solution converges as expected at a second-order rate
in both the L1 and L∞ error norms. However, while the L1 norm of the
error still attains fourth-order convergence, the L∞ error norm convergence
is reduced to a third-order rate. Similar results are obtained for the space-
time discretization. Degraded convergence is expected in the presence of
singularities [29]. We note that the error estimate is still asymptotically
correct in any Lp -norm.

5.4. Properties for Limited Discretizations

From a practical perspective, one of the primary cases of interest is when
nonlinear slope or flux limiting algorithms are used. We investigate the
case where the reconstruction function is nonlinearly dependent on its argu-
ments: ψ defined by (20c). The use of the limiter can result in approximate
solutions with degraded accuracy even when the exact solution is perfectly
smooth. Numerical errors that are not infinitely differentiable result, which
has practical implications for the accuracy of the error evolution technique.

Take the initial condition (27) with a = 1 . We consider the method-of-
lines formulation with the non-conservative residual approximation; results
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Figure 3: Plots of the approximate solution and error at t = 0.1 and N = 200 points
for initial data u(x, t = 0) = − sin(πx) for the method-of-lines discretization of Burgers’
equation. The exact solution and exact error are indicated by black lines, while the marks
indicate the approximate results.
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Figure 4: Convergence of the approximate solution and error at t = 0.1 for u(x, t = 0) =
− sin(πx) for the method-of-lines discretization of Burgers’ equation.
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Figure 5: Solution and error of the Burgers’ equation for initial data u(x, t = 0) =
1 − sin(πx) at t = 0.1 (left) and t = 0.5 (right). The method-of-lines scheme with the
MinMod limiter was used for both the primary and error evolution equations on a grid of
N = 100 points in x ∈ [−1, 1) . The non-conservative residual approximation was used.
Black lines indicate exact values while marks indicate discrete approximations.

for the space-time scheme are similar. In Figure 5, the discrete approximation
and approximate error using N = 100 points for x ∈ [−1, 1) are shown at a
time when the exact solution is smooth ( t = 0.1 ) as well as after a shock has
formed ( t = 0.5 ). Prior to shock formation, the main feature in the error is
associated with extrema clipping at the maximum value; a similar error does
not occur at the minimum because the solution value is zero at that point.
The error approximation captures this feature well. After shock formation,
the error is dominated by O(1) error near the captured numerical shock.
The approximate numerical error represents this feature well, albeit with an
O(h) error in the location.

Figure 6 shows the results of a convergence study for the approximate so-
lution. Prior to shock formation, the large error introduced near the extrema
impacts the L∞ error norm most, and we see convergence rates that trend
towards a value of 4/3 .1 The L1 error norm is less sensitive and asymptoti-
cally tends to the expected rate of two. Other p-norms with 1 < p <∞ will
exhibit convergence rates between these two extremes. After the formation
of a shock in the flow, the L∞ error norm is no longer convergent, which is

1Interestingly, this is the expected rate of convergence near a slope discontinuity for a
second order scheme [29].
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Figure 6: Approximate solution convergence for Burgers equation with initial data u(x, t =
0) = 1 − sin(πx) at t = 0.1 , before shock formation (left), and at t = 0.5 , after shock
formation (right). The method-of-lines discretization and the MinMod limiter were used
for both the primal and error equations. The non-conservative residual approximation was
used.

to be expected because of the point-wise O(1) error in the neighborhood of
the captured shock. On the other hand, the L1 error norm converges at the
expected first-order rate.

The asymptotic behavior of the approximate error is shown in Figure 7.
For smooth flows, the L∞ error norm of the error converges near the 4/3
rate that was seen for the approximate solution, but very high resolution
(N > 20000 ) is needed to achieve this. Likewise, L1 convergence rate
of the approximate error approaches a second-order rate, but only for very
high spatial resolutions. After shock formation, the L1 convergence of the
approximate error exhibits first-order convergence while the L∞ error norm
does not converge.

Since the errors in the approximate solution and approximate error are
converging at the same rates, the error estimate cannot be asymptotically cor-
rect in any Lp norm. Nevertheless, the fidelity of the approximate solutions
suggests that the estimated error can still be useful. For instance, p -norm
convergence of the error estimate on sub-domains away from the shock can
be asymptotically correct. Preliminary work also indicates that error esti-
mates for many other QoI constructed from the error field are asymptotically
correct, depending on the sensitivity to the regions of large error.

Finally, we note that these results are robust for any choice of the offset
a in the initial condition. Thus, the role of the nonlinear limiters is more

23



10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

∆x

||e
-ẽ
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Figure 7: Approximate error convergence for Burgers equation with initial data u(x, t =
0) = 1 − sin(πx) at t = 0.1 , before shock formation (left), and at t = 0.5 , after shock
formation (right). The method-of-lines discretization and the MinMod limiter were used
for both the primal and error equations. The non-conservative residual approximation was
used.

important than the role of nonlinearities from upwind switching, due in part
to the fact that the solution is near zero when the upwind direction switches.
In contrast, the solution can be any size near extrema that cause algorithm
switches.

6. The Effects of Error Nonlinearity

In the existing error transport literature, the error equation operator
is always linearized. For Burgers’ equation, the corresponding linear error
transport equation is

∂te+ ∂x (ũe) ≈ −∂tũ− ∂x
(

1

2
ũ2
)
. (30)

The justification for applying (30) is that the e∂xe term is higher-order and
is thus negligible. Hay and Visonneau [17] investigate eliminating the e∂xũ
term as well and determine that they do not obtain an asymptotically correct
error estimate unless they use the form (30). However, even this form is not
consistent with the original nonlinear error equation and cannot produce
asymptotically correct results if e is large. Errors may not be small if the
primal scheme is of low-order, if singularities exist in the solution, if very long-
time integrations are sought, or if solution features are under-resolved. If one
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can handle numerically the nonlinearity of the primal equation, one should
be able to handle the nonlinearity in the error equation. Our conjecture is
that solving the fully nonlinear error equation will make the error estimates
more robust. We demonstrate differences between linear and nonlinear error
transport using the inviscid Burgers’ equation.

6.1. Low-Order Approximations

One case where ignoring error nonlinearity produces unsatisfactory results
is when a low-order forward approximation is used but the approximate error
is sought to higher accuracy. This, for example, was done in [11]. We define
the primal scheme using the ψ defined by (20a) and the error transport
scheme using the ψ defined by (20b). Thus, the forward approximation is the
first-order upwind method, while the error approximation uses the second-
order upwind method. A conservative numerical approximation to (30) is
easily defined as before, and the solution to the Riemann problem requires
only the sign of the face values ũi±1/2 . The method-of-lines formulation with
non-conservative residual approximation is used for both equations.

Under the assumptions used to derive the order relation (7), neglecting
the e∂xe term is akin to making an additional O(e2) = O(∆x2p) error.
Thus, the order relation for the linear error transport is

|ẽ− e| = O
(
∆xmin(2p,p+q,r)

)
. (31)

For p = 1 , q = 2 , and r = 4 , we therefore expect second-order conver-
gence for the linear error transport method and third-order convergence for
the nonlinear error transport method for the Burgers equation. For other
nonlinear equations, neglecting nonlinear error terms could pose even more
serious restrictions.

Results of a convergence test for the initial condition (27) with a = 2 at
time t = 0.1 are presented in Figure 8. The effect of neglecting the nonlinear
term is to reduce the order of the error approximation from third to second
order in both L1 and L∞ norms. By leaving out the e∂xe , one is limited to
second order accuracy; in principle, one can obtain arbitrary accuracy with
its inclusion.

6.2. Regions of Large Error

Error nonlinearity is also important when the solution develops non-
differentiable features. For cases where a shock is captured, the numerical
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Figure 8: Convergence of the approximate solution and error at t = 0.1 for u(x, t = 0) =
2 − sin(πx) for the Burgers’ equation using a method-of-lines discretization. The primal
operator spatial discretization is first-order, while the error operator spatial discretization
is second-order. At left are results found using the linearized equation (30), while at right
are results found using the fully nonlinear error equation (17).

error is as large as the solution itself, and so nonlinear error effects are equally
important as the pure linear transport of error.

6.2.1. Large Error in One Dimension

To illustrate this point in a single space dimension we again use the initial
condition (27) with a = 0 and consider the solution at time t = 0.5 , after a
shock forms. The schemes are defined using the ψ defined by (20a), which
leads to first-order upwind discretizations. The residual is evaluated in quasi-
linear form as in (22). Results are presented in Figure 9.

When the linearized error transport operator of (30) is used, the error is
divergent in the L∞ error norm and not convergent in the L1 error norm.
On the other hand, the approximate error found using the nonlinear error
evolution operator of (17) converges at a first-order rate in the L1 error
norm and is non-convergent in the L∞ norm. For the linear error transport
equations, the error at the stationary shock can grow with time because
the residual can act as a continued source for error that the linear operator
incorrectly transports. In contrast, the nonlinear transport equations provide
a consistent mechanism to move error into the shock where it is destroyed
by cancellation.

The potential for unbounded growth when using the linear operator in
one dimension is somewhat sensitive to the choice of residual evaluation and
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Figure 9: Convergence of the approximate error using linear error transport (left), and
approximate error using nonlinear error evolution. The residual is evaluated in quasi-
linear form. Results are presented at t = 0.5 for Burgers’ equation with initial data
u(x, t = 0) = − sin(πx) .

scheme selection. For example, conservative residual evaluation (23) will
fix the divergent behavior of the linear error transport scheme for the first-
order (ψ as in (20a)) or TVD (ψ as in (20c)) schemes. However, divergent
behavior still exists for the second order upwind scheme (ψ as in (20b)).

We have run many different permutations of transport and residual for-
mulations on many different one-dimensional problems with discontinuities.
Sometimes we see growth in the error at shocks for the linear error trans-
port method and sometimes we do not. The use of the conservative residual
formulation tends to improve robustness for the linear error transport ap-
proach; a similar behavior was observed by Zhang et al. [11]. Nevertheless,
one trend is clear: we have never seen such an unbounded growth in the
error using the nonlinear error transport operator. The mere possibility of
such unbounded growth should be sufficient justification for solving the fully
consistent nonlinear error equation in the presence of discontinuities.

6.2.2. Large Error in Higher Dimensions

Application of the error transport approach in two space dimensions re-
veals further motivation for the inclusion of the nonlinear error terms. In
two dimensions, the poor performance of the linear error transport method
does not appear to be restricted to isolated stationary shock problems nor
ameliorated by a particular choice of the residual form.
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Figure 10: Approximate solution at times t = 0 , t = 8 , and t = 15 using 1601 points in
the x - and y - directions.

The extension of the algorithm to a scalar, two-dimensional Burgers’
equation,

∂tu+ ∂x

(
1

2
u2
)

+ ∂y

(
1

2
u2
)

= 0, (32)

on the periodic domain (x, y) ∈ [−π, π] × [−π, π] for t > 0 is straight-
forward. We use the method-of-lines approach with the spatial discretiza-
tions (18)-(19) applied dimension-by-dimension, and the residual is evaluated
in conservative form (23). Verification of the properties for smooth solutions
was carried out using the method of manufactured solutions [2] and grid
convergence studies as before.

We consider a discontinuous problem defined by the initial conditions

u(x, y, t = 0) =

{
1 if x2 + y2 < 1
0 else.

Figure 10 shows the time evolution of this problem for t = 0 , t = 8 ,
and t = 15 using 1601 points in the x - and y - directions ( ∆x = ∆y =
π/800 ). The second-order unlimited scheme (20b) is used to avoid subtleties
associated with nonlinearity in the discretization. The results are similar for
the nonlinearly limited scheme.

Both the linear and nonlinear error transport techniques were applied to
estimate the errors at t = 15 . Color surface plots of the approximate error
ẽ as well as slices along y = −.5 for x ∈ [−2, 0] are provided in Figure 11.
While both curved shock fronts demonstrate large error, the error estimate
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for linear transport demonstrates unbounded growth, as evidenced by the
spike. In Figure 12, it is shown that the maximum estimated error for linear
error transport grows as the mesh is refined, whereas the maximum estimated
error for nonlinear error transport does not. Furthermore, we note that in
this case conservative treatment of the residual did not eliminate problems
with the linear transport approach.

In a single space dimension, it was only in the isolated case of stationary
shocks where neglecting the error nonlinearity was found to be problematic.
In two space dimensions, the behavior is richer; the error can evolve along
moving or stationary shock fronts in addition to being advected into them.
Since the numerical error of a shock-capturing scheme is typically O(1) near
a shock, nonlinear dynamics along the shock front can therefore be critical. In
this problem, the nonlinear evolution along the front keeps the error estimate
from growing unbounded as the grid is refined.

7. Application to the Euler Equations

We have thus far limited our application to a scalar nonlinear hyperbolic
equation. In this section, we briefly consider the one-dimensional ideal gas
Euler equations of fluid dynamics, which represent a hyperbolic system of
nonlinear equations. While treating a system with the nonlinear error trans-
port approach is no different per se, we do note that the Burgers’ equation
possesses a particularly amenable nonlinearity; its quadratic form produces
a particularly simple form of G(ẽ; ũ) in the nonlinear error equation (4).

In contrast, the Euler equations for even a simple ideal gas also contain
cubic or inverse nonlinearities. Obvious approaches to evaluate G(ẽ; ũ) can
lead to violations of auxiliary constraints, such as the positivity of mass,
density or pressure. We will show that a simple solution to this problem is
to work in a flux-divergence form and to use an approximate Riemann solver
based solely on the approximate primal solution to select the upwind state.

The one-dimensional Euler equations are a system of conservation laws
of the form (11) with state vector u = (ρ, ρv, ρE) and flux vector f(u) =
(ρv, ρv2 + p, ρvH) . Here, ρ is the mass density; v is the velocity; p is the
pressure; E = e+ v2/2 is the total specific energy; and H = E + p/ρ is the
total specific enthalpy. The ideal equation of state p = (γ − 1)ρe is used to
close the system of equations.
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Figure 12: Maximum estimated error (in absolute value) as a function of mesh spacing.
Here both linear and nonlinear transport are depicted and the divergent behavior of the
linear algorithm is clear.
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7.1. Discretization

For simplicity, we will use a method-of-lines approach. As in Section 4.1,
we use a conservative discretization for the primal equation with an exact
Riemann solver (See, e.g., Toro [27]) and limited piecewise-linear reconstruc-
tion with the minmod limiter (20c). This results in a primal approximation
of the form

∂tũi = − 1

∆x
∆+

[
f(ũi−1/2)

]
.

As previously for Burgers’ equation, the semi-discrete approximation of the
error equation is

∂tẽi = − 1

∆x
∆+

[
f(ũi−1/2 + ẽi−1/2)− f(ũi−1/2)

]
−R(ũi) (33)

The primary question then becomes the evaluation of the discrete flux f(ũi−1/2+
ẽi−1/2)− f(ũi−1/2) . Therefore, assume a face value ũi−1/2 given by continu-
ous polynomial interpolation, and left and right states ei−1,+ and ei,− given
by limited piecewise liner reconstruction are known. Determine the eigen-
decomposition RΛR−1 = ∂uf(ũi−1/2) . Notice that by using the state ũi−1/2
rather than averages of the primal solution and face approximations of the er-
ror, the possibility of negative densities, pressures, or other unphysical states
is eliminated. We now compute characteristic quantities wi−1,+ = R−1ei−1,+
and wi,− = R−1ei,− and compute the solution to the Riemann problem as

w
(k)
i−1/2 =

{
w

(k)
i−1,+ if Λ(k,k) > 0

w
(k)
i,− else

for k = 1, 2, 3 . Here the superscripts (k) , or (k, k) indicate entries in
the vector or matrix respectively. Finally we compute the face solution as
ẽi−1/2 = Rwi−1/2 which completes the description. We note that this pro-
cedure amounts to a particular choice of linearized Riemann solver, but by
using (33), the full nonlinear evolution of the error is retained. Finally, we
note that a conservative, fourth-order approximation of the residual is em-
ployed.

7.2. Application

For a demonstration, we consider a shock-tube IVP problem on x ∈ R
with piecewise-constant initial data:

u =

{
uL, x < 1/2,

uR, x > 1/2.
(34)
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Figure 13: Approximation at time t = 0.5 for Sod’s shock-tube problem using nonlinear
error transport. Here second-order TVD algorithms have been used for spatial discretiza-
tion of both primal and error equations and RK-4 for time integration. Clockwise from
top left are the density, velocity, pressure, and estimated error convergence study.

We define the left and right states in primitive variables to be (ρL, vL, pL) =
(1, 0, 1) and (ρR, vR, pR) = (0.125, 0, 0.1) , which defines the standard Sod
problem. The exact solution, which consists of a leftward-traveling expansion
fan, a slow rightward-traveling contact discontinuity, and a faster rightward-
traveling shock, can be found in [27].

We simulate on the domain x ∈ [0, 1] until the time t = 0.5 so as to pre-
vent the waves in the solution from reaching the domain boundaries. Thus,
we exactly specify the boundary conditions using the piecewise constant ini-
tial data. We use the standard mesh of 200 points and plot results for a fixed
CFL number of 0.4, which has no particular significance.

The results, shown in Figure 13, are quite similar to those obtained for
the inviscid Burgers’ equation. In this case, the error in the shock is captured

32



very well, and the corners of the expansion fan have roughly the same degree
of fidelity as seen for Burgers’. The contact discontinuity in the density field
is the source of dominant error in the density field, and since this is a linearly
degenerate wave with no self-steepening mechanism, capturing schemes will
always smear out this wave. We see that the nonlinear error transport scheme
does as well as could be expected in representing the sharp feature in the error
at the contact. We also present a convergence study for the L1 errors in the
estimated errors. Near first order convergence is demonstrated for the grid
resolutions presented. These results demonstrate that the nonlinear error
transport approach generalizes to nonlinear systems with more complicated
nonlinearities than that in Burgers’ equation.

8. Conclusions

In this paper, we have investigated the nonlinear error transport method
as a technique to estimate the discretization error for finite volume and finite
difference discretizations of nonlinear hyperbolic equations. Our motivation
is to obtain quantitative error estimates for use in uncertainty quantification.
We used the scalar, time-dependent inviscid Burgers’ equation as a canon-
ical model and considered both continuous and discontinuous solutions. In
contrast to prior linear transport approaches, our technique is novel because
we preserved the nonlinear terms in the error equation and used a direct,
systematic approach to the discretization of the error residual operator that
does not require knowledge of the modified differential equation of the dis-
cretization of the primal equation. We demonstrated the approach for both
method-of-lines and space-time formulations, considered linear and nonlin-
ear discretizations as well as conservative and quasi-linear residual discretiza-
tions. Finally, the method was applied to the unsteady Euler equations in
one spatial dimension, which provided a demonstration of an approach to
handling more complicated nonlinearities.

Our results demonstrate that, on the whole, the method is a reasonable
approach. For strong solutions, the results are in excellent agreement with
the asymptotic theory (7), consistent with previous linear error transport
results. Nonlinear schemes and weak solution features such as solution and
slope discontinuities degrade the convergence of the error estimates. From
a point-wise perspective, the computed error occurs generally in the correct
location, but the magnitudes will be incorrect in the vicinity of weak solution
features.
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In contrast to linear transport, numerical experiments suggest that, when
properly formulated, nonlinear error transport can provide bounded esti-
mates of error, whereas linear transport schemes may allow for unbounded
growth in the error near a shock. Simulations in both one and two space
dimensions provide supporting evidence. In addition, the linear transport
approach formally can produce a lower-order error estimate even in smooth
regions of the solution. For these reasons, we advocate using the fully non-
linear error transport equation with a conservative residual discretization,
particularly for problems with weak solutions.

Beyond further investigation of the limitations of nonlinear error trans-
port for weak solutions computed with higher-order primal schemes, there
are several other directions we will consider in future work. The inclusion
of non-periodic boundary conditions and extension to systems in multiple
dimensions should be straight-forward. Incorporating operator and dimen-
sional splitting is another issue for investigation. In addition, coupling dif-
ferent primal models across domain boundaries is a logical extension of these
techniques. Further developments will be sought for theoretical bounds on
the amplitude errors for different weak solution features and understanding
the asymptotic nature of errors in quantities of interest constructed from
computed error fields.
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