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Abstract

This study considers the development and assessment of a Flux-Corrected Transport
(FCT) algorithm for simulating high-speed flows on structured overlapping grids.
This class of algorithm shows promise for solving some difficult highly-nonlinear
problems where robustness and control of certain features, such as maintaining pos-
itive densities, is important. Complex, possibly moving, geometry is treated through
the use of structured overlapping grids. Adaptive mesh refinement (AMR) is em-
ployed to ensure sharp resolution of discontinuities in an efficient manner. Improve-
ments to the FCT algorithm are proposed for the treatment of strong rarefaction
waves as well as rarefaction waves containing a sonic point. Simulation results are
obtained for a set of test problems and the convergence characteristics are demon-
strated and compared to a high-resolution Godunov method. The problems consid-
ered are an isolated shock, an isolated contact, a modified Sod shock-tube problem,
a two-shock Riemann problem, the Shu-Osher test problem, shock impingement on
single cylinder, and irregular Mach reflection of a strong shock striking an inclined
plane.
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1 Introduction

Many physical systems are well described mathematically by systems of conservation laws. Typical exam-
ples might include fluid flow around a body, condensed phase explosives, astrophysical phenomenon, or high
energy density physics applications. A large number of such systems have the property that discontinuous
solutions can arise in finite time even from smooth initial data. These discontinuities can be of a linear (e.g.
contact wave) or nonlinear form (e.g. shock wave). Numerical methods need to balance the often competing
requirements of accurately approximating these two types of discontinuities while at the same time requiring
higher order accuracy in smooth regions of the solution. This balance has been one of the primary drivers
behind the development of modern simulation tools. Methods striking such a balance are often referred to
as high-resolution methods and they require the use of limiters (switches) that choose between a number of
different numerical stencils. For some flow regimes, this type of limiting has been found to be essential to
obtain robust schemes. Many, if not most, of the high-resolution techniques have their roots in the 1970’s
with ideas originally developed by Boris and Book in connection with flux-corrected transport (FCT) [1–3].
In the intervening years, FCT has been applied to a wide range of challenging applications, for examples
see [4–6], however the underlying mathematical developments have not been as extensive as for other modern
high-resolution techniques such as WENO [7,8], ENO [9–11], and high-resolution Godunov techniques [12–14].
Recently however, the developments of Kuzmin et. al. [6] towards algebraic flux correction as well as implicit
methods have produced a renewed interest in FCT as a useful numerical method for many applications.

The scope of our current study is in the evaluation of FCT type methods for compressible flow simulations
in the context of overlapping grids which are used to represent geometric complexities as well as ensure mesh
regularity [15–18]. The overlapping grid method is quite general and can be used to generate computational
meshes for complex geometries [19–21] without the use of unstructured meshes, cut cells for embedded bound-
aries, or overly contorted globally mapped grids. To our knowledge the FCT method has not been used with
this type of infrastructure and one focus of the current study is to evaluate its usefulness in that context.
In addition, we present a detailed comparison with a high-resolution Godunov method in order to provide a
significant comparison with a more extensively characterized technique.

This paper first examines implementation details for structured overlapping grids. A series of test problems
demonstrates the properties of the method for practical simulations and compares the results with those from
a high-resolution Godunov method. Reference to the results presented in other studies such as [22,23] gives
a good understanding of the relative merits of these various high-resolution shock capturing schemes. This
comparison is particularly useful for cases where Riemann solution based strategies are not viable because
of the complexities of the governing equations. Such is the case for some relativistic flows, for example, and
the FCT method may be attractive in this context provided an appropriate low order method can be devised
without resort to Riemann solutions. As shown in [24], FCT can also be useful for problems with extreme
jumps in density and pressure where traditional high-resolution methods may fail due to unphysical states
such as negative densities. It should be noted that FCT-FEM methods are currently being used to effectively
solve difficult problems in complex geometry using unstructured meshes [6]. In this finite element context, there
is a need to solve problems with strong shocks and other discontinuities, but there are very few continuous
finite element counterparts to high-resolution finite-volume and finite-difference methods. It is thus important
to understand the relative merits of FCT and other high-resolution schemes in a framework where a valid
comparison can be made.

The remainder of the paper is structured as follows. In Section 2 the governing equations are presented. In
Section 3 the FCT algorithm is presented and the development for structured overlapping grids is summarized.
This section also presents a brief discussion of two open issues with the traditional FCT algorithm; that of
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performance when either strong or sonic rarefactions are present in the flow. The poor performance of the
standard method for these problems is demonstrated and an improvement of the algorithm is proposed and
evaluated. Section 4 presents numerical results for the FCT method and provides a comparison to a high-
resolution Godunov method. Some qualitative remarks concerning computational cost comparisons between
the FCT and Godunov methods are presented in Section 5 and concluding remarks are given in Section 6.

2 Governing Equations

In this paper we consider the flow of an inviscid compressible gas and assume that in two dimensions the
density ρ, velocities (u1, u2), pressure p, and total energy E satisfy the system of conservation laws

∂

∂t
u +

∂

∂x1
f1(u) +

∂

∂x2
f2(u) = 0, (1)

where

u =


ρ

ρu1

ρu2

E

 f1(u) =


ρu1

ρu1
2 + p

ρu1u2

u1(E + p)

 f2(u) =


ρu2

ρu1u2

ρu2
2 + p

u2(E + p)

 .

System (1) defines the conservation of mass, momenta, and total energy for the gas and is recognized as the
well known compressible Euler equations in two space dimensions. In this formulation, the total energy is given
by

E = ρe+
1

2
ρ
(
u1

2 + u2
2
)
,

where e = e(ρ, p) is the specific internal energy, which is specified by an equation of state. This paper assumes
an ideal equation of state, namely

e =
p

ρ (γ − 1)
(2)

where γ =
cp
cv

is the ratio of (constant) specific heats with cp the specific heat at constant pressure and cv the
specific heat at constant volume. The Euler equations (1) are assumed to have been non-dimensionalized with
suitable reference quantities and all results are presented in dimensionless units.

3 Flux-Corrected-Transport Algorithm

This section describes the FCT method as used in this paper including the extensions and modifications
we have made to the classic FCT algorithm. This implementation includes a DeVore type pre-limiter in lieu
of Zalesak’s flux pre-constraint, removal of artificial diffusion prior to the FCT flux limiter, a Jameson style
artificial viscosity, a sonic fix for entropy violating rarefaction waves, and the extension of the FCT algorithm
to overlapping grids. For clarity, the improvements for treating sonic points and very strong rarefactions are
left to the end of the section.

3.1 Overlapping grids and AMR

We consider the governing equations (1) and proceed with a description of the FCT method in a two di-
mensional overlapping grid framework. To this end, we assume the flow domain is given by Ω and is discretized
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using an overlapping grid G. The overlapping grid consists of a set of component grids {Gi}, i = 1, . . . ,Ng, that
cover Ω and overlap where they meet. Each component grid covers a sub-domain Ωi. Grid points are tagged
as discretization points where the governing equations are applied, ghost points used for the application of
boundary conditions, interpolation points where solution values are communicated between grids, or unused
points where no computation is performed which are cut out through the mesh generation procedure. The FCT
stencil is 7-points wide requiring three layers of data at interpolation and physical boundaries. At interpolation
boundaries, the 7-point stencil would normally require three layers of interpolation points. Although we can
generate such grids, in practice we usually construct a grid with a single layer of interpolation points and
obtain values at the two additional layers through extrapolation. At physical boundaries, values on the bound-
ary and three layers of ghost points are obtained through application of the physical boundary conditions,
derived compatibility conditions, and extrapolation following the approach described in [16,17]. Note that the
dependence of the solution on this final extrapolated layer is extremely weak as it can only affect whether the
chosen update at the boundary is first or second order accurate (i.e. it is used only in the determination of
the α in (8) below. For more details concerning general overlapping grid methods, including application of
boundary conditions, see [15–17,25]. Adaptive mesh refinement (AMR) is used in regions of the flow where
the solution changes rapidly, such as near shocks and contact surfaces. We employ a block-structured AMR
approach following that described originally in [26] and using modifications for overlapping grids as presented
in [16–18].

3.2 FCT Discretization on a mapped grid

Each component grid, including base-level grids and any refined grids, is defined by a mapping from the
unit square in computational space (r1, r2) to physical space (x1, x2). In computational space, equation (1)
becomes

∂

∂t
u +

1

J

∂

∂r1
F1(u) +

1

J

∂

∂r2
F2(u) = 0, (3)

where

F1(u) = J

(
∂r1

∂x1
f1 +

∂r1

∂x2
f2

)
, F2(u) = J

(
∂r2

∂x1
f1 +

∂r2

∂x2
f2

)
,

and

J =

∣∣∣∣∂(x1, x2)

∂(r1, r2)

∣∣∣∣ .
The metrics of the mapping, ∂x1/∂r2, ∂x2/∂r2, etc., and the Jacobian are considered to be known for each
component grid at the time of computation and can be generated analytically or approximated.

Discretization of (3) is performed using a uniform grid (r1,i, r2,j) with grid spacing (∆r1,∆r2). The FCT
method is generally considered a two-step process proceeding first with a low order update and finishing with
the high-resolution FCT correction. We begin with the formulation of the low order solution update

utd,n
i,j = uni,j −

∆t

Ji,j∆r1
D+r1F1

low,n
i−1/2,j −

∆t

Ji,j∆r2
D+r2F2

low,n
i,j−1/2 (4)

where D+r1 and D+r2 are the undivided forward difference approximations in the r1 and r2 directions of index
space respectively. The “td” notation is consistent with [1–3,27] and denotes “transported and diffused”. For
this work the HLL low order flux [12,14] is used and for curvilinear geometries is given by

F1
low,n
i+1/2,j =


F1

n
i,j if s− ≥ 0

F1
n
i+1,j if s+ ≤ 0

s+

s+ − s−
F1

n
i,j −

s−
s+ − s−

F1
n
i+1,j +

s−s+

s+ − s−
D+r1u

n
i,j else

(5)
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where

s− = min
(
vni,j − cni,j , vni+1,j − cni+1,j

) ∣∣∣∣∣∣( ∂r1∂x1
, ∂r1∂x2

)∣∣∣∣∣∣
2
,

s+ = max
(
vni,j + cni,j , v

n
i+1,j + cni+1,j

) ∣∣∣∣∣∣( ∂r1∂x1
, ∂r1∂x2

)∣∣∣∣∣∣
2
,

cni,j is the sound speed in a given cell, and vni,j is the component of the velocity normal to the cell face. The
fluxes across other cell boundaries take similar forms.

It should be noted that in [28,6], Zalesak suggests the use of the Rusanov flux for the low order method.
This is a symmetrized version of the HLL flux resulting in further diffusion than the original HLL flux. However,
the Rusanov flux as presented in [28,6] is slightly flawed in that the selected wave speed is not sufficient to
encompass the full Riemann solution for all cases. A more general Rusanov flux is

F1
low,n
i+1/2,j =

1

2

[(
F1

n
i+1,j + F1

n
i,j

)
−max

(∣∣λni+1,j

∣∣ , ∣∣λni,j∣∣)D+r1u
n
i,j

]
(6)

where λni,j is the largest eigenvalue (in magnitude) of the Jacobian matrix ∂
∂uF1 at a cell (i, j) and time tn.

The difference between (6) and the equation presented in [28,6] is the use of max
(∣∣∣λni+1,j

∣∣∣ , ∣∣∣λni,j∣∣∣) rather than

1/2
(∣∣∣λni+1,j

∣∣∣+
∣∣∣λni,j∣∣∣). In this work, the HLL flux is used but we have found that the Rusanov flux (6) works

nearly as well and is less expensive. As presented, both of these approximate fluxes require knowledge of the
eigenvalues of the Jacobian matrix. If this information were not known, a Lax-Friedrichs type flux could in
principle be used instead.

The second step of the FCT algorithm requires an “anti-diffusive” flux which is defined as the difference
between a high-order flux and the low-order one. In the r1 direction of index space for example, this is

F1
AD,n
i±1/2,j = F1

high,n
i±1/2,j − F1

low,n
i±1/2,j . (7)

The high order flux is typically chosen to be some high-order centered flux and for this work the centered
second-order flux

F1
high,n
i+1/2,j =

1

2

(
F1

n
i,j + F1

n
i+1,j

)
is chosen. The final sub-step update is now defined as

unew
i,j = utd,n

i,j − ∆t

Ji,j∆r1
D+r1

(
αn
i−1/2,j � F1

AD,n
i−1/2,j

)
− ∆t

Ji,j∆r2
D+r2

(
αn
i,j−1/2 � F2

AD,n
i,j−1/2

)
(8)

where � indicates component-wise multiplication. The vector of α’s are chosen using the FCT algorithm as
described below and represent the proportion of anti-diffusive flux at each cell face that is used in the final
update. Our choice of notation facilitates the use of the FCT algorithm in a method of lines type approach.
By defining

∂

∂t
uni,j =

unew
i,j − uni,j

∆t
(9)

we obtain an updated solution un+1
i,j using any ordinary differential equation (ODE) integrator we choose.

Choices for ODE integrators might include Runge-Kutta methods, Adams methods, or others. For this work,
we use an explicit Adams predictor-corrector method of second order to match the spatial algorithm. Detail
concerning the implementation of these time integrators can be found for example in [29,25].

Consider the determination of αn
i+1/2,j . FCT seeks to enforce solution monotonicity through the choice

of α, but the property of monotonicity is valid only for characteristic variables [30]. For the non-linear Euler
equations, conversion to characteristic variables requires both a linearization and an eigen-decomposition of the

linearized problem. As such, we linearize about the arithmetic average ū = 1
2(utd,n

i,j +utd,n
i+1,j). More sophisticated
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choices, such as the Roe average [14], could be made but in our experience these make little difference in the
eventual computed solutions. From this state, the linearized eigen-decomposition T−1ΛT = A = ∂

∂uF1(ū) is
found where we have dropped the sub- and superscripts to simplify the exposition. Whenever multiplication by
T is performed to achieve characteristic quantities it should be understood that this implies linearization about
a particular face, in this case (i+ 1/2, j). For two dimensions, a large number of characteristic transformations
must be performed (in three dimensions the number is even larger) and this constitutes one of the most
expensive parts of the FCT method.

In [4], DeVore indicates that the scheme of Zalesak does not preserve monotonicity in two dimensions and
suggests limiting the fluxes using the original Boris/Book limiter [1,2] in each direction prior to their input to

the multi-dimensional limiter. This is straight forward to and we demonstrate it for F1
AD,n
i+1/2,j

F̂1
AD,n
i+1/2,j = s�max

[
0,min

(∣∣∣TF1
AD,n
i+1/2,j

∣∣∣ , s� Ji+1/2,j∆r1

∆t
D+r1Tutd,n

i+1/2,j , s�
Ji+1/2,j∆r1

∆t
D+r1Tutd,n

i−1/2,j

)]
,

where s = sign(TF1
AD,n
i+1/2,j) and the “hat” notation indicates that the anti-diffusive flux has been pre-limited.

The other F̂ fluxes are obtained through similar formulas.
To complete the FCT algorithm, define the local maximum and minimum characteristic values as

wmax
k = max

(
Tutd,n

i+k−1,j ,Tutd,n
i+k,j ,Tutd,n

i+k+1,j ,Tutd,n
i+k,j−1,Tutd,n

i+k,j+1

)
,

wmin
k = min

(
Tutd,n

i+k−1,j ,Tutd,n
i+k,j ,Tutd,n

i+k+1,j ,Tutd,n
i+k,j−1,Tutd,n

i+k,j+1

)
,

(10)

where k = 0, 1 and the extrema are taken component-wise. The actual influx into the cells on either side of
the cell face which would result from the AD fluxes is computed for example as

Ik = 1
∆r1

[
max

(
F̂1

AD,n
i+k−1/2,j

Ji+k,j
, 0

)
−min

(
F̂1

AD,n
i+k+1/2,j

Ji+k,j
, 0

)]

+ 1
∆r2

[
max

(
F̂2

AD,n
i+k,j−1/2

Ji+k,j
, 0

)
−min

(
F̂2

AD,n
i+k,j+1/2

Ji+k,j
, 0

)]
,

(11)

and the maximum permissible influx such that the characteristic bounds from (10) are not violated, indicated
by the tilde, is for example

Ĩk =
1

∆t

[
wmax
k −Tutd,n

i+k,j

]
. (12)

Notice in (11) that the influx into the cells from both direction of index space are considered simultaneously.
This follows from [27] and reflects the fully multi-dimensional nature of this limiter as opposed to a limiter
which is split along dimensional lines. Component-wise ratios of permissible to actual fluxes are then defined
for the two cells as

R+
k = min

(
Ĩk
Ik
, 1

)
. (13)

The quantities R−
k , which represent the ratio of actual AD flux leaving the cell to the maximum flux permitted

to leave the cell without violation of the bounds in (10), are defined using similar reasoning. Setting

Ok = 1
∆r1

[
max

(
F̂1

AD,n
i+k+1/2,j

Ji+k,j
, 0

)
−min

(
F̂1

AD,n
i+k−1/2,j

Ji+k,j
, 0

)]

+ 1
∆r2

[
max

(
F̂2

AD,n
i+k,j+1/2

Ji+k,j
, 0

)
−min

(
F̂2

AD,n
i+k,j−1/2

Ji+k,j
, 0

)]
,

(14)
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and

Õk =
1

∆t

[
Tutd,n

i+k,j −wmin
k

]
, (15)

we define

R−
k = min

(
Õk

Ok
, 1

)
. (16)

By choosing the most restrictive of these R values, the bounds from (10) are not violated. Thus we define

β =


min(R+

0 ,R
−
1 ) when Ji,jF̂1

AD,n
i+1/2,j < 0

min(R+
1 ,R

−
0 ) when Ji,jF̂1

AD,n
i+1/2,j ≥ 0.

(17)

The final values for αn
i+1/2,j are found through component-wise inversion of the formula

αn
i+1/2,j � F1

AD,n
i+1/2,j = T−1

(
β � F̂1

AD,n
i+1/2,j

)
. (18)

It is important to note that monotonicity of the linearized characteristic variables does not imply mono-
tonicity of the conserved variables. Thus the final updated solution could result in a negative density, imaginary
sound speed, or negative pressure. Such events do occur in the simulations we present and must be treated
in a rational and reasonable way. Zalesak suggests in [27,6] that a fail-safe limiter be employed and we take a
similar approach here. At each time, if the values at a given cell (i, j) violate physically realistic bounds after
advancement to unew

i,j in (8), then no portion of the anti-diffusive flux is allowed at the boundaries of that cell.
For such cells,

αn
i+1/2,j = αn

i−1/2,j = αn
i,j+1/2 = αn

i,j−1/2 = 0 (19)

is enforced and the method becomes fully first order in a local region. In our experience, this fail-safe mechanism
is critical for the success of the FCT algorithm. It should also be noted that after setting αn

i±1/2,j±1/2 = 0 in one

cell, the problem (negative density etc.) may then appear in a neighbouring cell. In principle the result could
be a cascade across all cells. These cascades are rare and do not occur for any of the simulations presented in
this work.

This completes the description of the FCT algorithm itself but there is another aspect which must be
addressed. In [27] it is recognized that some amount of higher order dissipation must be included to remove
high frequency noise generated by the FCT procedure. In that work the high-order dissipation was added to
the AD flux prior to flux correction. In our studies we found this to be unsatisfactory because the effect of
the high-order dissipation is reduced by the FCT limiters. The result is unacceptable levels of numerical noise
in the computed solutions. Therefore we add dissipation independently after the FCT step. To this end we
implement a second-order dissipation near shocks [13,16] to treat undamped transverse instabilities as well as
a fourth-order Jameson style dissipation away from shocks [31,32,25]. We switch the fourth order dissipation
on or off based on density variations to ensure that it is not active near shocks or contacts. One final note is
that the computed solution will not violate the prescribed bounds only for CFL numbers less than 1/2 and so
all FCT simulation results presented in this paper set the CFL number to be 0.4.

3.3 Sonic fix

As is the case for some other methods, such as Godunov’s method with an approximate Roe Riemann
solver [14], the FCT method can exhibit poor behavior in rarefaction waves at points where the flow speed
is equal to the sound speed (sonic points). The problem is illustrated by the solution to a modified version
of Sod’s shock tube problem [33,14] with left and right states given by (ρ, u1, u2, p)L = (1.0, 0.75, 0.0, 1.0) and
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Fig. 1. FCT solution for a shock tube problem containing a sonic rarefaction with and without a sonic fix at
t = 0.5. The black line represents the exact solution, the red circles the numerical approximation without the
sonic fix and the blue crosses the numerical approximation with the sonic fix. The problematic behavior at the
sonic point is quite clear in both the density (left) and pressure (right).

(ρ, u1, u2, p)R = (0.125, 0.75, 0.0, 0.1), and with γ = 1.4. We compute approximations to the solution of this
Riemann problem using the grid L([−1, 1], 100) where

L([xa, xb], N) =
{
xi | xi = xa + i∆x, ∆x = (xb − xa)/N, i = 0, 1, . . . , N

}
, (20)

with the initial discontinuity located at x = −0.4. Figure 1 shows the results produced by the FCT method
with and without our sonic fix. The problematic behavior of the method at the sonic point is clearly visible in
the form of a rarefaction shock which represents an entropy violating weak solution.

The existence of rarefaction shocks in numerical approximations is typically the result of insufficient
numerical diffusion. For FCT this is caused by the use of high-order centered fluxes. This is in contrast to
Roe’s method where the linearization causes the problem even at first order. The FCT method considered in
this paper uses the HLL flux (known to be devoid of rarefaction shocks [14]) for the low order update. To
eliminate rarefaction shocks for FCT approximations, we rely on this fact and simply set the value for α in
(8) to zero for cases where sonic rarefactions are present. This choice has implications on solution accuracy,
but because sonic points exist in isolation, the impact is negligible as will be demonstrated in Section 4.

The anti-diffusive fluxes in (8) have associated left and right states, call these uL and uR respectively.

For instance consider F1
AD,n
i+1/2,j with uL = utd,n

i,j and uR = utd,n
i+1,j . These states can be viewed as left and

right states of a one dimensional Riemann problem in the direction normal to the cell face. Define the normal
velocities as vn,L = (n1, n2) · (u1L, u2L)T and vn,R = (n1, n2) · (u1R, u2R)T where (n1, n2) is the unit normal to
the cell face. Following the nomenclature in [14], we define the star state as the center solution to this Riemann
problem (i.e. the solution between the C+ and C− characteristics). As in [14], p∗ and v∗n can be approximated
by

p∗ =

[
max

(
0,

(
cL + cR −

γ − 1

2
(vn,R − vn,L)

)(
cL
pzL

+
cR
pzR

)−1
)]1/z

(21)

and

v∗n = vn,L +
2

γ − 1
(cL − c∗L) (22)

where c∗L = cL(p∗/pL)z, c∗R = cR(p∗/pR)z, z = (γ−1)/(2γ), cL is the left sound speed, and cR is the right sound
speed. These particular star states arise from the approximation of the Riemann solution by the so-called two
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Fig. 2. Density (left) and velocity (right) for a strong rarefaction problem at t = 0.25. The black line represents
the exact solution, the red circles the FCT approximation without a fix and the blue crosses the FCT solution
with the fix. The oscillations in velocity for the original FCT scheme are particularly troubling but also note
the undershoot of the density near the origin.

rarefaction Riemann solver and are approximations to the true star state. Note that other choices for the star
states are also acceptable. Our sonic fix defines a new value for α by

αn
i+1/2,j ←


0 if vn,L − cL ≤ 0 and v∗n − c∗L ≥ 0

0 if v∗n + c∗R ≤ 0 and vn,R + cR ≥ 0

αn
i+1/2,j else.

The effect of these choices is to return the solver to first order accuracy near sonic points in rarefaction waves.
Figure 1 shows the solution to the modified Sod’s problem employing this sonic fix where it is seen that the
poor behavior has been effectively eliminated apart from a small kink at the sonic point. It should be noted
that the particular sonic fix demonstrated here relies on an approximate solution to the Riemann problem.
For cases where this solution is not known, this fix is not applicable and sonic rarefactions must be identified
in another way. For example, one might consider applying the fix wherever the flow transitions from super- to
sub-sonic flow across a cell boundary.

3.4 Strong Rarefactions

In addition to the poor behavior for sonic rarefaction waves, the traditional FCT algorithm runs into
difficulties for strong rarefaction waves where the difference in velocities at which the gas is being pulled
apart differ by more than the local sound speed. This is a very difficult problem for many methods because
a near vacuum state is reached and failure can occur as a result of negative densities or pressures [5]. Con-
sider the solution to a Riemann problem with left and right states (ρ, u1, u2, p)L = (1.0,−2.0, 0.0, 0.4) and
(ρ, u1, u2, p)L = (1.0, 2.0, 0.0, 0.4) respectively.

Figure 2 shows the density and velocity as computed by the FCT algorithm for this case both with
and without our fix. The FCT solution without any fix demonstrates oscillations in velocity close to the near
vacuum state (near the origin). In order to remove this behavior a simple fix is employed which sets

αn
i+1/2,j = 0 if p∗ < min(pL, pR) and |vnL − vnR | ≥ max(cl, cr).

This causes the first order scheme to be used when strong rarefaction waves are present. The results shown in
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figure 2 demonstrate that the velocity from the fixed scheme is monotonic near the origin. These results are
comparable to the results of Tóth in [5] but further improvements should be investigated.

3.5 A Note Concerning Monotonicity

The original FCT scheme of Boris and Book applied to 1-D linear advection problems is provably mono-
tone. However, the extension by Zalesak to higher-dimensions do not result in a monotone scheme, a fact that
has apparently not been discussed in the literature. We now present a simple example to illustrate this fact.
Consider linear advection with unit advection velocity,

∂

∂t
ρ+

∂

∂x1
ρ = 0.

We use the low-order flux given by f low,n
i+1/2 = ρni , and the second-order centered flux given by f

high,n
i+1/2 =

1
2(ρni + ρni+1). At time level tn let the approximate solution be given by

ρn−3 = 4.5, ρn−2 = 4, ρn−1 = 3.5, ρn0 = 3, ρn1 = 3, ρn2 = 2, ρn3 = 1, ρn4 = 0.

Set the grid spacing as ∆x1 = 1 and the temporal spacing as ∆t = 0.25. The FCT algorithm, as outlined by
Zalesak [27,28], produces the following values for α

αn
−1/2 = 1, αn

1/2 = 1, αn
3/2 = 1.

By using the forward Euler time integrator (i.e. ρn+1
i = ρnew

i ), the FCT solution after a single step results in
the values

ρn+1
0 = 3.0625, ρn+1

1 = 3.125.

The solution at time tn was monotonically decreasing left to right while the solution for these two cells at
time tn+1 is monotonically increasing left to right and so the violation of monotonicity is demonstrated.
Many authors suggest the use of a pre-limiter, but for this case the pre-limiter suggested by Zalesak [27] and
Kuzmin [6] has no effect as can be easily verified. The pre-limiter of DeVore [4], which we have adopted here,
does remedy this particular problem, but a proof of monotonicity for arbitrary high order fluxes is not known.

4 Numerical Results

We now present simulation results using the FCT algorithm described in Section 3. The discussion centers
on studying the robustness and accuracy of the overall numerical approach and comparing the results to those
from the high-resolution Godunov method in [16–18] which uses an approximate Roe Riemann solver [34]
and the MinMod limiter [14]. Of course, the comparisons presented here are only valid for these particular
implementations of the FCT and Godnuov methods. There are many variations to both algorithms which would
change the specifics of the results. However, the present study provides a reasonable baseline comparison of the
relative merits of the two schemes. Furthermore, the hope is that given the results from previous comparisons,
for example in [22], one can place, in a general sense, high-resolution Godunov methods, WENO methods, and
FCT in relation to each other. In fact the tests we present were largely driven by the choice of tests presented
in [22] exactly for the reason that comparisons could be made.

Because the purpose of this section is to provide a comparison between methods as they might be used in
practice, the set of parameters used by each method is set to what we consider to be reasonable numbers. For
the Godunov method we use CFL= 0.9 and for FCT we use CFL= 0.4. The small choice for FCT is required,
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as noted in Section 3, to ensure the desired bounds are not violated. For problems where AMR is used, the
refinement criteria is the same for both schemes and is based on a weighted sum of first and second un-divided
differences of the solution (see [16] for details).

The expected second-order convergence rate for the FCT method for smooth flows has been established
using the method of analytic solutions [35]. This test was also performed for the Godunov method as in [18].
Here we consider the solution to 1-D isolated contacts, isolated shocks, Sod’s shock tube problem, a two-shock
Riemann problem, and the Shu-Osher test case. The methods are then compared for the 2-D problems of shock
impingement on a cylinder and the irregular Mach reflection of a strong shock on an inclined ramp.

4.1 Isolated Contact and Shock Discontinuities

4.1.1 Contact wave
The contact wave is a traveling discontinuous jump where characteristics run parallel to the front. As such,

error can accumulate with the result that a nominally P th order shock capturing scheme will generally converge
at the rate of κ = P/(P + 1) in the L1 sense [36–38]. There are some so-called compressively limited schemes
which can achieve κ = 1 convergence although such schemes often have other undesirable characteristics such as
the artificial steepening of smooth solutions [39,14]. The construction of the FCT method does not immediately
indicate what the convergence rate should be.

The initial conditions for the contact wave consists of the left state (ρ, u1, u2, p)L = (0.1, 1.0, 0.0, 1.0)
and the right state (ρ, u1, u2, p)R = (1.0, 1.0, 0.0, 1.0) with the jump at x0 = 0.25. We can construct a weak
solution corresponding to a vanishing viscosity solution, and we will call such solutions “exact” with the
understanding that there may be many weak solutions. The exact solution to this problem consists of a
propagating discontinuity moving to the right with speed 1.0. The density jumps through this discontinuity but
the pressure and velocity remain constant. Simulations are performed on the grid defined by L([0.0, 1.0], 200m)
where m is a measure of grid resolution (see equation(20)). A value of γ = 1.4, corresponding to a diatomic
ideal gas, is chosen.

A convergence study is performed at various numerical resolutions indicated by m with the comparisons
taking place at tf = 0.5 using the discrete L1 norm. Results from this study are given in Table 1 where the
convergence rate is computed from one resolution to the next as κ = log2(eρ(m)/eρ(2m)) as well as a least
squares fit of the rates over the entire refinement process which we label κ̃. Here it is seen that both the FCT

m eρ(m) F κ eρ(m) G κ

1 1.06e−2 – 1.39e−2 –

2 6.64e−3 .67 8.78e−3 .66

4 4.18e−3 .67 5.55e−3 .66

8 2.63e−3 .67 3.51e−3 .66

κ̃ .67 .66

Table 1
Convergence results for the contact wave problem using second order Godunov and FCT approximations,
indicated by “F” and “G” in the headings respectively. L1 errors in density at tf = 0.5 are computed for grid
resolutions determined by m. Estimated convergence rates κ = log2(eρ(m)/eρ(2m)) as well as a least squares
fit of the convergence rates over the entire refinement process κ̃ are shown. Note that errors for velocity and
pressure are identically zero.
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and Godunov methods attain the expected convergence rate of ≈ 2/3 as measured by both κ and κ̃. We can
also see that the FCT method captures the contact with slightly less error than the Godunov method although
the results for the Godunov method are sensitive to the choice of Riemann solver and limiter [38].

4.1.2 Shock wave
Consider a Mach 2 shock with γ = 1.4. The pre- and post-shock states are given by (ρ, u1, u2, p)L =

(2.67, 1.48, 0.0, 4.5) and (ρ, u1, u2, p)R = (1.0, 0.0, 0.0, 1.0). For this nonlinear phenomenon, the characteristic
curves enter into the discontinuity which acts as a natural steepening mechanism. Computations are carried
out on the unit interval x ∈ [0, 1] using mesh L([0.0, 1.0], 200m) with m being a measure of grid resolution. The
initial jump is placed at x0 = 0.25 and integration is carried out to tf = 0.25 where L1 errors are computed.
The results are presented in Table 2.

m eρ(m) F κ eρ(m) G κ eu1(m) F κ eu1(m) G κ ep(m) F κ ep(m) G κ

1 8.38e−3 – 7.08e−3 – 5.59e−3 – 4.83e−3 – 1.44e−2 – 1.26e−2 –

2 3.94e−3 1.0 3.65e−3 .96 2.91e−3 .94 2.76e−3 .81 6.57e−3 1.1 6.35e−3 .99

4 2.08e−3 .92 1.82e−3 1.0 1.39e−3 1.1 1.22e−3 1.2 3.63e−3 .86 3.27e−3 .96

8 9.63e−4 1.1 9.15e−4 .99 7.13e−4 .96 6.72e−4 .86 1.66e−3 1.1 1.60e−3 1.0

κ̃ 1.03 .99 1.00 .97 1.02 .99

Table 2
Convergence results for the shock wave problem using second order Godunov (G) and FCT (F) approximations.
L1 errors in density, velocity and pressure are shown at tf = 0.25 for grid resolutions determined by m.
Estimated convergence rates κ = log2(eρ(m)/eρ(2m)) as well as a least squares fits of the convergence rates
over the entire refinement process κ̃ are also shown.

Both schemes have similar L1 errors and demonstrate the expected first order convergence with κ ≈ 1
and κ̃ ≈ 1 for density, velocity and pressure. This implies that the number of cells for which there is O(1)
point-wise error is fixed which implies that the shock does not continually smear as a function of time. Contrast
this to the case of the contact in Section 4.1.1 where the captured discontinuity contains an increasing number
of grid cells even as its overall width decreased.

4.2 Sod’s shock tube problem (modified)

For this example problem we investigate the behavior of the FCT and Godunov methods for a modified
version of Sod’s shock tube problem. This problem is designed to highlight the poor behavior of some numerical
methods near sonic points in rarefaction waves and was previously discussed in Section 3.3 where the sonic
fix for the FCT method was described. A description of sonic fixes for Godunov schemes can be found, for
example, in [14]. The computational domain is again chosen to be x ∈ [−1, 1], the initial jump is placed at
x0 = −0.4, and the governing equations (1) are integrated to tf = 0.5. The computational grid for this study
is given by L([−1.0, 1.0], 100m).

The exact density and pressure, as well as approximate results for m = 1 for both the Godunov and FCT
methods, are shown in Figure 3 which demonstrates the similarity of the two approximate solutions. This trend
continues for all resolutions but is more easily seen for this coarse simulation where m = 1. Figure 3 also shows
that both methods seem to be handling the sonic rarefaction. Quantitative convergence results are shown in
Table 3 using the discrete L1 norm. These results indicate that although both schemes are clearly converging
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Fig. 3. Exact solution (black line) and numerical approximations with m = 1 for Godunov’s method using
Roe’s approximate Riemann solver (red marks) and the FCT method (blue marks) for the modified Sod shock
tube problem at tf = 0.5. Shown here are the density (left) and the pressure (right).

m eρ(m) F κ eρ(m) G κ eu1(m) F κ eu1(m) G κ ep(m) F κ ep(m) G κ

2 8.86e−3 – 9.44e−3 – 1.44e−2 – 1.44e−2 – 6.54e−3 – 6.32e−3 –

4 5.00e−3 .83 5.31e−3 .83 6.99e−3 1.0 7.51e−3 .94 3.21e−3 1.0 3.22e−3 .97

8 3.05e−3 .71 3.03e−3 .81 3.32e−3 1.1 4.08e−3 .88 1.54e−3 1.1 1.67e−3 .94

16 1.83e−3 .74 1.80e−3 .75 1.59e−3 1.1 2.42e−3 .75 7.24e−4 1.1 9.08e−4 .88

κ̃ .76 .80 1.06 .86 1.06 .93

Table 3
Convergence results for the modified Sod shock tube problem. Discrete L1 error and associated convergence
rates for the Godunov (G) and FCT (F) schemes at selected resolutions associated with the choice of m.
Apparently the mesh is of insufficient resolution for the methods to exhibit global convergence rates of 2/3 for
the L1 norm of density which is dictated by the captured contact.

to the exact solution, neither scheme is yet in the asymptotic range of convergence where the L1 error of
density will be dominated by the 2/3 convergence rate near the contact. Even so, both schemes provide similar
convergence behavior with the FCT yielding slightly higher convergence rates for the pressure and velocity.

4.3 A Two-Shock Riemann Problem

The last Riemann problem investigated in this work is commonly known as the two-shock problem. The
exact solution to this problem for γ = 1.4 has a M ≈ 5.62 shock in the rightmost characteristic field, a
M ≈ 1.81 shock in the leftmost characteristic field, and a contact wave separating the two. Left and right
states are taken from [14] and given as (ρ, u1, u2, p)L = (5.99242, 19.5975, 0.0, 460.894) and (ρ, u1, u2, p)R =
(5.99242,−6.19633, 0.0, 46.0950) The exact solution is determined as in [30], and results in a nearly stationary
shock for the leftmost characteristic field. The actual speed of the left shock is S ≈ 0.78, the velocity through
the contact wave is u1 ≈ 8.69, and the rightmost shock moves with speed S ≈ 12.25. The capturing of the
nearly stationary shock proves to be one of the primary difficulties for this problem (see [40,41] for details on
slowly moving shocks). Shock capturing schemes also have difficulty representing the contact in this problem
and there is a need to accurately resolve that jump before a reasonable global approximation is achieved.
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Fig. 4. Exact solution (black line) and approximations with m = 1 for Godunov’s method using Roe approxi-
mate Riemann solver (red marks) and the FCT method (blue marks) for the two-shock Riemann problem at
tf = 0.035. Shown here are the density (left) and the pressure (left).

The solution for this problem is approximated for x ∈ [−1, 1] using the mesh L([−1.0, 1.0], 100m) and
integration is carried out to a final time of tf = 0.035. Figure 3 shows profiles of density and pressure for
the exact solution at that time as well as the numerical approximations for m = 1. Qualitatively it is seen
that the two schemes produce similar results, however, close inspection revels the Godunov approximation to
be slightly less oscillatory particularly in the pressure while the FCT approximation shows a sharper capture
of the contact wave. Table 4 shows quantitative convergence results for the two schemes using the discrete
L1 norm for the computation of the errors. This table shows that the Godunov approximations demonstrate

m eρ(m) F κ eρ(m) G κ eu1(m) F κ eu1(m) G κ ep(m) F κ ep(m) G κ

2 4.48e−1 – 7.53e−1 – 1.10e−1 – 3.40e−1 – 8.74e0 – 3.29e1 –

4 2.58e−1 .80 4.08e−1 .88 7.15e−2 .62 1.41e−1 1.3 6.49e0 .43 1.40e1 1.23

8 1.51e−1 .77 2.26e−1 .85 2.48e−2 1.5 7.78e−2 .86 3.34e0 .96 7.89e0 .83

16 9.00e−2 .75 1.43e−1 .66 1.66e−2 .58 4.76e−2 .71 1.82e0 .88 4.94e0 .66

κ̃ .77 .80 .91 .94 .75 .90

Table 4
Discrete L1 error and associated convergence rates for the two shock problem using the Godunov (G) and FCT
(F) schemes at selected resolutions associated with the choice of m. Neither scheme is yet in the asymptotic
range of convergence where the L1 errors in density will be dominated by the 2/3 convergence rate at the
contact.

somewhat higher convergence rates for all quantities, but that for the resolutions discussed here the FCT
approximations always give smaller actual errors. In fact for the pressure and velocity, the errors in the FCT
approximations are more than three times smaller than the Godunov approximations at coarse resolutions and
still more than twice as small for the finest mesh considered.
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4.4 Shu-Osher Problem

The final one-dimensional test case considered in this paper is a problem originally considered by Shu
and Osher [7] and subsequently by others [22,23]. This problem consists of a M = 3 shock in air, γ = 1.4,
traveling into unshocked air with sinusoidally perturbed density. As originally presented, the problem has a
number of parameters and the specific values used here are taken from [22]. The initial setup is

ρ = 3.857143, u1 = 2.629369, u2 = 0, p = 10.33333 for x1 < −4

ρ = 1− ε sin (λπx), u1 = 0, u2 = 0, p = 1 for x1 ≥ −4
(23)

where the parameter values are ε = 0.2 and λ = 5. The approximate solution is computed for x ∈ [−5, 5] using
L([−5.0, 5.0], 200m) and integrated to a final time tf = 1.8.

When interpreting results, it is useful to understand the Riemann structure of the solution when ε = 0.
For this case we can determine an exact solution and the waves present there give a good indication where
structures in the more complicated solution will arise. When ε = 0, the solution consists of a M = 3 shock
traveling with speed S ≈ 3.55. The perturbed problem, ε 6= 0 and small, will have disturbances traveling along
the other two characteristic fields with speeds S ≈ 2.63 and S ≈ 0.69. At t = 1.8, the lead shock will have
travelled to x1 ≈ 2.39, the contact wave to x1 ≈ 0.73 and the left acoustic wave to x1 ≈ −2.76. For small ε it
is expected that the exact solution will change character near these locations.

A reference solution, computed with m = 128 up to t = 1.8, can be seen, for example, in Figure 5.
For x < −2.76 the solution is the unperturbed post-shock state. For x ∈ (−2.76, 0.73) the solution exhibits
mild oscillations in all quantities. These oscillations are the result of the passage of the left acoustic wave. For
x ∈ (0.73, 2.39) the solution exhibits high frequency oscillations. Notice that for the computational resolution
m, the high frequency oscillations in the density for x ∈ (0.73, 2.39) contain approximately 2m grid points per
wavelength. The solution with m = 128 uses a sufficiently fine grid to resolve these oscillations as evidenced
by the fact that further refinement does not change the character of the solution, and because it results in
approximately 256 cells per wavelength for x ∈ (0.73, 2.39). For x > 2.39 the solution returns to the initial
upstream state. The locations where the solution changes behavior are, as expected, those mentioned above in
the discussion of the Riemann structure for ε = 0.

There is no known closed form solution to this problem and convergence results must be estimated through
comparison to more finely resolved solutions. Here we use a method similar to that presented in [42]. At a
given point, xi, we assume the solution at a given resolution differs from the exact solution by

ue(xi)− um(xi) ≈ c(xi)h
κ
m (24)

where ue is the exact solution, um the numerical approximation, c(xi) depends only on xi, κ is the convergence
rate and hm is the grid spacing. Note that we have uniform grid spacing. From (24) one can compute

||um1(x)− um2(x)||h ≈ ||c(x)||h
∣∣hκm1

− hκm2

∣∣ (25)

using a discrete norm. Numerical approximations at three resolutions and equation (25) can be combined to
produce two equations which define the convergence rate κ and the constant ||c(x)||h. The solution error can
then be approximated as eu(m) = ||ue − um||h ≈ ||c(x)||h hκ. When estimating the error and convergence rate
for a given approximation with resolution given by m, we use the three approximations um, u64 and u128.
Table 5 shows the convergence results using the discrete L1 norm for both the FCT and Godunov schemes.
From this table it is clear that the coarser resolutions do not approximate the solution well at all, particularly
for the density, and low rates of convergence are attained. Figures 5 and 6 demonstrate this graphically where
the numerical approximations for m = 1 are plotted on top of the reference solution. Figure 5 shows the
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Fig. 5. Comparison of the numerical approximations with m = 1 at t = 1.8 for the Shu-Osher test problem.
For all images the black line represents the reference solution with m = 128 while the red line (left) shows
the Godunov approximation and the blue line (right) shows the FCT approximation. From top to bottom are
density and pressure.
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Fig. 6. Zoom of density near the high frequency oscillations. Shown are the FCT and Godunov approximations
wtih m = 1, and the reference solution computed by the Godunov method with m = 128.
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Fig. 7. Comparison of the numerical approximations at t = 1.8 for the Shu-Osher test problem and m = 16.
For all images the black line represents the reference solution with m = 128 while the red line (left) shows
the Godunov approximation and the blue line (right) shows the FCT approximation. From top to bottom are
density and pressure.
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Fig. 8. Zoom of density near the high frequency oscillations. Shown are the FCT and Godunov approximations
wtih m = 16, and the reference solution computed by the Godunov method with m = 128.
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m eρ(m) F κ eρ(m) G κ eu1(m) F κ eu1(m) G κ ep(m) F κ ep(m) G κ

1 1.16e0 .75 1.20e0 .44 3.44e−1 1.1 3.02e−1 .94 2.34e0 1.1 1.98e0 .92

2 9.18e−1 .86 1.01e0 .52 1.57e−1 1.1 1.55e−1 .94 1.08e0 1.1 1.08e0 .93

4 7.86e−1 1.1 8.64e−1 .67 6.35e−2 1.1 7.85e−2 .92 4.75e−1 1.1 5.67e−1 .94

8 5.98e−1 1.4 7.28e−1 .93 3.10e−2 1.1 4.22e−2 .94 2.23e−1 1.1 2.94e−1 .93

16 2.39e−1 1.4 5.00e−1 1.3 1.52e−2 1.2 2.35e−2 1.0 1.06e−1 1.2 1.70e−1 1.1

32 8.90e−2 1.4 2.19e−1 1.5 6.87e−3 1.4 1.20e−2 1.3 4.57e−2 1.3 8.38e−2 1.3

Table 5
Convergence results for the Shu-Osher test problem using both the Godunov (G) and FCT (F) methods.
Convergence rates and errors are computed with (24) and (25) using finely resolved simulations at m = 64
and m = 128.

global character of the solution and Figure 6 shows a zoom of the density in the most oscillatory region.
For low resolutions, the high frequency oscillations are not well represented and both methods exhibit poor
convergence properties, particularly for the density as seen in Figure 6. This is reflected by the convergence
rates which are less than 1. At some critical resolution however, both methods see a rise in convergence rates,
tending to some value larger than 1. Once this transition occurs, the high frequency oscillations begin to be
well represented as shown in Figures 7 and 8. This transition to higher convergence rates happens at lower
resolution for FCT, indicating that it has more resolving power than the Godunov method. For the highest
resolutions demonstrated here, both approximations are reasonably representing all structures in the flow and
their convergence rates become roughly equal. However, because the FCT method experienced the transition
to higher convergence rates earlier in the refinement process, the errors at the highest resolutions are smaller
than for the Godunov approximations by nearly a factor of 2.

4.5 Shock Impingement on Stationary Cylinder

The first two-dimensional test problem which we consider is the impingement of a M = 2 shock on a rigid
immovable cylinder. The basic problem consists of a rigid cylinder of radius 0.5 placed in the larger domain
[−2, 2]× [−2, 2]. A Mach 2 shock initially located at x1 = −1.5 runs from left to right. The computational mesh
is defined as the overlapping grid constructed from an annulus A((0, 0), [0.5, 1.0], 10m, 80m) and a rectangle
R([−2, 2]× [−2, 2], 80m, 80m), where A and R are defined as

R([x1,a, x1,b]× [x2,a, x2,b], N1, N2) =
{

(x1,a + i1∆x1 , x2,a + i2∆x2) |

∆xk = (xk,b − xk,a)/Nk, ik = 0, 1, . . . , Nk, k = 1, 2
}

and

A ((x1,c, x2,c), [ra, rb], Nr, Nθ) =
{

(x1,c, x2,c) + rir(cos(θiθ), sin(θiθ)) |

rir = ra + ir(rb − ra)/Nr, θiθ = 2πiθ/Nθ, ik = 0, 1, . . . , Nk, k = r, θ
}
.

The boundary around the cylinder is defined as a slip wall (see [17]), the left boundary as an inflow, and the
remaining boundaries are given outflow conditions. Phenomena of interest are limited to those associated with
the shock/cylinder interaction. Provided that the simulation is not run too far in time, waves generated at the
cylinder do not reach the exterior boundaries and so the exterior boundary condition choice has little influence.
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Fig. 9. Overlapping grid structure (left) and color contour of the initial density (right). The overlapping grid
structure is used to capture geometry and additional adaptive grids will be dynamically added to locally
increase resolution. Note that we only require one layer of interpolation points at grid overlap as discussed in
Section 3.1. The initial density shows a M = 2.0 shock in air (ideal gas with γ = 1.4) moving from left to
right.

Figure 9 shows the computational mesh as well as color contours of density for the initial conditions. Numerical
values for the initial conditions in primitive quantities, corresponding to a Mach 2 shock in air (γ = 1.4), were
shown previously in Section 4.1.2.

The comparisons carried out in this paper use the resolution m = 1 displayed in Figure 9 for the coarse
grid simulation. Adaptive mesh refinement (AMR) is then used for successive resolutions. For this test of shock
interaction with a single cylinder, additional levels of AMR use a factor four refinement in each coordinate
direction and so the four resolutions investigated have approximate grid spacings h ≈ 0.05, 0.0125, 0.003125,
and 0.00078125. Notice that because the initial condition uses a perfect jump, there exists numerical artifacts
along the c− characteristic and contact path. No effort is made to remove these and their contribution may be
seen throughout the simulations.

Figure 10 shows the computed density using both methods for t = 0.6, t = 1.0, and t = 1.4 as the incident
shock reflects from the cylinder boundary. Overall the results show remarkably good agreement although slight
differences can be seen at t = 1.4 in the low density wake region of the cylinder. To give a better indication of
what is happening, Figure 11 shows the AMR grid structure, numerical Schlieren images [43], and the estimated
error in density at t = 1.4. The computation of the error estimate will be discussed below. The image of the
AMR grids is perhaps the most informative because it demonstrates the increased noise created by the FCT
method. Numerical noise tends to flag cells for refinement by the AMR algorithm and so a larger portion of the
domain is covered by fine meshes for the FCT simulation. This type of noise, also interpretable as staircases [6],
is a common phenomenon in FCT simulations. There are ways to reduce the noise, such as adding higher levels
of artificial diffusion, using different high order fluxes, and others, but in our experience, there is no single
method which completely eliminates it. On the other hand the results from the Godunov method show little
sign of this phenomenon and the AMR meshes conform closely to the locations of rapid change, such as shocks
and contacts. The plots of estimated error also show increased noise in the FCT solution. It is worth noting
that the remnant of the initial condition on the c− characteristic has flagged refinement for the FCT solution
whereas this feature has been smoothed by the Godunov method.

Figure 12 shows line plots of the approximations along the lines x2 = 0 with x1 ∈ [0.5, 2.0] and x1 = 1
with x2 ∈ [0, 2] which gives an indication of convergence as the mesh is refined. From these plots one can again
see the trend that FCT approximations contain more noise as compared to the Godunov approximations which
generally vary more smoothly. Table 6 shows estimated L1-norm self convergence errors and convergence rates.
These errors and rates were computed using the finest three resolutions following the approach presented in [42]
and as outlined in Section 4.4. An advantage to this method is that it naturally provides an estimate for the
exact solution ue in equation (24). This result can be used to estimate solution errors as was done to obtain

19



Fig. 10. Color contours of density for the finest resolution using FCT (top) and Godunov’s method (bottom)
at t = 0.6 (left), t = 1.0 (middle), and t = 1.4 (right).

Fig. 11. AMR grid structure (left), numerical Schlieren images (center) and estimated L1-error in density
(right) for the FCT method (top) and Godunov’s method (bottom) for the finest resolution simulation at
t = 1.4.
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Fig. 12. Solution convergence along the lines x2 = 0 (top) and x1 = 1 (bottom) for the FCT method (left)
and the Godunov method (right) on the shock-cylinder problem. Shown here is the density with the colors
indicating numerical resolution. Maroon represents the solution with no AMR while cyan, red, and finally blue
represent 1, 2, and 3 levels of additional factor four adaptive meshes respectively.

the error estimates shown in Figure 11. The results in Table 6 show that the errors and convergence rates are

m eρ(m) F eρ(m) G eu1(m) F eu1(m) G eu2(m) F eu2(m) G ep(m) F ep(m) G

4 1.54e−2 1.91e−2 1.02e−2 1.32e−2 7.55e−3 8.77e−3 3.00e−2 3.75e−2

16 5.60e−3 7.49e−3 3.70e−3 5.76e−3 3.13e−3 3.00e−3 1.06e−2 1.45e−2

64 2.03e−3 2.94e−3 1.35e−3 2.52e−3 1.29e−3 1.03e−3 3.73e−3 5.60e−3

κ 0.73 0.67 0.73 0.60 0.64 0.77 0.75 0.69

Table 6
Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on the problem of shock-
cylinder interaction. Here we use a weighted L1-norm.

similar for the FCT and Godunov methods. It is interesting to see that convergence results for all quantities,
including the velocities and pressure which do not jump through contact waves, show sub-linear convergence.
The probable cause for this behavior is the complex interactions of shocks, contacts and rarefactions as well as
the instabilities in the wake region of the flow. Indications of this are given by the error estimates of Figure 11
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Fig. 13. Basic overlapping grid used for the simulation of irregular Mach reflection on an inclined ramp. The
boundary fitted ramp grid is seen in green and the background Cartesian mesh in blue. The full geometry (left)
shows what looks like sharp transitions to represent the ramp corners, but the zoom near the origin (right)
shows that these corners are very slightly rounded.

where the wake region is shown to have large errors over a substantial area.

4.6 Irregular Mach Reflection of a Strong Shock

The final test considered in this paper is that of irregular Mach reflection of a strong shock at an in-
clined ramp. This classic example has been investigated by many authors [28,44,23] as well as demonstrated
experimentally [45]. In this problem, a Mach 10 shock impacts a ramp which is inclined 30◦ from the normal
shock propagation direction. The result is a complex interaction and results in an irregular Mach reflection.
Numerically, this flow can cause a carbuncle like instability [46,47] for some numerical methods if proper care
is not taken.

Traditionally this test problem has been solved by inclining the incident shock to a Cartesian grid and
using special boundary conditions to simulate the transition region at the start of the ramp. For the simulations
presented in this paper, the geometry of a 30◦ ramp is realized using overlapping grids and then a Mach 10
shock is impacted onto this ramp. The overlapping grid we use consists of a thin boundary fitted mesh to model
the ramp in union with a background Cartesian mesh for the remaining bulk of the computational domain.
The background Cartesian mesh is defined by the rectangle R([−0.5, 3.0] × [0, 1.7], 420, 340). Although the
boundary fitted mesh is not described by a simple mathematical expression, a verbal description will suffice
for our purpopses. The physical boundary of this ramp grid is defined as a curve that smoothly transitions
from the line x2 = 0, to the line x2 = x1/

√
3, and finally to the line x2 = 1.4438. These transitions are defined

in terms of integrals of hyperbolic tangent functions and are therefore smooth [48]. The ramp grid is extruded
along normals into the domain and the mesh spacing is chosen to approximately match that of the background
Cartesian grid. The resulting overlapping grid is shown in Figure 13 where both the full geometry and a zoom
near the ramp initiation at the origin are shown. At the scale of the full geometry it is difficult to see the
rounding of the corners, but the close up image makes this rounding clear. A rounded corner will have some
effect on the solution as it compares to a solution obtained using a perfectly sharp corner. Such effects have
been studied for example in [49,16] and found to be of little consequence when the radius of curvature is small
as compared to the flow features of interest (as is the case here).

Initial conditions for a Mach-10 planar shock in air (γ = 1.4) are (ρ, u1, u2, p)L = (8.0, 8.25, 0.0, 116.5)
and (ρ, u1, u2, p)R = (1.4, 0.0, 0.0, 1.0). The initial shock is located at x1 = −0.25 (for reference the left-most
boundary is x1 = −0.5 and the ramp incline begins at x1 = 0) and time integration is performed to t = 0.2.
Boundary conditions are set using a slip wall condition along the ramp boundary, inflow conditions along the
left boundary and outflow conditions elsewhere. For these simulations, the base mesh has roughly equal mesh
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Fig. 14. Simulation results at t = 0.2 for the Godunov method (left) and FCT (right) with 3 levels of factor
4 refinement. Shown are the AMR mesh (top), a numerical Schlieren image (middle), and pressure (bottom).
Notice the increase in noise produced by the FCT method as evidenced by the larger region flagged for AMR
refinement. Also notice the lower pressure achieved by the FCT method within the main vortex.

spacing throughout the domain with h ≈ 1
120 . Simulations are performed at four resolutions starting with

only the base mesh and then progressing through to use one additional level of factor four refinement, two
additional levels of factor three refinement, and finally two additional levels of factor four refinement.

Figure 14 shows the approximations obtained using the FCT and Godunov methods at the finest resolution
with approximate mesh spacing h ≈ 5.21× 10−4. At this scale there are some apparent differences that merit
mention. First notice the increased noise production by the FCT method as shown by the increased proportion
of the domain flagged for AMR refinement. Also both simulations retain remnants of the initial condition
along the c− characteristic and contact path. These remnants are covered with fine AMR meshes, although the
refinement for the FCT algorithm covers a larger region. Finally it is seen that the minimum pressure inside
the main vortex is lower for the FCT simulation than for Godunov.

Figure 15 shows close-up numerical Schlieren images near the main vortex structure at the four different
mesh resolutions. For both simulation techniques, the main vortex is poorly represented at low resolutions but
with increasing mesh resolution the main features begin to develop. The roll-ups along the slip lines become
pronounced for both methods with the Godunov solution showing slightly more detailed structure. The final
two solutions show interesting differences in the development of the main vortex. For the Godunov method it
remains as a coherent single vortical structure, while for the FCT method it begins to break down and show
more complex behavior. Comparing this behavior with what is seen in [23] shows that the Godunov methods
(for [23] the PPM method) tend to maintain a coherent single structure, while the other methods (the hybrid
WENO method in [23] and FCT here) produce a vortex which begins to loose coherence at very high resolution.
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Fig. 15. Zoom of the numerical Schlieren images near the triple point and main vortex for Godunov (left)
and FCT (right). Resolution increases from top to bottom with approximate grid spacings h ≈ 1/120, 1/480,
1/1080, and 1/1920 respectively.

This type of behavior calls into question the limit processes of the various schemes and whether the various
methods are in fact approaching the same vanishing viscosity solution. This is an interesting question and will
be the subject of future work. As a further comparison of the methods, Figure 16 compares the peak vorticity
and minimum scaled temperature, defined as p/ρ, for the two methods as a function of grid resolution. For
both schemes the minimum temperature decreases and the maximum vorticity increases as the mesh is refined.
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Fig. 16. Maximum vorticity within the main vortex as a function of mesh spacing (left) and minimum scaled
temperature (right), defined as p/ρ, as a function of mesh spacing. Godunov results are given in red and FCT
results in blue.

The FCT results show a lower temperature and smaller vorticity as compared to the Godunov results. A
self convergence study is performed as was done in Section 4.5 using a weighted L1-norm. The finest three
resolutions are used for this comparison and results presented in Table 7. Here it is seen that the performance

m eρ(m) F eρ(m)G eu1(m) F eu1(m) G eu2(m) F eu2(m) G ep(m) F ep(m) G

4 5.67e−2 6.29e−2 3.15e−2 3.45e−2 3.32e−2 3.89e−2 1.06e0 1.09e0

9 3.71e−2 4.25e−2 1.74e−2 2.32e−2 2.05e−2 2.84e−2 6.85e−1 6.81e−1

16 2.75e−2 3.22e−2 1.14e−2 1.76e−1 1.46e−2 2.28e−2 5.04e−1 4.87e−1

κ 0.52 0.48 0.73 0.49 0.59 .39 0.54 0.58

Table 7
Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on the problem of irregular
Mach reflection. Here we use a weighted L1 norm.

of the two methods is similar. The L1-norm convergence rates are somewhat low but this is attributed to
the large variations in the solution and unstable vortical flows which arise at the slip line which is evident in
Figure 15.

5 Qualitative Comments About Timings

As previously mentioned, one aim of this study is to provide a reasonably detailed comparison of an
FCT method with a high-resolution Godunov method. In this assessment, a quantitative comparison of these
techniques has included convergence results as well as details concerning the relative accuracy of the methods
on a set of test problems. One critical aspect that has been neglected until this point is a discussion of the
computational expense. This question has not been addressed for the very specific reason that the Godunov
code used here is mature and has been through years of optimization. The FCT code however, has been recently
developed for the purposes of this study and has not been through the same optimization process. However,
we do believe that some qualitative remarks about issues related to efficiency are in order.

As implemented, the FCT method is approximately 10 times slower per time step than the Godunov
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method. Some part of this comes from a non-optimal implementation, but a much larger part is due to the
FCT algorithm being more costly than the Godunov method. One major factor is that the FCT method
requires approximately 60 characteristic transformations per cell per time step (see for example equation (10))
compared to only about 8 for the Godunov method. Computational expense is also increased by the larger
number of refinement grids that result from the high-frequency noise present in FCT solutions. For example,
the finest FCT resolution of irregular Mach reflection in Section 4.6 has 1.8 times as many grid cells as the
Godunov method at the final time. Assuming the majority of the cells reside on the finest level of refinement, a
relatively accurate assumption here, this results in roughly 1.8 times the computational cost. Furthermore, the
FCT method generally runs at a lower CFL number than the Godunov method due to the monotonicity limit
and the additional stability constraint from the fourth-order dissipation. Taking the ramp computations as an
example, the end result was approximately a factor of 2.8 reduction in time step size for FCT as compared to
Godunov. Taken together, this indicates that the FCT method is potentially quite costly when compared to
Godunov. For every case presented here, a simulation at substantially higher resolution, and commensurately
smaller error, can be obtained by the Godunov method for a given amount of wall clock time. Using the
ramp computation again as an example, the finest FCT approximations required roughly 30 times more wall
clock time than did the Godunov approximations. This means that for the computational cost of the Godunov
simulation with m = 16, the FCT method could only be run with m ≈ 5 (see Table 7 and Figure 15). However,
as noted earlier, in the case where no Riemann based strategies are viable (such as for a lack of knowledge of
the detailed eigen-structure of the system or for possible robustness reasons) an FCT approach can provide a
viable path forward. In such cases, it is irrelevant how much faster other techniques might have been because
they are not available or not practical.

6 Conclusions

This paper has outlined the development and assessment of a high-resolution FCT algorithm for the Euler
equations on structured overlapping grids. The implementation of the FCT method for overlapping grids was
based on the Overture framework and included modifications and extensions to the classical FCT algorithm.
These extensions included the modifications required for the discretization on curvilinear grids as well as the
inclusion of a Jameson-style fourth-order artificial viscosity to remove the high frequency noise produced by
FCT. Improvements were made to the FCT algorithm to eliminate entropy violating shocks that can occur at
sonic points in rarefaction waves. Difficulties occurring in strong rarefaction waves, where a near vacuum state
is produced when the gas separates at velocities greater than the sound speed, were also addressed.

We have evaluated this new FCT method on a series of benchmark high-speed flow problems and com-
pared the results to those obtained using a high-resolution Godunov method. This investigation confirmed
the expected convergence character for isolated contact and shock waves. In two dimensions, the overlapping
grid capabilities were used to study the refraction of a planar shock with a rigid cylinder and irregular Mach
reflection of a strong shock on an inclined ramp. For problems with known exact solutions actual errors and
estimated convergence rates were determined. For problems with no known solutions, estimated errors and
convergence rates were calculated based on a self convergence assumption. Overall the results obtained by the
FCT and Godunov methods were found to be very similar. The FCT solutions tended to have a somewhat
higher resolving capability but also to contain more numerical noise. It was recognized that our implementation
of the FCT method was quite costly in comparison to the Godunov method. This is due to the large number
of characteristic transformations, the smaller time step required, and the apparent difficulty in removing high
frequency noise which tends to flag cells for refinement by the AMR algorithm. In the end, the comparisons
suggest that the FCT method may be a viable option for cases where Riemann solutions are not possible, or
for unstructured meshes where a Godunov type method may not be easily implemented.
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