A++/P++ Manual
(version 0.7.5)

Daniel Quinlan
Lawrence Livermore National Laboratory
L-560
Livermore, CA 94550
025-423-2668 (office)
025-422-6287 (fax)
dquinlan@]Inl.gov
Quinlan’s Web Page: http://www.llnl.gov/casc/people/dquinlan
A++/P++ Web Page http://www.llnl.gov/casc/Overture/ A++P++
A++/P++ Manual (postscript version)
A++/P++ Quick Reference Manual (postscript version)
LACC Number: LA-CC-96-1
LAUR Number: LA-UR-95-3273
UCRL Number: UCRL-MA-136511

August 16, 2000

August 16, 2000

Chapter 0

Copyright

0.1 In Plain English

This software has been released to the public domain, the copywrite notice below
applies.

0.2 NOT In Plain English

Copyright, 1995. The Regents of the University of California.
This software was produced under a U.S. Government contract (W-7405-ENG-
36) by the Los Alamos National Laboratory, which is operated by the University
of California for the U.S. Department of Energy. The U.S. Government is li-
censed to use, reproduce, and distributed this software. Permission is granted
to the public to copy and use this software without charge, provided that this
Notice and any statement of authorship are reproduced on all copies. Neither
the Government nor the University makes any warranty, express or implied, or
assumes any liability or responcibility for the use of this software.

The following notice is specific to the use by the United States Government.

NOTICE: The Government is granted for itself and others acting on its
behalf a paid-up, non-exclusive, irrevocable worldwide license in this data to
reproduce, prepare derivative works, and perform publicly and display publicly.
Beginning five (5) years after (date permission to assert copyright was obtained),
subject to two possible five year renewals, the Government is granted for itself
and others acting on its behalf a paid-up, non- exclusive, irrevocable worldwide
license in this data to reproduce, prepare derivative works, distribute copies to
the public, perform publicly and display publicly, and to permit others to do so.
NEITHER THE UNITED STATES NOR THE UNITED STATES DEPART-
MENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES, MAKES ANY
WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIA-
BILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR

3

4 CHAPTER 0. COPYRIGHT

PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT
INFRINGE PRIVATELY OWNED RIGHTS.

Preface

Welcome to the A++/P++ array class library. A++ and P++ are both C++
array class libraries, providing the user with array objects to simplify the devel-
opment of serial and parallel numerical codes. C++ has a collection of primitive
types (e.g., int, float, double), A++ and P++ add to this collection the types
intArray, floatArray, doubleArray. The use of these new types are as indistin-
guishable as possible from the use of the compiler’s builtin types. Since A4+
and P++ faithfully represent elementwise operations on arrays whether in a se-
rial or parallel environment, numerical codes written using these types are thus
easier to develop and are portable from serial machines to parallel machines.
This greatly simplifies the development of portable code and allows the use of a
single code on even very different architectures (using codes originally developed
on PC’s or workstations). It is hoped that the A++P++ classes provide the
user a sufficiently high level to insulate him/her from machine dependencies and
yet low enough a level to provide expressiveness for algorithm design!.

The purpose of this work is to both simplify the development of large numer-
ical codes and to provide architecture-independence through out their lifetimes.
By architecture independence we mean an insulation from the details of the par-
ticular characteristics of the computer (parallel or serial, vector or scalar, RISC
or CISC, etc.). A degree of serial architecture independence already comes
from the use of C++, FORTRAN, and other high level languages, but none of
these insulate the programmer from details of parallel computer architectures.
Message passing libraries provide a common means to support parallel software
across several conceptually similar computer architectures, but this does not
simplify the complexities of developing parallel software. The A++/P++ array
classes are intended to hide the details of the computer architecture including
its parallel design (where one exists).

The use of the array objects provided in the A++/P++ class library is
much like scalar variables used in FORTRAN, C, or C++. In many respects
the array objects are identical to FORTRAN 90 arrays, the principle difference
is that these array classes require no specialized parallel compiler (since we use
any C++ compiler, all of which I am aware), thus providing a great deal of
portability across machines. Specifically, the same code written for a PC or

LYou be the judge!

6 CHAPTER 0. COPYRIGHT

SUN workstation, runs on the Cray or CM-5 2, or the Intel i860, etc.

2The CM-5 is a particularly difficult machine to program due to its use of multiple vector
units on each node.

Forward

A++ is a serial C++ array class, P4+ is the parallel version of the exact same
array class interface. A++/P++ can be characterized as a parallel FORTRAN
90 in C++; fundamentally, A++/P++ is simple. A++/P++ is a library and
not a compiler and that is its most attractive feature. It is fundamentally simpler
than a compiler and builds on top of existing, and well optimized, serial compiler
technology. Since it is a library in C++, it works with other compilers (any C++
compiler, we have found) and reserves to those compilers (and future C++
compilers that will to a better job) local code optimizations that are machine
dependent. Since A++/P++ is a library it can be used with new features of
C++ as they are available without resource consuming retrofit of features into
research compilers. Templates, for example, represent a substantial problem to
research compilers, but since A++/P++ is just more C++ code it works with
any of the new C++ compilers.

A++ has been tested and used at Los Alamos National Laboratory since
late 1993, and has proven quite stable since summer 1994. Work on P++ is
more recent, continued work will be required for a while still. Separate research
work is attempting to address higher efficiency for the array class work, this an
other work represents collaborative work with other people at Los Alamos and
different universities.

CHAPTER 0. COPYRIGHT

Acknowledgments

I’d like to thank the people in the Numerical Analysis and Parallel Computing
Cell of CIC-19 at LANL for their suggestions for improvements and patience
while bugs they found were fixed. And I’d like to thank my family for putting
up with the whole process.

In particular I would like to thank Bill Henshaw, who has contributed the
largest numer of bug reports over the years and has contributed to the current
stability of A++/P++. also, Kristi Brislawn, who has both maintained and
contributed significant pieces of A++/P++ over the years. Finally, my thanks
to Nehal Desai, who as a summer student contributed much of the chapter that
now represents the A++/P++ tutorial.

Many students and staff have contributed and continue to contribute to the
development of A++/P++.

10

CHAPTER 0. COPYRIGHT

Contents

0 Copyright 3
0.1 In Plain English 3
0.2 NOT In Plain English 3

1 Introduction 17
1.1 About This Manual 17
12 A++/P++WebSite 18
1.3 Summary 18

2 Portability 21
2.1 Supported Platforms o oo 21
2.2 Working and tested for BOTH dynamic and static libraries . . . 22
2.3 Working for ONLY static libraries 22
2.4 Tested by others but not tested by us 23
2.5 Not tested by anyone (lately) 23
2.6 Tests Done On Arbitrary Platforms 23

3 Requirements, Installation and Testing 25
3.1 Requirements and Options 25

3.1.1 What Hardware you require 25

3.1.2 What Software you require 25

3.2 Where to Get A++/P++ o 26

3.3 How to Install A++/P++o 26

3.3.1 Most common options to configure 32
3.3.2 Importance of compiling A++/P++ with the INTER-

NALDEBUG option 32

3.3.3 Parallel Communication Libraries. 33

3.4 Testing the A++/P++ Installation 33

4 Programming Model 35
4.1 A++ Programming Model L. 35
4.2 P++4 Programming Model 36
4.3 The programming model of P4+4 36

4.3.1 Single Program Multiple Data stream (SPMD) 37

11

12

CONTENTS

4.3.2 Virtual Shared Grids (VSG) 37
A++: Serial Array Class Library 41
5.1 Views of A++ arrays.o oo 41

5.1.1 Indexing 41
5.2 Reference Counting L. 43

5.2.1 Internal A++ Reference Counting 43

5.2.2 External A++ Reference Counting 44
5.3 Interoperability with different languages 44
5.4 Temporary Handling 45
5.5 Howtoabuse A+ 47
P++4+ 49
6.1 Goals of the P++ development 49
6.2 Partitioning Objects 0oL 49
6.3 How P++ Arrays are Partitioned 50
6.4 Ghost Boundaries L oL oo 0oL 51
6.5 Communication Models 0oL 51
6.6 Howtoabuse P++4 L. 51

Developing A++/P++ Applications 53
7.1 If You Use SSH On Your Network 53

7.1.1 Why worry about SSH 53

7.1.2 Setting up SSH to run MPI Programs 54
7.2 Developing And Running A++/P++ Applications 55

7.2.1 A++ Applicationso 55

7.2.2 P4+ Applicationso 55

7.2.3 Howtorun P++ with MPI 56

724 Howtorun P++ with MPI 57

Tutorial 61
8.1 Imtroducton 61
8.2 Examples 62

8.2.1 Example la. "Hello, World” 62

8.2.2 Example 1b. “Parallel Hello World” 63

8.2.3 Example 2. 1-D Laplace Equation Solver 64

8.2.4 Example 3. Distribution of Arrays in P++ 66

8.2.5 Example 4. The Heat Equation 69

8.2.6 Example 5. Indirect Addressing 72

8.2.7 Example 6. Application of Indirect Addressing 74
8.3 Example Makefileo 79
8.4 More example on the A++/P++ Home Page 81
Examples: Code Fragments 83
9.1 A++/P++ Examples oo oL 83

9.2 P++4 Specific Examples 86

CONTENTS

10 Reference
10.1 Legend

10.2 Debugging A++P++ Code

10.2.1
10.2.2
10.2.3

Turning On Bounds Checking
Using dbx with A++
Mixing C++ streams and C printf

10.3 Range Objects

10.3.1
10.3.2
10.3.3

Constructors o e
Operators e
Access Functions

10.4 Index Objects o

10.4.1
10.4.2
10.4.3
10.4.4

Constructors o e
Operators o
Access Functions,
Display Functions,

10.5 Array Objects

10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9
10.5.10
10.5.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18
10.5.19
10.5.20
10.5.21

Constructors
Assignment Operators
Indexing Operators
Indirect Addressing
Arithmetic Operators
Relational Operators
Min Max functions oL
Miscellaneous Functions
Replace functions
Array Type Conversion Functions
User defined Bases
Indexing of Views
Array Size functionso
Array Object Similarity test functions
Array Object Internal Consistancy Test
Shape functions oL
Display Functions
Array Expressions Used For Function Input
Array Aliasing o oo
Fill Function
Access To FORTRAN Ordered Array

10.6 "where” Statement
10.7 P++ Specific Information 0oL

10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
10.7.7

Control Over Array Partitioning (Distributions)
Array Object Member Functions
Distributed vs Replicated Array Data
Virtual Processors
Synchronization Primative
Access to specific Parallel Environment Information
Escaping from the Data Parallel Execution Model

13

89
89
89
89
90
90
90
90
90
90
91
91
91
91
91
91
91
92
92
93
93
94
95
95
96
96
97
97
97
98
98
98
98
99
99
100
100
100
100
101
102
102
103
103

. 103
. 103

14 CONTENTS

10.7.8 Access to the local array 103
10.7.9 Examples of P4+ specific operations 104

10.8 Optimization Manager 104
10.9 Diagnostic Manager 105
10.9.1 Report Generation 105
10.9.2 Counting Functions 106
10.9.3 Debugging Mechanisms 107
10.9.4 Misc Functions 108
10.10Deferred Evaluation 0oL 109
10.11Known Problems in A++/P++. 109
11 Appendix 111
11.1 A++/P++ Booch Diagrams 111
11.2 A++/P++ Error Messages 111

12 Glossary 115

List of Figures

4.1 An example for VSG Update based on the Owner computes rule:

A=B+ Con 3 processors 38
4.2 The standard method of grid partitioning with overlap 39
11.1 A++ Class Design. o 112
11.2 P++ Class Design. o 113

15

16

LIST OF FIGURES

Chapter 1

Introduction

This introduction includes a description of what this manual provides, how to
use the manual, and the terminology related to the examples that are provided.
Included in this introduction is an overview of the A++/P++ array class li-
brary. Error messages are contained in the Appendix. Further information is
provided about the A+4/P++ Web Site where more information is avail-
able and where the latest copy of the documentation is available. This Web site
is presently still in development.

1.1 About This Manual

This manual is divided into seven principle chapters:

e Requirements, Installation and Testing

A++/P++ Programming Model

A++: Serial Array Class

P++: Parallel Array Class
e Tutorial

e Examples

o Reference

These are intended to simplify your use of this manual.

The Requirements, Installation and Testing chapter walks the user
through the setup of the A++/P++ library. Installation requirements are also
explained. A small set of tests are available which verify the installation.

The A++/P++ Programming Model chapter explains how to think
about the array objects. It provides a conceptual model to help understand
how to write code using the array classes.

17

18 CHAPTER 1. INTRODUCTION

The A++: Serial Array Class chapter describes A++ in more detail and
explains what can and can’t be done with the array classes. It is intended that
this chapter be specific to details and finer points of A++ usage.

The P++: Parallel Array Class chapter distribes P4++ in more detail
and explains what can and can’t be done with the parallel array classes. It is
intended that this chapter is specific to details and finer points of P4+ usage.

The Tutorial chapter walks the user through first a simple example and
then a more complex example. A collection of simple to advanced programs
are contained in the distribution and demonstrate the more sophisticated use of
A++/P++ for numerical software development.

The Examples chapter provides A++/P++ code fragments that are useful
in displaying features of A++/P++ that would otherwise be difficult to explain.

The Reference chapter provides detailed information about the use of
the A++4/P++ array class library. It describes the individual objects that
A++/P++ makes available, and each of their global and member functions. It
is through the use of the array and other associated objects and the A++/P++
functions that one writes a numerical application. A++/P++ is designed to
be intuitive and the use of the array objects is thus similar to that of all other
array languages and extensions (e.g., FORTRAN 90, and HPF, MatLab, etc.).

The appendix contains Booch diagrams classifying both the object-oriented
design of both A++ and P++ separately. Some knowledge of Booch notation
is helpful. Also in the appendix is a list of error messages in A++/P++. These
are provided to simplify understanding of internal checking done in A++/P++
and provide detailed explanation of each type of error message that can be
reported. They are numbered for convenience; this part of A++/P++ is still
in development.

A later version of the manual will include performance data on different
machines so that the use of different features in A++/P++ can be better un-
derstood. This work is incomplete at present.

1.2 A++/P++ Web Site

We presently have a World Wide Web home page; it can be accessed via
http://www.c3.lanl.gov/~dquinlan/A+-+P-++.html.
This site is updated regularly with the newest documentation, as it is devel-
oped!.

1.3 Summary

A++4/P++ was developed to simplify the development of numerical software.
Specifically it allows the expression of a single application developed in the serial
environment to be run on sophisticated (and invariably hard to program) par-
allel machines. It is intended as at least a partial solution to a growing software

LAll the A++/P++ documentation is presently under development

1.3. SUMMARY 19

crisis in the development of large numerical codes as these codes are required
to be run on many different architectures (especially complex parallel architec-
tures). But by using A++/P++ the user is insulated from the large differences
between high performance computer architectures. At the same time, A++ at
its lowest level is optimized to run on specific architectures in ways that are not
practical for the users’s application to support. With the single source code able
to run on large numbers of serial and parallel machines, A++/P++ supports
the natural evolution of scientific codes from a serial development environment
to a parallel execution environment without constant reimplementation. This
provides for both simplified and cheaper software maintenance.

Since A++/P++ is a class library it works with most any C++ compiler
including many research oriented C++ compilers (such as special parallel C++
compilers). Thus functionality added by such supersets of C++ are attractive
to explore with the A4++/P++ array class and this is readily done.

20

CHAPTER 1. INTRODUCTION

Chapter 2

Portability

This document details the current tested status of A++/P++ on different plat-
forms (architecture and compiler combinations). If your particular combination
of architecture/compilers is not listed here, likely A4+ /P44 will still work, the
defaults within the configuration are to use the GNU g++ and GNU gcc com-
pilers (but all this can be specified on the command line of the configure script.
“configure -help” provides a more complete listing of the options by which to
configure A++ and P++. A separate document details the installation procee-
dure for A4++/P++.

This chapter details the current status of portability of A++/P++. We
support a broad number of machines, however we have better access to some
more than others and this effects the degree to which we can test A++/P++
with different compilers on these platforms. Some platforms (e.g. HP) we don’t
have access to, but people have contributed the correct options.

2.1 Supported Platforms

A++/P++ uses autoconf for managing the installation of the A++/P++ dis-
tribution. Automake is also internally used, as a result all Makefiles follow the
GNU standards for makefile options. The A++/P++ configure script is also
built by autoconf. All the input file for automake (Makefile.am files) are also
included in the distribution.

The options used for all architectures and compilers combinations are gath-
ered together into a single file (A++/config/config.options). Perl scripts read
this file and find the correct variable setting for the construction of Makefiles in
each directory. The construction of the Makefiles in each directory is organized
by autoconf.

21

22 CHAPTER 2. PORTABILITY

2.2 Working and tested for BOTH dynamic and
static libraries

This section list the platforms for which both static and dynamic librarieswork
properly. These are the most commonly used environments and so they have
the most amout of support.

o At++

— Solaris with (CC and cc)

Linux with (g++ and gce)

SGI with (CC and cc compiler)
— Dec with (CXX and cc compiler)

— Blue Pacific (cxx & cc compilers)
o D++

— Dynamic libraries don’t work with the MPICH version of MPI
— Blue Pacific (vendor’snon-mpich MPI)
— Dec (vendor’s non-mpich MPT)

2.3 Working for ONLY static libraries

This section list platforms and compiler versions for which the dynamic libraries
DO NOT work properly.

o A++

— SGI with KCC
— Solaris with KCC
— (anything with KCC, I think)

o P++

Solaris with CC
Solaris with KCC
— SGI with CC
Dec with CXX

Blue Pacific (cxx & cc compilers)

2.4. TESTED BY OTHERS BUT NOT TESTED BY US 23

2.4 Tested by others but not tested by us

Some users use A++/P++ on a number of other platforms and have worked
with us to make sure that we get the configuration options correct for there
architecture and compiler combinations.

o At++
— HP (vendor’s compiler)
o P++

— HP (vendor’s compiler)

2.5 Not tested by anyone (lately)

There are several machines where we would like to be able to run but we have
not tested A++/P++ in a long time or where the code has never been tested.

e Blue Mountain machine at Los Alamos

e Red machine at Sandia

2.6 Tests Done On Arbitrary Platforms

Autoconf permits the specification of many tests on each platform where the
installation of softare takes place. We use a number of standard tests in autoconf
but more importantly we add many which are specific to the installation of C++
applications and additional tests which are specific to the use of applications on
parallel machines.

Each test is available as a macro and is distributed with A++/P++. These
tests include:

e Tests performed specific to serial platforms:
— Tests on the target C and C++ compilers (see below)
e Tests performed specific to C++:

— Test for use of bool in target C++ compiler

— Test for support of explicit template instanciation in the target
C++ compiler (this is a test borrowed from the SAMRAI project).

— Test of support for dynamic libraies
e Tests performed specific to parallel platforms:

— Search for MPT location (a standard CASC autoconf macro)
— Tests specific to MPI

24

CHAPTER 2. PORTABILITY

Search for MPI libraries, include directory, and mpirun

Test for mpicc and mpiCC to be used in place of normal C++
and C compilers

Test compile and run of example MPI code on target platform
using target compiler options using different numbers of proces-
sors. Current test test example MPI application over 1-6 pro-
cessors. Testing over more processors would complicate the in-
stallation on arbitrary machines (like single CPU workstations
running MPT).

Test for requirement of mpirun with -machinefile <filename>
option.

Chapter 3

Requirements, Installation
and Testing

This chapter contains the software and hardware requirements of the A++/P++
array class library. Additionally, it details the installation of the software. In-
cluded are directions for how to modify your environment to use PVM and
where to get the PVM software. Since A++/P++ can optionally use a graph-
ics library for visualization of the A++/P++ array data, info is included about
where the Plotmtv software is available and how to use it with A++/P++.

3.1 Requirements and Options

3.1.1 What Hardware you require

As best I know any computer will do, a PC under MS DOS (with 640K RAM)
will likely run out of memory in the use of the array class for any meaning-
ful problem. However a large PC should work fine. A++ has been used on
Sun workstations, Cray supercomputers (X-MP, Y-MP, C-90), IBM RS-6000
workstations, SGIs, ...

3.1.2 What Software you require

You will require a C++ compiler, there is no way around it. Additionally you
will require either a C or FORTRAN compiler!.

Use of Optional Hardware and Software:

If you have a parallel computer you can use P++ (otherwise A++ and P++
are equivalent (except for some additional overhead in P4+, because it will
recognize that you are not using more than a single processor, but it will store

LCurrently the Machine Dependent Interface for A++/P++ is only available in C, so you
require a C compiler.

25

26 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING

some additional information that A++ will not)?). If you want to use P++ you
will require some communication library. Presently P++ works with PVM and
MPI. The PVM home page is

http://www.epm.ornl.gov/pvm/pvm_home.html, info on where to find pvm is
available there. MPI is available via anonymous ftp from info.mcs.anl.gov and
it is located in the directory pub/mpi the MPI Web page is at
http://WWW.ERC.MsState.Edu:80/mpi/, MPIis available for a large and grow-
ing number of parallel machines and network environments, and thus allows
P++ to run on any of these environment where MPI is supported 2.

Where to get the A++/P++ array class library software:

The software is available from Los Alamos National Laboratory, contact:
dquinlan (dquinlan@llnl.gov). A++/P++ is currently made availabel as part
of teh Overture Framework. Overture’s Home Page is
http://www.llnl.gov/casc/Overture.

3.2 Where to Get A++/P++

The installation of A4+ is simple once you have the A++P++-0.X.X.tar.gz
file. This is available from the Overture web pages at
http://www.llnl.gov/casc/Overture.

3.3 How to Install A++/P++

A++ and P++ are distributed together; they are meant to be installed together
as well. Assuming you have the A++P++-0.X.X.tar.gz file use gunzip and then
untar the file to build the A++ directory.

The configure script requires no additional parameters, it will figure out what
sort of machine you have and run numerous tests to see what options should be
used internally in the installation (this is the standard autoconf mechanism). We
have added many additional test (testing for MPI, dynamic library capabilities,
etc.).

A relatively new feature of A++/P++ is the use of autoconf which builds
a configure script which will setup A++ and P++ plus generate the makefile
for the final build. There are is a single configure script in each directory of the
directory hierarchy (the A++ and P++ configure scripts can be run separately
for example).

To use the configure script (there is no other way) type configure -help to
see the options. The output should appear something like this for the configure
script at the top level directory:

configure -help

2This is a trivial point since both A4+ and P++ have the same interface.

3MPI was announced at Super Computing 93, PVM has been around much longer. MPI
has received considerable vendor support, thus P++ will be restricted to PVM and MPI, but
this is sufficient for general use

3.3. HOW TO INSTALL A++/P++ 27

Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]

Configuration:

--cache-file=FILE cache test results in FILE

--help print this message

--no-create do not create output files

--quiet, --silent do not print ‘checking...’ messages

--version print the version of autoconf that created configure
Directory and file names:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[same as prefix]

--bindir=DIR user executables in DIR [EPREFIX/bin]
--sbindir=DIR system admin executables in DIR [EPREFIX/sbin]
--libexecdir=DIR program executables in DIR [EPREFIX/libexec]
--datadir=DIR read-only architecture-independent data in DIR
[PREFIX/share]
--sysconfdir=DIR read-only single-machine data in DIR [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data in DIR
[PREFIX/com]
--localstatedir=DIR modifiable single-machine data in DIR [PREFIX/var]
--1ibdir=DIR object code libraries in DIR [EPREFIX/1ib]
--includedir=DIR C header files in DIR [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc in DIR [/usr/include]
--infodir=DIR info documentation in DIR [PREFIX/info]
--mandir=DIR man documentation in DIR [PREFIX/man]
--srcdir=DIR find the sources in DIR [configure dir or ..]

--program-prefix=PREFIX prepend PREFIX to installed program names
--program-suffix=SUFFIX append SUFFIX to installed program names
--program-transform-name=PROGRAM

run sed PROGRAM on installed program names

Host type:
--build=BUILD configure for building on BUILD [BUILD=HOST]
--host=HOST configure for HOST [guessed]
--target=TARGET configure for TARGET [TARGET=HOST]
Features and packages:
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]
--with-PACKAGE [=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--x-includes=DIR X include files are in DIR
--x-libraries=DIR X library files are in DIR

--enable and --with options recognized:
--enable-PXX also configure P++

28 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING

And for the A++ directory, the output of configure -help is:

configure -help
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]

Configuration:
--cache-file=FILE cache test results in FILE
--help print this message
--no-create do not create output files
--quiet, --silent do not print ‘checking...’ messages
--version print the version of autoconf that created configure

Directory and file names:
--prefix=PREFIX install architecture-independent files in PREFIX
[@APP_DEFAULT_PREFIX@]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[same as prefix]

--bindir=DIR user executables in DIR [EPREFIX/bin]
--sbindir=DIR system admin executables in DIR [EPREFIX/sbin]
--libexecdir=DIR program executables in DIR [EPREFIX/libexec]
--datadir=DIR read-only architecture-independent data in DIR
[PREFIX/share]
--sysconfdir=DIR read-only single-machine data in DIR [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data in DIR
[PREFIX/com]
--localstatedir=DIR modifiable single-machine data in DIR [PREFIX/var]
--1libdir=DIR object code libraries in DIR [EPREFIX/1lib]
--includedir=DIR C header files in DIR [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc in DIR [/usr/include]
--infodir=DIR info documentation in DIR [PREFIX/info]
--mandir=DIR man documentation in DIR [PREFIX/man]
--srcdir=DIR find the sources in DIR [configure dir or ..]

--program-prefix=PREFIX prepend PREFIX to installed program names
--program-suffix=SUFFIX append SUFFIX to installed program names
--program-transform-name=PROGRAM

run sed PROGRAM on installed program names

Host type:
--build=BUILD configure for building on BUILD [BUILD=HOST]
--host=HOST configure for HOST [guessed]
--target=TARGET configure for TARGET [TARGET=HOST]
Features and packages:
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--x-includes=DIR X include files are in DIR

--x-libraries=DIR X library files are in DIR

3.3. HOW TO INSTALL A++/P++ 29

--enable and --with options recognized:

--with-CC=ARG manually set C compiler to ARG
--with-M4=ARG manually set M4 to ARG
--with-CXX=ARG manually set C++ compiler to ARG

--enable-CXX0PT=ARG manually set CXXOPT to ARG
--enable-COPT=ARG manually set COPT (optimization flags) to ARG
--enable-CXXDEBUG=ARG manually set CXXDEBUG to ARG

--enable-CDEBUG=ARG manually set CDEBUG to ARG
--enable-CXXOPTIONS=ARG manually set CXXOPTIONS to ARG
--enable-COPTIONS=ARG manually set CDEBUG to ARG

--enable-CXX_WARNINGS=ARG manually set CXX_WARNINGS to ARG
--enable-C_WARNINGS=ARG manually set C_WARNINGS to ARG
--with-CXX_TEMPLATES=ARG

manually set CXX_TEMPLATES to ARG
--with-ARCH_LIBS=ARG manually set ARCH_LIBS to ARG
-—-enable-INTERNALDEBUG turn on internal debugging for any ARG
--with-USE_TAU_PERFORMANCE_MONITOR=ARG manually set USE_TAU_PERFORMANCE_MONITOR to YES or NO f
--enable-SHARED_LIBS, manually enable building of shared libraries, off by default
--enable-STATIC_LINKER=ARG manually set linker for linking static libraries to ARG
--enable-STATIC_LINKER_FLAGS =ARG manually set static linker flags to ARG
--enable-SHARED_LIB_EXTENSION=ARG manually set file extension for shared libraries to ARG (e.g
--enable-C_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C object file
--enable-CXX_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C++ object
--enable-C_DL_COMPILE_FLAGS=ARG manually set C compiler flags to make objects suitable for bt
--enable-CXX_DL_COMPILE_FLAGS=ARG manually set C++ compiler flags for creating object files =
--enable-C_DL_LINK_FLAGS=ARG manually set flags for linking C object files into a shared libz
-—-enable-CXX_DL_LINK_FLAGS=ARG manually set linker flags for linking C++ object files into a
--enable-RUNTIME_LOADER_FLAGS=ARG manually set runtime loader flags to ARG

For the P++ directory, the output of configure -help is:

configure -help
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]

Configuration:

--cache-file=FILE cache test results in FILE

--help print this message

--no-create do not create output files

--quiet, --silent do not print ‘checking...’ messages

--version print the version of autoconf that created configure
Directory and file names:

--prefix=PREFIX install architecture-independent files in PREFIX

[@PPP_DEFAULT_PREFIX@]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[same as prefix]
--bindir=DIR user executables in DIR [EPREFIX/bin]
--sbindir=DIR system admin executables in DIR [EPREFIX/sbin]

30 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING

--libexecdir=DIR program executables in DIR [EPREFIX/libexec]
--datadir=DIR read-only architecture-independent data in DIR
[PREFIX/share]
--sysconfdir=DIR read-only single-machine data in DIR [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data in DIR
[PREFIX/com]
--localstatedir=DIR modifiable single-machine data in DIR [PREFIX/var]
--1ibdir=DIR object code libraries in DIR [EPREFIX/1ib]
--includedir=DIR C header files in DIR [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc in DIR [/usr/include]
--infodir=DIR info documentation in DIR [PREFIX/info]
--mandir=DIR man documentation in DIR [PREFIX/man]
--srcdir=DIR find the sources in DIR [configure dir or ..]

--program-prefix=PREFIX prepend PREFIX to installed program names
--program-suffix=SUFFIX append SUFFIX to installed program names
--program-transform-name=PROGRAM

run sed PROGRAM on installed program names

Host type:
--build=BUILD configure for building on BUILD [BUILD=HOST]
--host=HOST configure for HOST [guessed]
--target=TARGET configure for TARGET [TARGET=HOST]
Features and packages:
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]
--with-PACKAGE [=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--x-includes=DIR X include files are in DIR
--x-libraries=DIR X library files are in DIR
--enable and --with options recognized:
--with-CC=ARG manually set C compiler to ARG
--with-M4=ARG manually set M4 to ARG
--with-CXX=ARG manually set C++ compiler to ARG

--enable-CXX0PT=ARG manually set CXXOPT to ARG
--enable-COPT=ARG manually set COPT (optimization flags) to ARG
--enable-CXXDEBUG=ARG manually set CXXDEBUG to ARG

--enable-CDEBUG=ARG manually set CDEBUG to ARG
--enable-CXXOPTIONS=ARG manually set CXXOPTIONS to ARG
--enable-COPTIONS=ARG manually set CDEBUG to ARG

--enable-CXX_WARNINGS=ARG manually set CXX_WARNINGS to ARG
--enable-C_WARNINGS=ARG manually set C_WARNINGS to ARG
--with-CXX_TEMPLATES=ARG

manually set CXX_TEMPLATES to ARG
--with-ARCH_LIBS=ARG manually set ARCH_LIBS to ARG
--enable-INTERNALDEBUG turn on internal debugging for any ARG
--with-USE_TAU_PERFORMANCE_MONITOR=ARG manually set USE_TAU_PERFORMANCE_MONITOR to
--enable-SHARED_LIBS, manually enable building of shared libraries, off by default

3.3. HOW TO INSTALL A++/P++ 31

--enable-STATIC_LINKER=ARG manually set linker for linking static libraries to ARG

--enable-STATIC_LINKER_FLAGS =ARG manually set static linker flags to ARG

--enable-SHARED_LIB_EXTENSION=ARG manually set file extension for shared libraries to ARG (e.g.
--enable-C_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C object file
--enable-CXX_DYNAMIC_LINKER=ARG manually set linker for linking shared library from C++ object
manually set C compiler flags to make objects suitable for bt

manually set C++ compiler flags for creating object files
manually set flags for linking C object files into a shared libz

manually set linker flags for linking C++ object files into a

--enable-C_DL_COMPILE_FLAGS=ARG
--enable-CXX_DL_COMPILE_FLAGS=ARG
--enable-C_DL_LINK_FLAGS=ARG
--enable-CXX_DL_LINK_FLAGS=ARG

--enable-RUNTIME_LOADER_FLAGS=ARG manually set runtime loader flags to ARG

--disable-MPI
--with-mpi-include=DIR
--with-mpi-1ibs=LIBS

Do not set up MPI flags

mpi.h is in DIR

LIBS is space-separated list of library names
needed for MPI, e.g. "nsl socket mpi"

--with-mpi-1lib-dirs=DIRS

--with-mpi-flags=FLAGS

--with-MPICC=ARG
--with-mpi-include=DIR
--with-mpi-1ibs=LIBS

DIRS is space-separated list of directories
containing the libraries specified by
‘--with-mpi-1libs’, e.g "/usr/lib /usr/local/mpi/lib"
FLAGS is space-separated list of whatever flags other
than -1 and -L are needed to link with mpi libraries
ARG is mpicc or similar MPI C compiling tool

mpi.h is in DIR

LIBS is space-separated list of library names

needed for MPI, e.g. "nsl socket mpi"

--with-mpi-1lib-dirs=DIRS

--with-mpi-flags=FLAGS

--with-MPICC=ARG

DIRS is space-separated list of directories
containing the libraries specified by
‘--with-mpi-1libs’, e.g "/usr/lib /usr/local/mpi/lib"
FLAGS is space-separated list of whatever flags other
than -1 and -L are needed to link with mpi libraries
ARG is mpicc or similar MPI C compiling tool

--with-mpirun=ARG ARG is mpirun or equivalent
--with-mpi-machinefile=FNAME FNAME lists machines to run mpi progs on

--with-STL_INCLUDE=ARG
--without-PADRE
--with-STL_INCLUDE=ARG
--with-GLOBAL_ARRAYS

manually set STL_INCLUDE to ARG

Avoid using PADRE Library within P++

manually set STL_INCLUDE to ARG
Use GLOBAL ARRAYS Library (from PNL) within PADRE

Note that numerous option araavailable, though non should be reuired for a
default installation of A++/P++.
An example configure line to install A++ might be:

configure

In another example to configure for a specific C++ and C compiler the

command line would be:

32 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING

configure —-with-CC=cc —-with-CXX=CC

In still another example to configure for without optimization to improve
the compile speed of the A++/P++ library: the command line would be:

configure --enable-CXX0PT= --enable-COPT=

In still an other example to compile P4++ (also turning on INTERNALDE-
BUG option) in addition to A++:

configure —-enable-INTERNALDEBUG --enable-PXX

On some machines when compiling P++ the location of MPI must be spec-
ified. Example specification of MPI location:

configure --enable-PXX --with-CC=cc --with-CXX=cxx --enable-SHARED_LIBS \
—-with-mpi-include=/usr/opt/MPI170/include \
—--with-mpi-1lib-dirs=/usr/opt/MPI170/1ib \
--with-mpi-libs=mpi \
—--with-mpirun=/usr/opt/MPI170/bin/dmpirun

There are clearly numerous options available to specify numerous details of
the compilation.

3.3.1 Most common options to configure
The most common options to specify for building only A++ are just (no options)
configure
and for P++ are just (specify compilation of P++):
configure —-enable-PXX

The configure script will handle the identification of the machine and other
details automatically or will output what options need to be specified with
additional data.

3.3.2 Importance of compiling A++/P++ with the IN-
TERNALDEBUG option

For A++ this is not an important option though using it will provide internal
error checking and will likely help catch mistakes you make before they cause
mysterious problems which are difficult to explain. For the most part A++ is
sufficiently mature that if you just turn on the bounds checking 77 it will catch
mMost user errors.

For P++ we suggest the use of the INTERNALDEBUG option when it is
compiled because this will catch internal errors and be more useful to use if you
report a bug. But with the INTERNALDEBUG option P++ will run noticeably
slower. So you might choose to have two versions. This reflects the fact that we
are still fixing bugs within P++ since it is still being tested at Livermore.

Example fragement of output from configure --help:

3.4. TESTING THE A++/P++ INSTALLATION 33

--enable-INTERNALDEBUG turn on internal debugging for any ARG

Example command line for configure showing the specification of the INTR-
NALDEBUG option

configure --enable-INTERNALDEBUG

3.3.3 Parallel Communication Libraries

P++ supports the use of either PVM or MPI, but is currently developed us-
ing MPI (it used to be the other way around). So we now suggest the use of
MPI with P++ for simplicity and because in the future PVM support will be
limited (because the PADRE distribution library uses several publically avail-
able libraries internally and few of these can support PVM). The following
sub-sections discribe the installation of P++ with PVM and MPI respectively.
Note for users at LLNL: MPI is already installed and you should use
it.

How to Install MPI

Get MPI (the ftp site is listed above) and install MPI following the instructions
enclosed with MPI, nothing special is required. Then within the installation of
A++/P++, it is only required that the use have the MPI/bin directory in their
path (so that mpirun can be found). The tests within autoconf (our specialized
version of macros for autoconf) will test for MPI, if it is not found the user may
have to specifiy the location of the direcctory explicitly using the command line
options.

How to Install PVM

Get PVM from the web and install it using the instructions that come with
PVM. Nothing about this step is in any way specific to using P++.

3.4 Testing the A++/P++ Installation

Run make check from any directory of the A++/P++ directory tree and all test
will be run for that subtree. Running make check from the top level direcotry
(A++P++) will run all tests (for A++ and P++).

A small set of test programs is available in the A++/EXAMPLES and
P++/EXAMPLES directories and these can be used to test A++ and P++.
The output from both A++ and P++ should be nearly the same. The EX-
AMPLES directory contains a makefile which can be used to make the example
applications. The A++ test program is called ”testcode.C” and is located in the
EXAMPLES subdirectory. The test code will work properly on a single proces-
sor using P+, but not in parallel since it uses indirect addressing which in not
a part of P++ yet. There is a separate test code for P++, called ”testppp.C”.

34 CHAPTER 3. REQUIREMENTS, INSTALLATION AND TESTING

It does run in parallel and it is a common test that we have for each new release
of the A++/P++ implementation.

Additional test will be placed into the A++/TESTS and P++/TESTS di-
rectories over time. These are mostly previously fixed bugs over the years which
we would like to avoid reintroducing in the future (hence we provide a simple
mechanism to test A++ and P++ against previously reported bugs that have
been fixed).

These tests (in A++/EXAMPLES, P++/EXAMPLES, A++/TESTS, and
P++/TESTS) are automatically run by running “make check” in from the
top level A++P++ directory. This is one or our best mechanisms for testing
A++/P++.

Chapter 4

Programming Model

Most all software assumes some programming model that will provide the user
with sufficient intuition to use the software in a way reasonably consistent with
its design. The A++/P++ programming model provides an underlying frame-
work for the design of software using the library A++/P++ array class library.
It is intended to be simple since it is an array language at its core A++ is very
similar to FORTRAN 90, and P++ is similar to HPF (though without spe-
cial comment like directives). This chapter will first describe the programming
model for A++, the serial array class, and then proceed to define the program-
ming model for P++ which represents extensions of the serial programming
model to provide the specification of array object distributions onto multiple
Processors.

4.1 A++ Programming Model

A++ is simple, the programming model of A++ is focused on arrays as objects
(data), and array operations (functions that operate on array objects). We
don’t assume that all computations can be expressed using such array objects
and many are clearly not suited (Gaussian Elimination for example), however
a very large set of scientific computations is well suited to expression via array
syntax (local relaxation methods) and this portion is what we address and target
with the A++/P++ array classes. In addition to A++ all of C++ is available
as well as any other libraries written in C++4'.

By providing a programming model centered around an array we don’t ex-
clude the interaction with other programming models in the same application.
For example, a matrix class library could represent a matrix model for the so-
lution of linear systems and obtain the problem from a part of the application

LSince C++ interfaces to FORTRAN (and nearly every other language as well), all other
libraries are available to the user. This is the advantage of working within the C++ language
to define libraries like A++/P++ rather than resorting to specialized languages with limited
portability.

35

36 CHAPTER 4. PROGRAMMING MODEL

that used the array objects (the array programming model). Such simple in-
teractions between class libraries are intentional and hopefully more complex
interactions will result from more extensive use of A++/P++.

The A++/P++ array class library is intended as a foundation class in the
sense that it can be used to build more sophisticated user defined types which
are application specific. A++/P++ does not however attempt to address the
distribution of other more complex objects like trees, lists, etc.?

4.2 P++ Programming Model

A Parallel Computer consists (for our simple model) of:
e Processors (many of them) each with its own local memory
e Interconnection network defining now the processors are connected.

The P++ programming model is identical to that of the one for A++, but
extended to define the partitioning of the array objects across the local memories
of a multiprocessor computer. This is the principle reason why the P++ library
can be substituted at compile time for the A++ class library allowing the reuse
of the serial course code in the parallel environment.

In the manipulation of array objects P++ abstracts the parallel machine
but provides the user with control over the layout of the array objects into
the separate memories of each processor. The layout management has its own
programming model (this layout model is similar to HPF is many ways but
contains additional functionality which is well suited to the manipulation of
large numbers of arrays in a parallel environment (instead of just a single grid
(or a small number)).

4.3 The programming model of P++

P++ uses the SPMD programming model, this is important since without the
SPMD programming model the simplified representation of the parallel program
from the serial program would not be practical. Specifically, P4+ is an SPMD
implementation of a Data Parallel programming model, though not limited ex-
clusively to the data parallel programming model. The data parallel model is
implemented using two communication models internally. These allow for ef-
ficient communication between aligned array operations and permit unaligned
array operations as well. The user never sees either of these two execution mod-
els since they are abstracted. What is seen is that array operations between
aligned array objects is more efficient than those between unaligned array ob-
jects (this should be no surprise since unaligned array operations require more
communication, hense they are avoided within most of parallel programming.

2Today the are libraries that formally derive from the A++/P++ array objects to add
additional functionality specific to grid geometry etc.

4.3. THE PROGRAMMING MODEL OF P++ 37

Thus P++ combines the serial programming model with a virtual shared
grid model where the operations on array objects are executed regardless of
their decomposition in the multiprocessor environment. The combined effect
of these serial and parallel programming models being identical is the principle
means by which P++ allows serially developed codes to be run on distributed
memory machines. The efficiency of the execution of the serial code in the
parallel environment is determined by the alignment of the data within the
array operations.

4.3.1 Single Program Multiple Data stream (SPMD)

In contrast to the explicit host/node programming model which requires both a
host and one or more node programs, the SPMD programming model consists
of executing one single program source on all nodes of the parallel system.

The implementation of the SPMD model requires that commonly available
functionality in the serial environment be provided in the parallel environment in
such a way that the serial source code can be used on the distributed memory
machine. One of the most important functionalities that is provided in the
parallel programming model to support basic functionality of the serial code
is a parallel I/O system. This can then be used in place of the serial I/O
system, to support the required functionality of the parallel SPMD programming
environment,.

Currently, only basic functionality of the SPMD programming model (I/O
system: printf, scanf; initialization and termination of processes) is available.
Implementation details are abstracted from the user. The SPMD programming
model replicates the functionality of the traditional parallel host/node program-
ming model. For example, the standard function scanf for reading from standard
input is implemented in such a way that an arbitrarily chosen master node reads
the data from standard input and distributes it to all other nodes (slave nodes).
This master/slave relationship is only present within the Parallel I/O System
and not used elsewhere in P++.

4.3.2 Virtual Shared Grids (VSG)

The concept of Virtual Shared Grids gives the appearance of Virtual Shared
Memory restricted to array variables. Computations are based on global index-
ing. Communication patterns are derived at runtime (though communication
schedules are cached for improved performance), and the appropriate messages
are automatically generated by P4++. In contrast to traditional Virtual Shared
Memory, where the operating system does the communication without having
information about the algorithm’s data and structure, the array syntax of P4+
provides the means for the user to express details of the algorithm and data
structure to the compiler and runtime system. This guarantees that the num-
ber of communications and the amount of communicated data is minimized.
Through the restriction to structured grids, the same kind and amount of com-
munication, as with the explicit Message Passing model is sent/received and

38 CHAPTER 4. PROGRAMMING MODEL

therefore also approximately the same efficiency is achieved. This is a tremen-
dous advantage over the more general (traditional) Virtual Shared Memory
model.

There are two basic communication models that are currently implemented
in P++. How they can interact, is described in more detail in the examples:

e VSG Update:

In the implementation of the general Virtual Shared Grids concept, within
the VSG Update communication model, we Restrict the classical Owner
Computes rule, that might be applied to whole expressions, to binary
subexpressions and define the Owner arbitrarily to be the left operand.
This simple rule handles the communication required in the parallel en-
vironment; specifically, the designated owner of the left operand receives
all parts of the distributed array necessary to perform the given binary
operation. Thus the temporary result and the left operand are partitioned
similarly (see Figure 3.1).

— P++ user level:
A=B+C

— P++ internal execution:

P1: T11 = B11 + C1
receive C21 from P2
T12 = B12 + C21

P2: T2 = B2 + C22
send C21 to P1

P3: idle

P1: send T1 to P3

P2: send T2 to P3

P3: receive T1 from P1
receive T2 from P2
A=T

Figure 4.1: An example for VSG Update based on the Owner computes rule: A
= B + C on 3 processors

Within Figure 3.1 we have three P++ array objects (A,B, and C), each
is distributed differently. The first operation is to form a temporary from
B and C. Thus the temporary, T, is the result of the operation B + C.
By our VSG rule, T is given the same distribution as the left operand, B.

4.3. THE PROGRAMMING MODEL OF P++ 39

So T is build with the same distribution as B (same size as B, as well)
and the messages are generated to get the parts of C that are required
for the operator+ operation with B. After T is formed the operator=
operation is done to fill in the array, A, with the intermediate result from
T. Each operand has a different distribution (since A and B had different
distributions and T matches the distribution of B). The message passing
in generate to get the data relavant for each processors portion of T which
is required by the processors owning A.

e Overlap Update: Within the VSG Update communication is intro-
duced (if required because of the indexing of the operands) within each
binary operation. This is not always efficient if the arrays are aligned
(even if it is the only way to make unaligned array operations work). A
well developed technique for handling such issues is to introduce ghost
boundaries of overlap between the edges of the partitioned data. Such
ghost boundaries are typically meant to be ”read only” copies of the nei-
boring processors data.

This model is more efficient since within stencile operaations (if the ghost
boundary width permits) the replicated data within the ghost bounaries
can be read and message passing to get such data is avoided. Upon the
completion of the array statement the ghost boundaries can be recopied
to force them to be a consistant representation of the nieboring proces-
sors data®. The point of this alternate communication model is that for
aligned array operations (not counting the indexing which would unalign
the references to the data) message passing can be done once within an
array statement instead of at each binary operation, this is much more ef-
ficient (but only is the array objects are aligned, otherwise this technique
can not work). Figure 3.2 shows the distribution of a P++ array with
ghost boundaries of non zero width.

Figure 4.2: The standard method of grid partitioning with overlap

3More detailed mechanisms can be used to represent valid and invalid ghost boundaries
and so the update of the ghost boundaries can be scheduled more loosely.

40 CHAPTER 4. PROGRAMMING MODEL

P++ arrays (Virtual Shared Grids) are constructed in a distributed fash-
ion across the processors of the parallel system. Partitioning information and
processor mapping is stored internally. A low level library, MultiBlock Parti*
is used to hold information about the distributions and to handle the update
of ghost boundaries and more irregular data transfers as required by the VSG
updates. MultiBlock Parti has been of great help in simplifying the desing of
P++ and speeding its development.

All information, required for evaluating expressions using either the VSG
or Overlap update models, is expressed through the A++/P++ array syntax.
Additional information required is obtained from the distribution of the array
objects which is stored internally within each array. This information is used
to generate message passing through either of the two communication models
depending on if the ghost boundaries are sufficiently large to use the more
efficient Overlap update model.

4 Available from University of Maryland and the result of research by Al Susmman and
Joel Saltz.

Chapter 5

A++: Serial Array Class
Library

This section is not intended to be a reference section (there is already one of
those) but is intended to detail how A++ is meant to be used (and discuss how
to abuse it t00).

A++ provides an array language implemented in C++ as a class library. It
provides array syntax for the expression of numerical algorithms, this syntax
includes indexing using Index objects (triplets representing base, bound, and
stride). Beyond this there are many details to explain and clarify.

5.1 Views of A4+ arrays

A++ includes overloaded parenthesis ” ()” operators' which allow for the cre-
ation of a view into an existing array object. The value returned from the
parenthesis operator is another array object, this array object is a view. Any
modification of the view is reflected in the object of which it is a view.

For example,

doubleArray A(5,5,5); // A’s range is from 0..4 along each axis

A =1;
Range I(1,3), J(1,3), K(1,3);
A (I,J7,K) = 3; // Sets view of interior of A to 3

5.1.1 Indexing

Vector Indexing

A++ provides for the indexing of a region of an array object, as in the previous
example using the Range objects I, J, K. Here the Range object is used to

Lusing the ::operator()() member function of the array objects.

41

42 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY

represent a base bound pair of values over which the array operation are to
take place. In addition to the Range objects a slightly more flexible object is
provided; the Index object. The Index object stores the base, length of access,
and stride. The Range and Index objects have many different constructors.

Scalar Indexing

A++ also provides scalar indexing, that is indexing using only integer values and
returning a reference to a scalar. This scalar indexing is implemented using the
same parenthesis operator, but overloaded (in the C++ sense) to take integer
values.

For example,

doubleArray A(5,5,5);
A =1;
A(2,3,4) = 5; // sets a single element in A to the value 5

Bases of Arrays

All A++ array objects have a base, bound and stride for each axis of their
multidimensional representation. The (Bound-Base)+1 is the length along each
axis (assuming stride is 1). The Base by default is the value of the ”global
default base” which is, by default, initialized to be ZERO. The base can be
changed dynamically though the setBase member function. If the array is
built using Range objects, as in:

Range I (-10,20);
Range J (10,20);

Range K (1000,2000) ;
doubleArray A (I,J,K);

then the bases of the array are -10, 10, and 1000; for each axis. The lengths
along each axis would then be 30,10, and 1000.

Valid indexing of the array objects requires that knowledge of the index
space represented by the array object. Using the previous array as an example,

Range I_1 (21,25);

Range J (10,20);

Range K (1000,2000) ;

A (I_1,J,K) = 0; // error out of bounds access
Range I_2 (0,10);

A (I_2,J,K) = 0; // correct usage

The base, bound and stride can be obtained from the array objects by using the
access member function: getBase, getBound, and getStride. Very general
functions that work on array objects should not assume the base of the array
object is always zero or that the stride is always 1. Though an assumption of the
stride being 1 is generally acceptable since the strided view of an array object

5.2. REFERENCE COUNTING 43

is 1. However, if your application calls FORTRAN (or any other language),
then the strides issue will be important and you should check the stride to
accommodate non-unit strides (unit stride implies stride = 1). The pointer to
the internal array data, returned by the getDataPointer member function,
points to the first valid array element and is not offset for any nonzero base.

Thus base of arrays are defined at construction of the array objects, they
can be nonzero, and they can be changed dynamically. Note that if a function
taking an array object as input changes the base of the array the array object
will have the new base as a side effect of the function call.

Bases of Views

The views returned from the indexing of A++ array objects using Range and
Index objects are ordinary A++ objects, no different from the A++ object
of which they are a view. Except, that they are marked internally as being a
view. The isAView member function returns a boolean value to determine if
an array object is a view. Other details are important for views as well:

e The base of a view can be different than that of the array of which it is
a view. Specifically it is the Base Index or Range object used to build
the view.

e The stride of a view may be not unit stride (Unit Stride == 1).

e The pointer to the raw data for a view might not be what you expect. The
pointer to the data returned by the getDataPointer member function
is a pointer to the first valid element of the original array. The view is
a subset of that; determined by the base, bound and stride of the view
(minus the base of the original array object). So this must be understood
when handing the pointer to data represented by a view of an array object
to a FORTRAN function.

5.2 Reference Counting

Reference counting is the storage of a value that represents the number of ex-
ternal references to an object. The purpose is to allow many external references
to an object and also permit the object to be cleared from memory when there
are no remaining references. For example, the internal array data within the
A-++ array objects is reference counted. A view of the data is an A++ array
which has an external reference to the data of another object (the original array
object from which the view was taken).

5.2.1 Internal A++4 Reference Counting

This subsection forms an example to explain what reference counting is since
internal reference counting of the data within A++ is completely hidden within

44 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY

A++. So the use need not worry about the manipulation reference counts for
the raw data used by the array objects.

floatArray A (10);
Range I (0,4);
A(I) = 5; // A(I) is a view of A with a reference to A’s data

In this example A(I) is a view of the array data in A, but it is a valid
floatArray object. It has an external reference to the same data as in A (A’s
data). If A were deleted A’s data would not be released until the view, A(I),
went out of scope (the compiler controls the calls to the destructors since views
are local objects (sometimes called compiler temporaries)). This is the way
the reference counting works on the array data used internally within the array
objects, the user never sees this level of reference counting.

5.2.2 External A++ Reference Counting

If applications use A++ objects, and specifically pointers to them, so as to gen-
erate multiple references then A++ has member functions to help manipulate
and handle these multiple references. This is the A++ reference counting that
this section is really about. The point is that reference counting is more eas-
ily done if it is keep with the array objects directly. A++ member data allow
this and A++ member functions allow access and manipulation of that member
data. The use of this reference counting only appears in special uses of A++
within applications and more commonly within other libraries.

A++ arrays contain reference counting that may be manipulated by the user
to allow many references to a single A++ array object. This is required if you
wish to build code that uses A++ array object through pointers to those A++
arrays, and support multiple references to the A++ array objects. Just using
pointers to A++ array objects is not sufficient to require the use of the A++
reference counting. In general you have to be building separate objects each
of which wants to point (via a pointer) to a single A++ array. This method
of building code is typical of C style programming, but is largely unnecessary
when using A++ array objects since separate array objects can be build that
each refer to the same data. The difference is a subtle one, basically you can
manage the reference counting your self, or you can let A++ handle it for you,
we suggest the latter, but either will work fine?.

5.3 Interoperability with different languages

A++ can be mixed with other languages quite easily using the C++ extern
"C" interface. The details of doing this are a C++ issue and is the standard
way that C++ is mixed with C language code. Mixing C++ with FORTRAN is
unfortunately somewhat compiler dependent. Beyond the C++ to C, or C++ to

2We think it is easy to create errors if users are forced to manage such details explicitly.

5.4. TEMPORARY HANDLING 45

FORTRANS?, the mixing of A++ and FORTRAN or C is provided by low level
access to the raw data which contains the data values in the A++ array object.
Additional member functions are provided to obtain size and view information
that is required for interpretation of the raw data pointer (required in the case
of a view).

The A++ array class also provides scalar indexing, but scalar indexing is
not efficient in A++ since depending on the degree of optimization within the
compiler, the inlined functions are not well optimized.

5.4 Temporary Handling

A++ array objects manage the temporaries that their use in array expressions
create. In the expression A = B + C, one temporary is built to hold the result of
B + C,asin Temp = B + C. This temporary is then used in the expression A =
Temp to finish the assignment. In this case the assignment can be optimized and
the actual assignment of elementwise data avoided by allowing A to copy the
pointer to the temporary’s raw data. So the operations would be an elementwise
addition of B and C and then a copy of a pointer. Such trivial operations
perform the same as lower level C for FORTRAN code. The detail regarding
temporary management is that the assignment operator that copies the pointer
also deletes the temporary Temp. It is not clear from a single line of code, but in
longer functions that might contain many A++ array expressions, if we failed
to manage the lifetime of the temporaries we would allocate one for each array
expression. The temporaries would accumulate and waste significant memory
resources. For example:

// Here we make up a fictitious array class that does not manage temporaries

// we will call this class, analogous to a doubleArray, No_Temporary_Management_doubleArray

void Waste_Memory ()

\{
No_Temporary_Management_doubleArray A(100,100,100),

B(100,100,100),
€(100,100,100),
D(100,100,100) ;

// statement repeated to show wasted space from long
// function with many array statements.

A =B+ C+ D;
A =B+ C+ D;
A =B+ C+ D;
A =B+ C+ D;
A =B+ C+D;
A =B+ C+ D;

3interestingly the reverse direction is possible as well, but just requires usage of the mangled
names (and knowledge of what the mangled names are)

46 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY

\}

In this example function, if there was no temporary management then the
C + D would generate a temporary and the lifetime of that temporary would
be the local scope of the function*. Since the temporary has local scope its
destructor is called when the function exits. In this case we are assuming no
temporary handling so C + D would generate a temporary and the B + Temp
would generate a temporary, and then the assignment would be done. Since
we assume no temporary handling the assignment operation would likely do an
explicit elementwise copy of A = Temp2. Thus each line generates two tempo-
raries and there are 6 lines, so we have accumulated 12 temporaries at the end
of the function. Note that this is not the way that A++ works, but
is motivation for the temporary handling that A++ provides. As the
function exits the destructor is called and the 12 temporaries are released. Until
that point of function exit we had wasted 12 million double words of memory®.

A++ implements temporary handling which minimizes the number of tem-
poraries that would otherwise accumulate within the execution of array state-
ments. By building the temporaries with a scope that is controlled by A++, the
A-++ functions internally control the lifetimes of the A++ temporaries®. Then
operations using A++ array objects check to see if they have a temporary ob-
ject and if so provide more efficient handling of the operation. For example, in
the previous function, the result of C + D would generate a temporary, but then
B + Temp would reuse the temporary array object as an accumulator’. Then
the assignment operations would recognize the temporary object and copy the
pointer the raw memory and delete the (now empty) temporary array object. At
the end of the expression there are no temporaries that have accumulated. This
is the superiority of this execution model for A++ array objects. Typically at
most one temporary is created during the evaluation of an array expression, and
none are allowed to accumulate across expressions. For large scale computations
this is an important feature of the temporary handling.

The drawback to temporary handling is that if we pass an expression to a
function then the first use of the function’s parameter will handle the parameter
right out of existence. To fix up this special case we provide the evaluate()
function which converts the temporary to a non-temporary to avoid confusing
the A++ aggressive temporary management. Note that if a non temporary is

4Technically it must be at least as long as the statement and no longer than the local
function scope, it is complier dependent (which is the worst of all solutions since it is not
consistent within different C++ compilers), unfortunately AT&T Cfront based compilers such
as what are most readily available on many high performance computers (Cray YMP, C-90,
etc.) assume the temporary would have local scope and many PC compilers (and GNU g++,
not a PC compiler) assumes the opposite.

5And that was just a little function, more meaningful functions could easily exhaust avail-
able computer memory resources.

6Specifically, all A+-+ binary operations return A4+ array objects by reference and mark
the objects internally as temporary.

"this works especially well in long expressions.

5.5. HOW TO ABUSE A++ 47

passed in to the eval() function, then a locally scoped shallow copy is built®.

5.5 How to abuse A4+

Like most good things, there are some ways to break A4+, most of them are
along the lines of using the access A4+ provides to you to get to its low level
data and then deleting or changing that data in some way.

e deleting low level A++ array data

doubleArray A (100,100);
double *Raw_Data_For_A = A.getDataPointer();
delete Raw_Data_For_A; // error: delete the data that was allocated for A

e passing expressions by reference (without calling evaluate())

void foo (const doubleArray & X)
{
X=X=x*X; // if X is a temporary (as in from an expression)
// then X well be deleted by the operatorx*
// then the assignment using operator= would be

// invalid.
}
doubleArray B (100,100);
foo (B * B); // error
foo (evaluate(B * B)); // correct

e not checking for a view when using the raw data from an array object

doubleArray C (100,100);
Range I (10,89,2);

// Now get a pointer to the data containd in a view of C using the Range object, I.
double *Raw_Data_For_C = C(I,I).getDataPointer();

// The wrong way to access the raw data.

for (int j=0; j < C.getLength(1); j++) // error: Access of raw data does not
for (int i=0; i < C.getLength(0); i++) // account for view, specifically
Raw_Data_For_C [j*getLength(1)+i] = 0; // the base, bound, and stride.

// The correct way is more complex (mostly becase this is a 2D example)

// This example assumes a very general array C with nonzero base and

// general strided view.
doubleArray & D = C(I,I); // avoid recomputing the view C(I,I);
int Base_0 D.getBase(0) - C.getBase(0); // we want the offset from the base of D
int Base_1 D.getBase(1) - C.getBase(1); // we want the offset from the base of D
int Bound_0 D.getBound(0) - C.getBase(0);// we want the offset from the bound of D
int Bound_1 = D.getBound(1l) - C.getBase(1);// we want the offset from the bound of D.

8This has the effect of doing what the user would expect without the evaluate() function
call.

48 CHAPTER 5. A++: SERIAL ARRAY CLASS LIBRARY

// The following assume that the stride of C might not be 1, but in this case we know it is 1.
// for example, the stride 2 view of a stride two array (another view for example)
// would be a stride 4 access of the raw data.
int Stride_0 = D.getStride(0) * C.getStride(0); // we want the stride of the raw data
int Stride_1 = D.getStride(1l) * C.getStride(1); // we want the stride of the raw data
// This assumes that the length of C is really the length of the raw data
int Size_0 = C.getRawDataSize(0);

// Note that many compilers will not lift the loop invariant part
// "j*Size_0" and so for such compilers a more efficient looping
// structure is possible (but not shown here)

for (int j=Base_1; j <= Bound_1; j += Stride_1) // correct: Access of raw data does not
for (int i=Base_0; i <= Bound_0; i += Stride_0) // account for view, specifically
Raw_Data_For_C [j*Size_0+i] = 0; // the base, bound, and stride.

These code fragments show the incorrect usage of the low level access that
A++ provides. It is not a goal of A++ to protect the user from himself/herself.

Chapter 6

P++

6.1 Goals of the P++ development

The general goal of the P++ development is to provide a simplified parallel pro-
gramming environment. In this section some ideal requirements for a user inter-
face and programming model for distributed memory architectures are stated.
These are fulfilled with the P++ environment for a large, but restricted, class
of problems:

e Algorithm and code development should take place in a serial environment.

e Serial source codes should be able to be compiled and recompilable to run
in parallel on distributed architectures without modification.

e Codes should be portable between different serial and parallel architec-
tures (shared and distributed memory machines).

e Vectorization, parallelization and data partitioning should be hidden from
the user, except for optimization switches to which the user has full access
and that have meaning only on vector or parallel environments.

6.2 Partitioning Objects

P++, being of object-oriented design, introduces an object based control of the
partitioning of the array object. Specifically we introduce a partitioning object
which can be used to build P++ arrays (via a parameter to the P4+ array
constructor) or modify existing arrays previously built. It is a principle fea-
ture of the P++ partitioning objects that all array objects built with a given
partitioning are associated with that partitioning object. Manipulation of the
partitioning object effects all array objects with which it is associated. For ex-
ample, specifying a new range of processors for a partitioning object repartitions
the P++ array objects associated with that partitioning object. While not im-
portant for more simple single grid applications, the level of control provided

49

50 CHAPTER 6. P++

by partitioning objects is intended for control (and load balancing) of appli-
cations containing many grids (e.g. adaptive mesh refinement and overlapping
grid applications).

Partitioning objects are provided to allow both user and programmable con-
trol. Load balancers would use the programmable control which represents a
separate interface to the partitioning objects. Users would more directly use
the more simple interface for the specification of the partitioning of an array
object. A4+ arrays provide member functions as the means of associated an
array with a particular partitioning object. This interface allows for a simpli-
fied manipulation of many partitioning objects (and thus even more P++ array
objects) within a single application.

For example, an adaptive mesh refinement (AMR) grid could contain many
array objects associated with each rectangular grid (there would be many rect-
angular grids within an AMR application) and a single partitioning object for
rectangular grid. Within an adaptive mesh refinement grid many grids and thus
many partitioning objects would exist. The control of the adaptive mesh refine-
ment grid and the array objects associated with the definition of the application
can thus be abstracted through the control of the partitioning objects associated
with the adaptive grid.

Partitioning_Type P;

doubleArray A(100,100,P); // A uses the partition object P

doubleArray B(100,100); // B has the default partition object

B.partition(P); // repartitioning B consistent with P

Range Middle_Processors (100,199); // specify a fictitious collection of process
Partitioning Type Q(Middle_Processors); // build another partitioning object
B.partition(Q); // B is repartitioned onto the middle 100 processors

The example above builds a partitioning object, P, which has the default
partitioning (across all processors and partitioned along each axis). The array
A is built to have a partitioning across the processors specified by P. The array,
B, is build with the default partitioning and then repartitioned to be consistent
with the partitioning specified by P (since P, in this case, represented the default
partitioning the distribution of B is unchanged). The partitioning Q is build
over the processor 100 through 199, and B is repartitioned onto that smaller
collection of processors.

6.3 How P++ Arrays are Partitioned

P++ provides multidimensional partitioning of its distributed array objects.
The limit of the dimensionality of the partitioning is that of the dimension of
the array. The partitioning is effected by the Partitioning_Type objects, any
two arrays of the same size using the same partitioning object will be partitioned
identically (i.e. they will be aligned on the same processors). See the section
on Partitioning_Type objects for more information. This section will provide
examples of how arrays are partitioned in the near future.

6.4. GHOST BOUNDARIES ol

6.4 Ghost Boundaries

The partitioning objects contain many features, detailed in the reference section,
but in addition to the layout specifications they control the default widths of
shared regions along interior partition edges, so called ”ghost boundaries.” The
default width of ghost boundaries defined for a P++ array object is defined
by the partitioning object to which it is associated. P++ array objects may
additionally override the ghost boundary width specified by the partitioning
objects to which they are associated. This allows many arrays to be associated
with a specific partitioning object yet restrict the ghost boundary width to be
nonzero on only a subset of the associated array objects.

P++ arrays may be modified to include an arbitrary width internal ghost
boundary, the default width at present is ZERO, though a better choice of a
default width maybe made after more feedback. The purpose of this feature
is to permit specific subsets of the array objects associated with a partitioning
object to have different ghost boundary widths.

6.5 Communication Models

There are two communication models in P++, the Overlap Update Model and
Virtual Shared Grid Model. These handle the interpretation of message passing
at each binary operation, assuming that either the partitioning or the indexing
would force message passing, either messages are passed to satisfy the binary
operation or the message passing will be deferred until the ”equals” operator. In
the Overlap Update Model message passing within array expressions is deferred
until the ”equals” operator, while in the Virtual Shared Grid Model message
passing is done in each binary operator. These communication models are dis-
cussed more fully in the section about A++/P++ programming models.

6.6 How to abuse P++

There are several interesting ways to abuse the P++ programming model. This
section is intended to parallel the similar section ”How to abuse A++" in section
77, the methods listed there apply to P++ as well, but P++ has some additional
ways in which the user can generate errors. As in A++, all these methods stem
from the access that P++ provides the user to low level data or operations. The
following example will cause inconsistant storage within the 5th element of the
array A. It could eventually lead to a more serious error.

// Assume that A is an array with ghost boundaries of width greater than zero.
// And that element 5 of A is at an edge of a local processor space
intArray A(10);
A = -100; // initialize A to a negative value (since processor number are >= 0.
Optimization_Manager: :setOptimizedScalarIndexing(0On);
A(5) = Communication_Manager::localProcessNumber () ;

52 CHAPTER 6. P++

Optimization_Manager: :setOptimizedScalarIndexing(0£ff) ;

The example uses the Optimization_Manager::setOptimizedScalarIndexing()
function which turns off communication which would otherwize be done within
all scalar indexing. The purpose of this function is to permit more efficient
scalar indexing for the case when the user knows that NO off processor access
is possible (on each processor). If A has ghost boundaries then it has multiple
positions for some data (data within the ghost boundary width of the partition
boundaries) on any two processors.

The problem within the example is that the value returned by Communica-
tion_Manager::localProcessNumber() will be different for each processor.
This is the problem, it would not be a data parallel operation and would result in
different values being stored (one in the processor owning the local space where
A(5) is located, and one in the neighboring processor storing a copy of A(5)
within its ghost boundary). The problem could be resolved if the ghost bound-
aries where updated, but nothing within normal P++ operations requires the
user to call the ghost boundary update functions directly, so this is considered
an error.

The reason this happens is because P++ makes the local processor number
available, but we would lose flexibility if we did not make such info available to
the user. So it is the user’s responsibility to use P++ wisely.

Chapter 7

Developing A++/P++
Applications

There are several details to the development of A++ and P++ applications, this
section is intended to present them to new users. This document is intended
to be especially useful to new users at LLNL, but most details are the same
everywhere. It is assumed that you have A++ and P++ installed. If only A++
has been installed then the P++ section should be ignored. There are not many
details to using A++, only P++ (since it uses MPI (or PVM)) has details for
which new users should be aware.

Some sites, such as LLNL, use ssh as part of their security, this has special
significance if you want to run MPI on such a network. So we cover the setup
of ssh specific to avoiding the request for a password when logging into other
machines on the network (even your own machine).

7.1 If You Use SSH On Your Network

If you use ssh instead of rep within your version of MPI (consult the person who
installed MPT if this is not clear) then yo have an additional step to allow you
to run MPT applications (your P++ applications will be an MPI application).
This applies to all people working at LLNL.

7.1.1 Why worry about SSH

SSH is a secure mechanism for logging-on to remote machines. The process of
running MPT applications IS a process by which MPI (mpirun, specifically) logs
on to remote machines to run your applications in a distributed way. SSH will
force each process started to log on to the machine where it will run and this will
cause it to prompt you for a password. Even if your running all processes
on your own machine.

33

o4 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS

For example, if you run on 35 processors you will have to enter you password
35 times, clearly this is not what anyone wants. This section details how to setup
ssh so that it will trust a number of machines that you select and you can run
parallel MPI programs without this hassle. This is not a P++ issue, it is an
MPI issue when MPI is installed to use ssh instead of rpc (which is the default
for MPI).

7.1.2 Setting up SSH to run MPI Programs

These are directions provided by Brian Miller for the setup of ssh.

To ssh from $SHOME to $REMOTE:

If you don’t care about complying with the security request to not have .ssh
on the common file system,

1. cd ~/.ssh on SREMOTE (make it if it doesn’t exist)
2. edit authorized _keys on SREMOTE:~/.ssh (create it if it doesn’t exist)

3. copy all lines identity.pub to authorized_keys (from $HOME:~/.ssh/identity.pub,
use ssh-keygen on SHOME if this file doesn’t exist)

4. make sure permissions are correct (use chmod 600 for authorized_keys)
If you want to comply with the security request, the steps are similar:

1. ssh SREMOTE

2. cd /var/ssh

3. mkdir $USER; chmod 700 $USER; cd $USER

4. mkdir .ssh; chmod 700 .ssh; cd .ssh

5. edit authorized_keys (create if doesn’t exist)

6. copy data from SHOME:~/.ssh/identity.pub to SREMOTE:/var/ssh/$USER/.ssh/authorized keys
(again, use ssh-keygen on $HOME if this doesn’t exist)

7. save authorized keys

8. chmod 600 authorized _keys

9. cd ~
10. In -s /var/ssh/$USER/.ssh ~/.ssh

done for this SREMOTE, repeat for blue099, blue199, west, tc01, tc02,....

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS 35

7.2 Developing And Running A++/P++ Ap-
plications

This section details what you should have to know to develop and execute A++

and P++ applications. We assume that A++ and P++ are already installed

and tested using the automated mechanisms described in the installation pro-

cess.

In general all P++ applications start out as A++ applications which are
then recompiled with P++ instead of A++ and run in parallel. The develop-
ment of the application can take place in either environment, so parallel P++
applications can be developed on a parallel machine directly (though in gen-
eral parallel machines are considerably less friendly than serial machines for
application development).

7.2.1 A++ Applications
A++ applications are developed as source code that:
1. include #include <A++.h> at the top,

2. defines an int main(int argc,char* argv[]) procedure (somewhere in
the system of files representing the application),

3. compiles with options and paths so that the A++ header files can be found
(-I<your install directory>/A++P++/A++/include),

4. links with the appropriate A++ libraries (-App -App-static)
This is normal program development, nothing is special, P++ is a more more
complex.
How to run A4+ Applications

A++ applications are just standard applications. Executing an A++ applica-
tion is the same as for any other program you write.

7.2.2 P++ Applications
P++ applications are developed as source code that:
1. include #include <A++.h> at the top,

2. defines an int main(int argc,char* argv[]) procedure (somewhere in
the system of files representing the application),

3. compiles with options and paths so that the P++ header files can be found
(-I<your install directory>/A++P++/P++/include),

4. links with the appropriate P++ libraries (-Ppp -Ppp-static -mpi)
Clearly the process is nearly identical to that of an A++ application (by design).

96 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS

7.2.3 How to run P++ with MPI

P++ applications are just standard MPI applications. And running an MPI
applications is a bit more complex than running a standard serial application.

An MPT application requires the use of a supporting program named mpirun,
a P++ application is handed in (together with any command line parameters)
as a command line parameter to the mpirun program. The correct syntax is:

mpirun -np <numberOfProcessors> <application> <application command-line
args> .

Additional options to mpirun can be seen by typing mpirun -help, though
we only need at most two (-np and -machinefile). Many machines only require
(-np). A list of machines specific to LLNL and which options they require can
be found at the end of this section.

Specification of a machine file (-machinefile option)

On some (most) machines, mpirun requires the specification of a machine file
using the -m option (to mpirun). This file specifies the machines on the network
that the users distributed application will run. For testing purposes all the
machine entries in this file can be the same. An example machine file (a
simple ASCII file) would be:

gibs

In this case the MPI processes would run on gibs (all of them!)!. As many
machines as you like can be specified within the machine file. Allocation of
processes to machines is based on a round-robin scheduling of the number of
processes specified on the mpirun command line (using the -np option) and the
entries in the machine file.

Example using a machine file (as it appears when running make check in
the P++/EXAMPLES directory):

mpirun -np 6 -machinefile /home/dquinlan/A++P++/A++P++Source/A++P++/machine.file test_Ppp_execut

Notice in this case that only 6 processors are used, this is for test purposes
only on a small network of workstations.

Running on a specific machine (your machine)

In general running on any machine is a matter of looking at the command line
used in the testing of P++ on that machine where P++ is installed. More details
information will later be documented about running on specific machines; Blue
Mountain, Tera Cluster, Blue Pacific, Red, etc.

'In this case, since gibs is Bill’s machine, you would likely get email from Bill :-).

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS a7

A note about using P++ with PVM

We presently are using MPI for the development of P++, we test the implemen-
tation with PVM from time to time, but since it is not part of the development
environment on a regular basis, its support can lag that of the MPI implemen-
tation. If you notice a problem, let us know. We are always looking for any
differences in the PVM and MPI support (because there should be none).

7.2.4 How to run P++ with MPI

P++ applications are just standard PVM applications. Much of the develop-
ment of P++ was initially done using PVM. So we include the setup specific to
PVM. LLNL users should ignore this section.

The frustrating part is getting your environment setup to allow you to run
PVM. To do this you must:

1. Add /usr/local/pvm/lib to path.

2. Add /usr/local/pvm/man to MANPATH. This isn’t necessary to
make pvm run but is helpful to provide documentation for pvm.

3. Add the following before lines that exit .cshrc if not an
interactive shell.

setenv PVM_ROOT /usr/local/pvm

if (! $7PVM_ROOT) then
if (-4 ~/PVM/pvm3) then
setenv PVM_ROOT ~/PVM/pvm3
else
echo PVM_ROOT not defined
echo To use PVM, define PVM_ROOT and rerun your .cshrc
endif
endif

if ($7PVM_ROOT) then
setenv PVM_ARCH ‘$PVM_ROOT/lib/pvmgetarch®
set path=($path $PVM_ROOT/bin/$PVM_ARCH)
endif

Also delete any files named /tmp/pvmd.{\it pid} where {\it pid} is an old process
id number before starting pvm.

You can test the pvm installation using the test codes bundled with the pvim
distribution. You can add new machines to the pvim environment and get help
from the pvm console. For example:

58 CHAPTER 7. DEVELOPING A++/P++ APPLICATIONS

572 object> pvm
pvm>
pvm> add fenris
1 successful
HOST DTID
fenris 80000
pvm>
pvm> conf
2 hosts, 1 data format

HOST DTID ARCH SPEED
object 40000 SUN4 1000
fenris 80000 SUN4 1000
pvm>
pvm> help
HELP - Print helpful information about a command

Syntax: help [command]
Commands are:

ADD - Add hosts to virtual machine

ALIAS - Define/list command aliases

CONF - List virtual machine configuration
DELETE - Delete hosts from virtual machine
ECHO - Echo arguments

HALT - Stop pvmds

HELP - Print helpful information about a command
ID - Print console task id

JOBS - Display list of running jobs

KILL - Terminate tasks

MSTAT - Show status of hosts

PS - List tasks

PSTAT - Show status of tasks

QUIT - Exit console

RESET - Kill all tasks
SETENV - Display or set environment variables
SIG - Send signal to task
SPAWN - Spawn task
TRACE - Set/display trace event mask
UNALTAS - Undefine command alias
VERSION - Show libpvm version
pvm>

Alternatively, you can have a large collection of machines added when you
first run PVM by putting a list of machines into a file (one machine name per
line) and adding the filename as a parameter when you start PVM. For example,
my pvm_hosts file is:

fenris

7.2. DEVELOPING AND RUNNING A++/P++ APPLICATIONS 29

#

Comment these out to restrict usage to a single machine (guarneri)
guarneri

oogle

ralphie

sanctus

tasha

uppsala

For example, ”pvm pvm_hosts”, adds the machines listed in the file ” pvm_hosts”
to the pvm environment. When you exit pvm, pvm remains running in the
background. The kill pvm you should use the ”halt” command from the pvm
console.

60

CHAPTER 7.

DEVELOPING A++/P++ APPLICATIONS

Chapter 8

Tutorial

8.1 Introducton

The A++/P++ Library represents array classes written in C++, which seek to
simplify scientific programming by providing a general object-oriented frame-
work in which to develop both serial (A++) and parallel codes (P++). It is
intended to be simple, abstracting away much of the architecture dependence
and ”bookkeeping” associated with scientific (especially parallel) programming,
allowing the researcher /programmer to concentrate on the rapid development of
algorithms and/or production of stable software. For more information see the
A-++/P++ Manual or the A++/P++ Home Page (listed on the front cover).

The A++/P++ is focused on arrays as objects, which encapsulate both
data and the operations which can be performed on that data (methods). This
approach allows, the programmer to use the A++/P++ data types (intArray,
floatArray and doubleArray) much like they currently use the primitive types
(int,float and double) available in standard C++. P++ uses a SPMD (single
program multiple data) implementation of a data parallel programming model.
The data parallel model is implemented using two communication models, which
allow 1)for efficient communication between aligned and unaligned array oper-
ations and 2) the necessary congruence between serial and parallel libraries.

This tutorial steps through a number of example A++/P++ programs. The
examples illustrate some the main concepts in the A++/P++ including: ab-
straction of the user from machine dependencies, reuse of serial code in a par-
allel environment, dimension independence in scientific computations, access
to FORTRAN 77 (mixed language programming), etc. We present whole (yet
simple) A++4/P++ applications, the example applications are kept small so
as to be presentable in this tutorial style. Each example generally contains 1)
A brief introduction 2) The A++/P++ source code, which includes numerous
comments discussing the various ways used to the A++/P++ data structures
and associated methods 3) Output from Code.

61

62 CHAPTER 8. TUTORIAL
8.2 Examples

8.2.1 Example la. ”Hello, World”

This is the simplest A++/P++ example. It illustrates some of the basic features
of A++/P++.

#include <A++.h> // this is included in every A++/P++ application
int main(int argc,char** argv)

{

// We are instancing the doubleArray object. Though it looks like a
// standard Fortran array, it’s not

doubleArray A(10);

doubleArray B(10);

// Initialize A and B
A=2;
B=3;

Illustration of the methods associated with doubleArray Objects
‘‘display’’ is used to show the values of the Object

A.display(‘‘This is the doubleArray Object A’’);
B.display(‘‘This is the doubleArray Object B’’)

// We can add to array objects with the ‘‘+’’ operator
A=A+B;

A.display(¢‘Addition of A and B’?);

}

The output from the “Hello,World” program.

doubleArray: :display() (CONST) (Array_ID = 1) -- This is the doubleArray Object A
Array_Data is a VALID pointer = 3c000 (245760)!

AXISO --=>: ¢ 00 C 1 C 2> C 3¢ 4o 5 C 6 7 8 9
AXIS 1 (0) 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

doubleArray: :display() (CONST) (Array_ID = 2) -- This is the doubleArray Object B
Array_Data is a VALID pointer = 3e000 (253952)!

AXIS 0 —-=>: (. 00 C 1 22 3 4 C B C 6 7nHC 8 9
AXIS 1 (0) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

doubleArray: :display() (CONST) (Array_ID = 1) -- Addition of A and B

Array_Data is a VALID pointer = 44000 (278528)!

AXIS 0 —-=>: (. 0) C 1 2>C 3 C 4 C 58 C 6 C 7 C 8 9
AXIS 1 (0) 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

8.2. EXAMPLES 63

8.2.2 Example 1b. “Parallel Hello World”

The program below is a parallel version of the Example 1la., and illustrates one
of the guiding ideas behind A++/P++, serial code reuse. With the addition of
3 lines, the serial code above becomes an SPMD parallel code .

#include <A++.h> // this is included in every A++/P++ application

int main(int argc,char** argv)

{

// The next two lines are needed to "parallelize" the serial code.
Number_of_Processors=2;

Optimization_Manager::Initialize_Virtual_Machine(" ",Number_of_Processors,argc,argv);

// Instantiation of the doubleArray Object, (notice the similarity to a Fortran array)
doubleArray A(10);
doubleArray B(10);

// Initialize A and B
A=2;
B=3;

// Illustration of the methods associated with doubleArray Objects

// ¢‘display’’ is used to show the values of the Object
A.display(‘‘This is the doubleArray Object A’’);
B.display(‘‘This is the doubleArray Object B’’)

// We can add array objects with the ‘‘+’’ operator
A=A+B;
A.display(¢‘Addition of A and B’7);

// 3rd (and final) line necessary to parallelize code.
Optimization_Manager::Exit_Virtual_Machine();

The calls to the OptimizationManager are required because we must specify
some information to the message passing libraries (PVM or MPI). For PVM
we require 1). The number of Processes to be started 2). The name of the
executable that each process should start. MPI requires the argc and argv
arguments. The final P++ specific call

Optimization_Manager Exit_Virtual_Machine()

shuts down the virtual machine. The specification of the number of processors
is a specification of the virtual process space, and independent of the number

64 CHAPTER 8. TUTORIAL

of processors physically available. At present we use MultiBlock Parti within
P++, this corresponds to the initialization of the virtual processor space within
MultiBlock Parti'. The programs above use only one of the 3 type of array
objects available in A++4/P++. The other object types being intArray and
floatArray.

8.2.3 Example 2. 1-D Laplace Equation Solver

This example program solves the 1-D Laplace equation, U,, = 0 subject to
U(0)=1 and U(1)=1 with Jacobi relaxation.

//This example illustrates the "proper" use of the A++/P++ libs.

// The idea is to avoid scalar indexing (eg. the kind of indexing

// you normally do in fortran or C) through the use of

// the Index and Range Objects. Scalar indexing is

// very slow, especially for P++, inwhich the arrays are distributed

// over the processors, and considerable amount of communication is necesary to
// retrieved the indexed values.

#include <A++.h>
#include <time.h>

main(int argc,char** argv)

{

int num_of_process=4;

Optimization_Manager::Initialize_Virtual_Machine(" " ,num_of_process,argc,argv);

// Instance the doubleArray objects //

int grid_size=10;

doubleArray Solution(grid_size);
doubleArray Solution2(grid_size);
doubleArray temp(grid_size);

//0ther variables

double timel,time2,time_total,time2_total;

double Jacobi=5; // number of steps in the Jacobi relaxation
int 1i,j;

//Instance the Range(or Index) objects
Range I(1,grid_size-2,1);

//Initialize the doubleArray objects//

IThis is a library available from the University of Maryland

8.2. EXAMPLES

Solution=0.0;
Solution2=0.0;
Solution(I)=1.0;
Solution2(I)=1.0;

// Solving 1-d equation using Index object.
timel=clock();

for (i=1;i<=Jacobi;i++){
Solution(I)=(Solution(I-1)+Solution(I+1))/2; }
time2=clock();

Solution.display("index");
time_total=time2-timel;

printf ("index done");

// equivalent expression with scalar (array) indexing //
timel=clock();

for (i=1;i<=Jacobi;i++){

for (j=1;j<=8;j++){

temp (j)=(Solution2(j-1)+Solution2(j+1))/2;}

for (j=0;j<=9;j++){

Solution2(j)=temp(j);}}

time2=clock();

time2_total=time2-timel;

Solution2.display("scalar");

// times taken by
cout <<time_total<<" "<<time2_total<<"\n";
printf ("program terminated properly");

Optimization_Manager: :Exit_Virtual_Machine();

}

Output from Example 2:

Application_Program_Name set to something (Application_Program_Name =
/n/c3servew/nehal/testcode/pring)

My Task ID = 262149

My Process Number = 0

ek ok K K K R R K R R R ok ok ok ok ok ok ok ok 3K KoK 3 3K K 3K kK ok s ok o o ok ok ok ok Kok K
P++ Virtual Machine Initialized:
Process Number

Number_0f _Processors 2

Application_Program_Name /n/c3servew/nehal/testcode/pring
KRR KKK R KKK KK KK SRR K S KK K K o

0

65

66 CHAPTER 8. TUTORIAL

doubleArray::display() (CONST) (Array_ID = 1) -- index

SerialArray is a VALID pointer = 6c000!

doubleSerialArray::display() (CONST) (Array_ID = 8) -- index

Array_Data is a VALID pointer = 82000 (532480)!

AXISO --=>: ¢ 00 ¢ 1 C 2> C 3¢ 4o C 5 C 6 7 8 9
AXIS 1 (0) 0.0000 0.3125 0.6250 0.7812 0.9062 0.9062 0.7812 0.6250 0.3125 0.0000

index donedoubleArray::display() (CONST) (Array_ID = 3) -- scalar

SerialArray is a VALID pointer = 6c024!

doubleSerialArray::display() (CONST) (Array_ID = 8) -- scalar

Array_Data is a VALID pointer = 82000 (532480)!

AXIS 0 —-=>: (. 00 C 1 C 22 3 C 49 C B C 6 7nHC 8 9
AXIsS 1 (0) 0.0000 0.3125 0.6250 0.7812 0.9062 0.9062 0.7812 0.6250 0.3125 0.0000
program terminated properlyExiting P++ Virtual Machine!

110000 210000 // "times" for Index and scalar indexing

8.2.4 Example 3. Distribution of Arrays in P++
This example illustrates the partitioning of arrays by P++4.

// This example shows the "partitioning" of arrays

// with the use of the Paritioning_Type object

// It will also illustrate the manipulation of a "local array", within P++.
//

#include <A++.h>

#include <P++.h>

main(int argc,char** argv)

{

int num_of_process=10;
Optimization_Manager::Initialize_Virtual_Machine("",num_of_process,argc,argv);

//Build partition object which uses 5 processors (0-4)

Partitioning_Type PartitionA(3);

//Now divide intArray A among the Processors

intArray A(10,10,PartitionA); // A is partitioned among the first 3 processors
// if no partitiong object is specified then
// the Array is paritioned among the total
// number of processors (in this case 10)

// Assign "A" an initial value with Index Operators

A=10;

// We can use a mix of Index object(s) and scalar indexing to assign

// values to A

Index I(0,7); // I=[0..7];

A(I,1)=1; // Notice that we can mix the Index operator and a scalar index
A(I,2)=2;

A(1,3)=3;

8.2. EXAMPLES 67

// Display "A". A++ uses a FORTRAN style array A(cols,rows). See
// the output. Each processor prints out it’s local piece of

the distribted array

A.display();

// As stated above, P++ is single program multiple data (data parallel), so a single
// P++ program is running on all the processors. However, each processor has

// only a small portion of the global data. This data is paritioned automatically

// P++, and communication is done implicitly after each each statement

// In the case of <type>Array, each processor

// keeps a small amount of the global Array, which is infact an A++ Array

// object. Thus we can if we wish extract and manipulate "local" data

// Extract "Local_Array" from the global Array A
intSerialArray Local_Array=A.getLocalArray();

// Let’s use some of the "size" methods in A++

int Num_of_Cols=Local_Array.elementCount(); // total size of Local_Array
int Base_O_axis=Local_Array.getBase(0); // base value for 0 axis

int Bound_0_axis=Local_Array.getBound(0); // bound for 0 axis

// Display "Local_Array". If you are using PVM look in your
// pvml file to see results (usually in the /tmp directory).
Local_Array.display();

}

Output from example 3

Application_Program_Name set to something (Application_Program_Name =
/n/c3servew/nehal/testcode/distrib)

My Task ID = 262199

My Process Number = 0

sk ok ok R K R R K R R R ok s sk ok ok ok ok ok ok 3K KoK 3k 3 K 3K K K s ok o o ok ok ok ok ok ok oK

P++ Virtual Machine Initialized:
Process Number
Number_0f _Processors 10

Application_Program_Name /n/c3servew/nehal/testcode/pringle2
KRR KKK KKK KK KK KK K S KK o ok K o o

0

intArray::display() (CONST) (Array_ID = 1) --

SerialArray is a VALID pointer = 6e000!

intSerialArray::display() (CONST) (Array_ID = 4) --

Array_Data is a VALID pointer = 82000 (532480)!

AXIS O —--—>: (. 00 C 1 20 3 C 4 C 5B C 6 C 7 C 8
9)

68 CHAPTER 8. TUTORIAL

AXIS 1 (0) 10 10 10 10 10 10 10 10 10 10
AXI1IS 1 (1) 1 1 1 1 1 1 1 10 10 10
AXIS 1 (2) 2 2 2 2 2 2 2 10 10 10
AXI1IS 1 (3) 3 3 3 3 3 3 3 10 10 10
AXIS 1 (4) 10 10 10 10 10 10 10 10 10 10
AX1IS 1 (5) 10 10 10 10 10 10 10 10 10 10
AXIS 1 (6) 10 10 10 10 10 10 10 10 10 10
AXIS 1 (. 7) 10 10 10 10 10 10 10 10 10 10
AX1IS 1 (8) 10 10 10 10 10 10 10 10 10 10

AXIS 1 C 9) 10 10 10 10 10 10 10 10 10 10
intSerialArray::display() (CONST) (Array_ID = 2) --
Array_Data is a VALID pointer = 7e000 (516096)!

AXIS O --=>: (. 0) (1) (2)
AXIS 1 (0) 10 10 10
AXIS 1 (1) 1 1 1
AXIS 1 (2) 2 2 2
AXIS 1 (3) 3 3 3
AXIS 1 (4) 10 10 10
AXIS 1 (5) 10 10 10
AXIS 1 (6) 10 10 10
AXIS 1 (7) 10 10 10
AXIS 1 (8) 10 10 10
AXIS 1 (9) 10 10 10

Output in the pvml files

[t80040000] [t40042] My Task ID = 262210

[t80040000] [t40042] My Process Number = 1

[t80040000] [t40042]

[t80040000] [t40042] sksksksksokskskokok skoksok sk sk ko s ok ke ek sk s ko s ok ke sk e sk e koo o
[t80040000] [t40042] P++ Virtual Machine Initialized:

[t80040000] [t40042] Process Number =1

[t80040000] [t40042] Number_0f_Processors = 10

[t80040000] [t40042] Application_Program_Name =/n/c3servew/nehal/testcode/distrib
[t80040000] [t40042] skakkokskokskok kok kok kok kok sk ok ok kok sk ok ok ok ok sk ok skokosk ok sk ok kok skok ok kok ok ok ok ok
[t80040000] [t40042]
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS
[t80040000] [t40042] AXIS

-—=>: (C 3 C 4 C 5
0) 10 10 10
1) 1 1 1
2) 2 2 2
3) 3 3 3
4) 10 10 10
5) 10 10 10
6) 10 10 10
7 10 10 10
8) 10 10 10
9) 10 10 10

e e k=)

[t80040000] [t40043] My Task ID = 262211

[t80040000] [t40043] My Process Number = 2

[t80040000] [t40043]

[£80040000] [£40043] sk kokskkoskskokok kok ko ks ok ko sk ok ok ook ook ko ko sk ook ok koo ok ko ko ok o
[t80040000] [t40043] P++ Virtual Machine Initialized:

[t80040000] [t40043] Process Number =2

[t80040000] [t40043] Number_0f _Processors = 10

8.2. EXAMPLES 69

[t80040000] [t40043] Application_Program_Name =/n/c3servew/nehal/testcode/pringle2
[t80040000] [t40043] skskokokokokskokkok kok kok kok ok ok ok ki ok kok ok ke skok sk okokoskok sk skok sk skok ok ok ok ok ok

[t80040000] [t40043]

[t80040000] [t40043] AXIS 0 --=>: (6) (7> C 8 (9
[t80040000] [t40043] AXIS 1 (0) 10 10 10 10
[t80040000] [t40043] AXIS 1 (1) 1 10 10 10
[t80040000] [t40043] AXIS 1 (2) 2 10 10 10
[t80040000] [t40043] AXIS 1 (3) 3 10 10 10
[t80040000] [t40043] AXIS 1 (4) 10 10 10 10
[t80040000] [t40043] AXIS 1 (5) 10 10 10 10
[t80040000] [t40043] AXIS 1 (86) 10 10 10 10
[t80040000] [t40043] AXIS 1 (7) 10 10 10 10
[t80040000] [t40043] AXIS 1 (8) 10 10 10 10
[t80040000] [t40043] AXIS 1 (9) 10 10 10 10

Graphically, the distribution of a P++ array is given below

Processor 0

AXISO

00 20 5,0 90

Calculation with local
data.

P++ Array

\) Processor 2
&—_
\
9,

AX

Calculation with local
data

59 9

Calculation with local
data

8.2.5 Example 4. The Heat Equation

In this example we solve the non-dimensional heat equation 7} = T, subject
to two boundary conditions. T=2*x for 0 < z < .5 and T=2(1-x) .5 < z <
1, where x is the spatial variable. The equation is solved with an explicit
finite difference scheme. [G.D. Smith, Numerical Solution of Partial Differential
Equation: Finite Difference Methods, Clarendon Press, 3rd Edition. pg 12].

// In this example we solve the heat equation.
// We will solve this problem with an explicit finite difference
// scheme. See G.D. Smith pg 12.

#include <A++.h>
#include <time.h>

70 CHAPTER 8. TUTORIAL

main(int argc,char** argv)

{

int num_of_process=b;

Optimization_Manager::Initialize_Virtual_Machine("" ,num_of_process,argc,argv);

// Length of physical dimensions and Length in time dimension //
double Length_x;
double Length_t;

// number of spaces in x and t
int spaces_in_x;
int spaces_in_t;

// spatial discretization
double dx;
// temporal discretization
double dt;

int 1i,j;
int time_step;

double timel;
double time2;
double total_time;
// r= dt/(dx"2)
double r;

// initialize variables

Length_x=1;

Length_t=1;

// change this line to increase spatial resolution
spaces_in_x=12;

spaces_in_t=1000;

dx=(Length_x/spaces_in_x);
dt=(Length_t/spaces_in_t);

r=dt/ (dx*dx) ;

Index I(1,spaces_in_x-1);

doubleArray Solution(spaces_in_x+1,spaces_in_x+1);
doubleArray temp(spaces_in_x+1,spaces_in_x+1);

8.2. EXAMPLES 71

// Initialize the
Solution=0.0;

// Setup boundary conditiomns //

// In this case we HAVE to use scalar index to setup the
// boundary conditions

for (i=1;i<=(int) (spaces_in_x/2);i++)
Solution(i,0)=2%ix*dx;

for (i=(int) ((spaces_in_x/2)+1);i<=spaces_in_x-1;i++)
Solution(i,0)=2%(1-i*dx);

Solution.display("initial and boundary conditions");
timel=clock();

// Notice that we are "mixing" the Index object I and normal scalar indexing

// in this finite difference "stencil"

for (int timestep=0;timestep<=8;timestep++){
Solution(I,timestep+l)=r*(Solution(I+1,timestep)-2*Solution(I,timestep)+
Solution(I-1,timestep))+Solution(I,timestep);

}

time2=clock();
total_time=time2-timel;

Solution.display("The Solution ");
printf ("%f\n",total_time);
printf ("program terminated properly");

Optimization_Manager: :Exit_Virtual_Machine();

}

Output from Example 4

Initial Conditions
Array_Data is a VALID pointer = 84000 (540672)!

AXIS O —->: (. OO C 1 20 3 C 4 C B C 6 C 7HC 8C 9 C 10
AXIS 1 (0) 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000
AXIs 1 (1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (5) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (7) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

72 CHAPTER 8. TUTORIAL

AXIS 1 (8) 0.0000 0.0000 0.0000 0.0000
AXIS 1 (9) 0.0000 0.0000 0.0000 0.0000
AXIS 1 (10) 0.0000 0.0000 0.0000 0.0000
doubleArray::display() (CONST) (Array_ID
SerialArray is a VALID pointer = 70000!

.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1) -- The Solution

o oo

doubleSerialArray: :display() (CONST) (Array_ID = 11) -- The Solution
Array_Data is a VALID pointer = a6000 (679936)!

AXISO --=>: (. 00 ¢ 1 C 2> 3¢ 4o 5 C 6 7 8 9
AXIs 1 (0) 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000 0.6000 0.4000 0.2000
AXIS 1 (1) 0.0000 0.2000 0.4000 0.6000 0.8000 0.9600 0.8000 0.6000 0.4000 0.2000
AXIsS 1 (2) 0.0000 0.2000 0.4000 0.6000 0.7960 0.9280 0.7960 0.6000 0.4000 0.2000
AXIS 1 (3) 0.0000 0.2000 0.4000 0.5996 0.7896 0.9016 0.7896 0.5996 0.4000 0.2000
AXIS 1 (4) 0.0000 0.2000 0.4000 0.5986 0.7818 0.8792 0.7818 0.5986 0.4000 0.2000
AXIsS 1 (5) 0.0000 0.2000 0.3998 0.5971 0.7732 0.8597 0.7732 0.5971 0.3998 0.2000
AXIS 1 (6) 0.0000 0.2000 0.3996 0.5950 0.7643 0.8424 0.7643 0.5950 0.3996 0.2000
AXIS 1 (7) 0.0000 0.1999 0.3992 0.5924 0.7551 0.8268 0.7551 0.5924 0.3992 0.1999
AXIS 1 (8) 0.0000 0.1999 0.3986 0.5893 0.7460 0.8125 0.7460 0.5893 0.3986 0.1999
AXIS 1 (9) 0.0000 0.1998 0.3978 0.5859 0.7370 0.7992 0.7370 0.5859 0.3978 0.1998
AXIS 1 (10) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

So after 8 timesteps (.009 secs) the "1-d rod" has the following
temperature distribution

c o HC 22 3C HC B C 6 »C 8 C 9 C 10

0.0000 0.1998 0.3978 0.5859 0.7370 0.7992 0.7370 0.5859 0.3978 0.1998 0.0000

8.2.6 Example 5. Indirect Addressing

Indirect addressing allows the indexing of non-consecutive points in an array.
For example suppose we wish to index the points in the figure below:
6

Axis1

AxisO

// This example illustrates the indirect addressing in A++/P++.
// Whereas the Index and Range object contain consecutive value
// (eg.Index I(O,N) == 0,1,..N-1). Indirect addressing allows
// indexing of non-consective values.

//

//

.0000
.0000
.0000

10)

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

8.2. EXAMPLES 73

#include <A++.h>

main(int argc,char** argv)

{

int num_of_process=3;

Optimization_Manager::Initialize_Virtual_ Machine(" ",num_of_process,argc,argv);
cout << "====== Test of A++ =====" << endl;

// Index::setBoundsCheck(on); // Turn on A++ array bounds checking

int n=6;

int m;

floatArray a(n,n), b(n,n), c(n,n);
a=999. ;

b=0.;

c=999.;

// number of points to index
m=4;

// create two 1-d intArrays
intArray il(m), i2(m);

// Assign values to the intArrays
// We could also read in values from a file
for(int i=0; i<=1; i++)
{
i1(i)= (i+1) % n;
i2(i)= (i+1) % n;

}
for (i=2;i<=3;i++)
{
i1(1)=(i+1);
i2(1)=(i+2);
}

il.display("Here is il1");
i2.display("Here is i2");

// now we can either assign values to these points
// or read their values

a(il,i2)=6;

a.display("here is ax");

74 CHAPTER 8. TUTORIAL

b(il,i2)=c(i1,i2);
b.display("here is b");

}
Output from Example 5

floatArray::display() (CONST) (Array_ID = 1) -- here is ax
Array_Data is a VALID pointer = 3c000 (245760)!

AXISO -==>: (. 0) C 1) C 2> C 3 ¢ 4 C 5

AXIS 1 (. 0) 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
AXIS 1 (1) 999.0000 6.0000 999.0000 999.0000 999.0000 999.0000
AXIS 1 (2) 999.0000 999.0000 6.0000 999.0000 999.0000 999.0000
AXIS 1 (3) 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
AXIS 1 (4) 999.0000 999.0000 999.0000 6.0000 999.0000 999.0000

AXIS 1 (5) 999.0000 999.0000 999.0000 999.0000 6.0000 999.0000
floatArray::display() (CONST) (Array_ID = 2) -- here is b
Array_Data is a VALID pointer = 3e000 (253952)!

AXISO --=>: (. 0) C 1) C 2> C 3 ¢ 4 C 5
AXIS 1 (0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (1) 0.0000 999.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (2) 0.0000 0.0000 999.0000 0.0000 0.0000 0.0000
AXIS 1 (3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AXIS 1 (4) 0.0000 0.0000 0.0000 999.0000 0.0000 0.0000
AXIS 1 (5) 0.0000 0.0000 0.0000 0.0000 999.0000 0.0000

8.2.7 Example 6. Application of Indirect Addressing

This example calculates the jacobian of a finite element (an important step,
which maps the local finite element to the super element). The program uses
indirect addressing to get the x and y coordinates of element, but actually
calculate the jacobian in a series of FORTRAN subroutines.

#include <A++.h>

#include <math.h>

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

!/

// Application of indirect addressing to FEM
// jacobian of element.

// This allows us to call the FORTRAN subroutine test on a Sun Ultra
// The C++/FORTRAN interface is compiler and hardware specific.

//

extern "C" void test_(double*,double*,doublex*) ;

main()

{

intArray MeshPts(10,4);

doubleArray Global(12,3);

8.2. EXAMPLES 75

char*x filename_mesh="meshdata";
char* globalpts="globalfile";
int pt[4];

char buf [80];

int 1i,j,x;

int element;

// sample data file

// element number global nodal pts
// 1 2345
// 2 4579
// 3 9563

ifstream fin(filename_mesh);

while(fin.getline(buf,80) !=0){
(void) sscanf (buf,"%i %i %i %i %i\n", &element, &pt[0],&pt[1],&pt[2],&pt[3]1);
for (i=0;i<=3;i++)
MeshPts(element,i)=pt[i];
}
fin.close();
MeshPts.display();

// Global(nodal pts,[0:1]) == Cartesian Global Coordinates
// eg. For nodal pts 1, the

// Global(1,0)=0.0 x coordinates of nodal pt 1

// Global(1,1)=1.0 y coordinates of nodal pt 1

// Read data file into MeshPts array
// global nodal pt x-coor y-coor

// 1 0.0 0.0

// 2 1.0 2.0

// 3 3.0 4.0

// 4 1.0 3.13

//' 5 0.0 2.35

// 6 3.34 3.56
// 7T 29.38 393.0
// 8 2.3 23.3

// 9 10.23 1.29

int nodal_pt;

float valuel2];

ifstream fin2(globalpts);

// read in the datafile

while(fin2.getline(buf,80) !=0){
(void) sscanf (buf,"%i %f %f\n",&nodal_pt, &valuel[0], &value[1l]);
Global(nodal_pt,0)=(double)valuel[0];
Global(nodal_pt,1)=(double)value[1];

76 CHAPTER 8. TUTORIAL

//Global.display();
fin2.close();

// The use indirect addressing to find the x and y coordinates of each element
// ptsx(2)=Global(MeshPts(1,2),0) =x coordinate of nodal pt 3
!/
Range I(0,3);
intArray tempArray(1,6);
doubleArray ptsx(6);
doubleArray ptsy(6);
// initialize variables
tempArray=0;
ptsx=0.0;
ptsy=0.0;

// The element we want to find the X and Y coordinates
int element_number=1;

// read the global pts into an intArray
!/

MeshPts(1,I).display("meshpts");
tempArray (I)=MeshPts (element_number,I);

// use indirect addressing to

// get the x and y coordinates of the element
ptsx=Global (tempArray,0) ;

ptsy=Global (tempArray,1) ;

ptsx.displayQ;
ptsy.displayQ);

// now lets calculate the jacobian for the points (ptsx and ptsy)
// Since there is FORTRAN code to do this

// We just call the it subroutine from A++.

!/

doubleArray jacob(2,2);

// change the base to work more easily with FORTRAN
jacob.setBase(1);

// The Fortran Subroutine
test_(ptsx.getDataPointer () ,ptsy.getDataPointer(),jacob.getDataPointer());

jacob.display();

8.2. EXAMPLES 77

The Fortran Subroutines
subroutine test(a,b,jacob)

C Use Real*8 passing <type> double
real*8 a(5),b(5)

real*8 gpt(3), gwt(3)

real*8 r,s

real*8 nvect(10)

real*8 dnrvect(10),dnsvect(10)
real*8 jacob(2,2)
gpt(1)=-.5777

gpt(2)=.5777

gwt(1)=1.0

gwt(2)=1.3

do 10 j=1,2
do 20 i=1,2
r=gpt (i)
s=gpt (i)

call nvec(r,s,nvect)
call dnrvec(r,s,dnrvect)
call dnsvec(r,s,dnsvect)

jacob(1l,1)=vectmult(dnrvect,a)
jacob(1,2)=vectmult(dnrvect,b)
jacob(2,1)=vectmult (dnsvect,a)
jacob(2,2)=vectmult (dnsvect,b)

20 continue
10 continue

end

function vectmult(a,b)
real*8 a(10)
real*8 b(10)
real*8 temp,vectmult
real*8 temp2

temp=0

do 4 i=1,4
temp2=a(i)*b(i)
temp=temp2+temp
4 continue
vectmult=temp

78 CHAPTER 8. TUTORIAL

return
end
subroutine nvec(r,s,nvect)
real*8 r,s,nvect(10)
integer i,j,k
do 10 i=1,10
nvect(i)=0.

10 continue

nvect (1)=.25%(1-r)*(1-s)
nvect(2)=.25%(1+r)*(1-s)
nvect(3)=.25%(1+r)*(1+s)
nvect (4)=.25%(1-r)*(1+s)
return

end

subroutine dnsvec(r,s,dnsvect)
real*8 r,s,dnsvect(10)
integer i,j,k

do 10 i=1,10
dnsvect(i)=0.0

10 continue
dnsvect(1)=-.25*%(1-r)
dnsvect (2)=-.25%(1+r)
dnsvect(3)=.25%(1+r)
dnsvect(4)=.25%(1-r)
return

end

subroutine dnrvec(r,s,dnrvect)
real*8 s,r,dnrvect(10)

integer i,j,k

do 10 i=1,10

dnrvect(i)=0.0

10 continue

dnrvect(1)=-.25%(1-s)
dnrvect(2)=.25%(1-s)
dnrvect(3)=.25%(1+s)
dnrvect(4)=-.25%(1+s)

return

end

Output from Example

This interfacing with FORTRAN is important, because it opens the possi-
bility of using A++/P++ with a number of scientific library (eg. LAPACK,
SLATEC,etc).

8.3. EXAMPLE MAKEFILE 79

8.3 Example Makefile

This example makefile shows the use of a single A++ /P++ source code which
is compiled with A++ to build the A++ application and uses P-++ to build the
P++ application. The source code is unchanged and used to build both A++
and P++ application codes. While the makefile itself is somewhat complicated,
this demonstrates how a single code written for A++ can be reused to build
the equivalent P++ (parallel) application.

The following may be changed by the user

This works for programs in the APPLICATIONS directory

change ARCH to match the architecture chosen during configuration (installation)
of A++/P++

ARCH = SUN4

NOTE: APP_HOME must be a absolute path to work with some compilers
APP_HOME = L /A++

APP_INCLUDE = $(APP_HOME)/include

APPLIB_DIR = $(APP_HOME)/$(ARCH)

NOTE: PPP_HOME must be a absolute path to work with some compilers
PPP_HOME = .. /P++

PPP_INCLUDE = $(PPP_HOME)/include

PPPLIB_DIR = $(PPP_HOME)/$(ARCH)

This is where PVM lives at Los Alamos
PVMLIB = /usr/lanl/pvm/1ib/SUN4/libgpvm3.a /usr/lanl/pvm/lib/SUN4/libpvm3.a

CC_Compiler = CC

koo sokoRskokok ok skt ko ok sk ks sk skskok sk ks sk skok sk ks ks ko sk ks sk sk ok ok ok ok
You should not have to change anything below this line
#RkrokkokokkokkkokdokskkoRsk ok doksk ok kbR ok ko ook ok ko sk ok ko sk ook ok ok

all: riemann p++_riemann mg p++_mg array_test p++_array_test adaptive p++_adaptive

.SUFFIXES: .c .C .cc .o .cxx .a .o .cpp

#ookrokkokkokkokokdokskkoRsk ok dokok ok kokkoRok ok kR ook ok kool ok ok ko koo ok kb ook ok kb ok ok sk ok ook ok o
Example rule for building A++ versions of codes below

#okrokkokkkokkokokdokkkoRsk ok bk ok kokokoRok ok kR ook ok kb ok ok ko ook ok kb ook ok o kb o ok sk sk ook ok o
.C.o

$(CC_Compiler) -I$(APP_INCLUDE) $(CC_FLAGS) -c $x.C

B krkkkokkokkok ok ok ok ok Kok Kok okok ok ok okokskokok ok ok ko skokokokokskoksk ok ok ko skok ok ok sk ok ok ok ko sk ok ok ok ok k ok
Test program to test random features of A++

#okrokokokkokkok ok ok ok ok ok ok okok ok kol kool ok ko ko kokok koo ok ko ko ok ok sk ko ok ko ok ok ok sk k ok
array_test : array_test.o

$(CC_Compiler) $(CC_FLAGS) -o array_test array_test.o -L$(APPLIB_DIR)

-1A++ -1m

This should show how lines which use A++ source build either a serial
#(A++) or parallel (P++) application
ptt_array_test : array_test.C

80 CHAPTER 8. TUTORIAL

$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o p++_array_test.o
array_test.C

$(CC_Compiler) $(CC_FLAGS) -o p++_array_test p++_array_test.o
-L$(PPPLIB_DIR) -1P++ $(PVMLIB) -1lm

ok ok ok Kok KoK KoK o KoK o KoK o K K oK o KK o KoK o KoK ok K KoK o Kok o Kok o K ok o KK o o Kok o ok ok o Kok o Kok o ok ok Kok ok
Riemann solver

kokokok ko Kok KoK KoK KoK KoK oK K oK o KK o K KoK o KoK ok oK KoK o K Kok o KoK o K oK o K Kok Kok o oK ok oK K o Kok o Kok ok K ok ok ok
riemann : riemann.o

$(CC_Compiler) $(CC_FLAGS) -o riemann riemann.o -L$(APPLIB_DIR) -1A++ -1m

This should show how lines which use A++ source build either a serial
#(A++) or parallel (P++) application

pt+_riemann : riemann.C

$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o p++_riemann.o riemann.C
$(CC_Compiler) $(CC_FLAGS) -o p++_riemann p++_riemann.o -L$(PPPLIB_DIR)
-1P++ $(PVMLIB) -1lm

#ookokkokkkokkkokdokkkoRk ok ok skokok kokkok ok ok ok ok sk ok okl ok ok ok ok sk ok ook sk ok ok ok sk ok kb o skok o ok

Simulation of an adaptive solver using deferred evaluation and task recognition
#oekrokkokkkokkokokdokkkoRk ok ok skokok kokkok ok ok ok ok sk ok ok ok ok ok ok ok ok ook sk ok ok ok sk ok kb o skok o ok
adaptive : adaptive.o

$(CC_Compiler) $(CC_FLAGS) -o adaptive adaptive.o -L$(APPLIB_DIR) -1A++

-1lm

This should show how lines which use A++ source build either a serial
#(A++) or parallel (P++) application

pt++_adaptive : adaptive.C

$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o p++_adaptive.o
adaptive.C

$(CC_Compiler) $(CC_FLAGS) -o p++_adaptive p++_adaptive.o -L$(PPPLIB_DIR)
-1P++ $(PVMLIB) -1lm

koo skokoRskokok ok stk ko ok skoksk ok skkok ok sk ok skok sk ks ok sk skok sk ok skok sk ok ok sk ok skok sk ok ok sk ok ok sk ok skok ok ok
Multigrid example for 1-3D problems!

#skorokskoksokoRskokok ok skokoksk ko ok skoksk ok skkok skok sk ok skok sk ks ok sk skok sk ok skok sk ks ok sk ok sk sk ok ok sk ok ok sk ok skok ok ok
mg: mg.o mgllevel.o pde.o mg_main.o

$(CC_Compiler) $(CC_FLAGS) -o mg mg.o mgllevel.o pde.o mg_main.o
-L$(APPLIB_DIR) -1A++ -Im

This should show how lines which use A++ source build either a serial
#(A++) or parallel (P++) application

pt+_mg : pde.C mg_main.C mg.C mgllevel.C

$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o p++_pde.o pde.C
$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o pt++_mg_main.o mg_main.C
$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o pt++_mg.o mg.C
$(CC_Compiler) $(CC_FLAGS) -c -I$(PPP_INCLUDE) -o p++_mgllevel.o
mgllevel.C

$(CC_Compiler) $(CC_FLAGS) -o p++_mg p++_pde.o p++_mg_main.o p++_mg.o
p++_mgllevel.o -L$(PPPLIB_DIR) -1P++ $(PVMLIB) -1lm

Similar Multigrid code in C
mg_c: mg_c.c
$(C_Compiler) mg_c.c -o mg_c -1lm

clean:
rm -f array_test riemann adaptive mg mg_c *.o core

8.4. MORE EXAMPLE ON THE A++/P++ HOME PAGE 81

rm -f p++_array_test p++_riemann p++_adaptive p++_mg mg_c *.o core

8.4 More example on the A++4 /P++ Home Page

A++/P++ has a WWW Home Page which contains more, longer, and more
meaningful examples of A++/P++ programs. The URL for the A++/P++
Home Page is: http://www.c3.lanl.gov/dquinlan/A++P-++.html. This
site is updated regularly with the newest documentation.

82

CHAPTER 8.

TUTORIAL

Chapter 9

Examples: Code Fragments

This is a collection of example A++/P++ code fragments. It is intended to
show some of the many ways that A++4/P++ can be used. There are two
sections, one on A++/P++ examples and the scond on P++ specific examples
that demonstrate parallel features of P++.

9.1 A++4/P++ Examples

These examples are common to both A++ and P++ array classes. They show
a complex mix of operations taken from many A++/P++ codes.

#define BOUNDS_CHECK
#include "A++.h"

void main ()

{
int Array_Size = 100;

// Index Constructor examples
Index I (1 , Array_Size-2, 1);
Index J = I;

Index K = I-1;
Index L = -I;
Index M = 5;
Index Nj;
N = I+1;
// Array Constructor examples

doubleArray Al (Array_Size);
floatArray Bil (Array_Size,Array_Size);

doubleArray Cl1 (Array_Size,Array_Size,Array_Size);
intArray D1 (Array_Size,Array_Size,Array_Size,Array_Size);
floatArray E1 = Bl;
doubleArray F1 = B1(I-1,J);

double *Fortran_Array_Pointer =
doubleArray G (Fortran_Array_Pointer,Array_Size,Array_Size+l);

83

position=1, count=Array_Size-2, stride=1
make an Index object J just like I

make an Index object K just like I-1

make L like I but with negative stride

make Index object from integer index

build an uninitialized Index object

Index assignment to build N like offset of I

new double [Array_Size+1][Array_Size];

84

//

//

/7

1/

1/

/7

1/

/7

//

//

1/

/7

CHAPTER 9. EXAMPLES

Arrays for use in examples below
doubleArray A (Array_Size,Array_Size);
doubleArray B (Array_Size,Array_Size);
doubleArray C (Array_Size,Array_Size);
doubleArray D (Array_Size,Array_Size);
double x = 42;

example of array-scalar assignment
A = x;

A (I) = x;

A (I-1) = x * x;

examples of array-array assignment operations and use

B = A;

B=C=D=A;

A (I,J) =B (J,0);

A (I-1,J) =B (I+1,J);

Scalar indexing

A (0,12) = x;

A (5,12) = A (0,12);

x = A (1,12) + B(0,12);

examples of array-array arithmitic operations
A=B+ (C*xB-D)/A;

A (1,3) += B (1,3 / C (1,3);

A (I-1,7) #= B (I+1,J);

examples of Jacobi relaxation (9-point stencil)

: CODE FRAGMENTS

of Index objects

A (I,J) = (A (I+1,J+1) + A (I,J+1) + A (I-1,J+1) + A (I+1,J) +
A (I-1,J) + A (I+1,J-1) + A (I,J-1) + A (I-1,J-1)) / 8.0;

examples of Jacobi relaxation (5-point stencil)

A (I,7) = CA(I,J+41) + A (I,J-1) + A (I+1,]) + A (I-

more complex operations

1,3) / 4.0;

B (I1,J) = (A (I-1,J-1) = B (I+1,J+1) + C (I-1,J) * D (I,J+1) -

D (I,J) = B (I,J) = (A (I,3) - B (I,1))

examples of relational operator

intArray Mask = B >= C;

Mask = IB;

Mask = !(B && C) '= (!B | !C); // DeMorgan’s Law

example of replace operator
A (I,J).replace (B (I,J) <= 0.001 , 0.001);
A (I,J).replace (A (I,J) <= C(I,J) , C(I,J));

simple example of "where" statement
where (B >= C)
A = 0.001;

)/ (C(1,7) +D (I1,3));

more complex example of "where" used for multiple statement block

where (B(I,J) >= C(I,J))
{

ACL,J) = (A (I,J+1) + A (I,J-1) + A (I+1,J) + A (I-1,J)) / 4.0;

A++/P++ EXAMPLES

B(I,J)
Cc(I,n
}

0.001;
0.001;

examples of max function use
x = max (B);

A =max (B, C * B);

A =max (B, C, A);

examples of miscellaneous function use
x = sum (B);

A = cos (B) * sqrt (C);

B(I,J) = (cos (B) * 2.0)(I,]);

examples of changing bases of array objects

A.setBase (1); // Force A to have indexing similar to Fortran array
setGlobalBase (1); // Set all future arrays to have Fortran like base of 1
A.setBase (x);

A.setBase(x) = B; // Shows value returned from setBase

A.setBase (x,0);

A.setBase (x*x,1);

examples of bases and bound access
Array_Size = A.dimension(0);
printf ("Number of elements in A = %d \n",A.elementCount();
for (int j = A.getBase(1); j <= A.getBound(1l); j++)
for (int i = A.getBase(0); i <= A.getBound(0); i++)
A(i,j) = foo (i,3);

examples of display functions

A (I,J).display("This is A (I,J1)");

A =B + (C * D).display("This is C * D in expression A = B + (C * D)");
(A =B * D).view("This is A = B * D");

A.view("This is A (same view as above)");

2 ways to pass array objects by reference
void foo (const doubleArray & X);
foo (evaluate (A + B));

passing array objects by value requires no special handling
void foobar (const doubleArray X);
foobar (A + B);

examples of fill functions
A(L,J).fill(x);

printf ("PROGRAM TERMINATED NORMALLY \n");

86 CHAPTER 9. EXAMPLES: CODE FRAGMENTS

9.2 P-++ Specific Examples

This section presents some examples that are specific to parallel P4++ opera-
tions. These example deal directly with the distributions of array objects onto
the multiple processors available within the parallel environment.

#define BOUNDS_CHECK
#include <A++.h>

int main(int argc, char** argv)
{
Index: :setBoundsCheck (0On);
int numberQfProcessors = 128;
// P++ looks for the application name if "" is specified
Optimization_Manager::Initialize_Virtual_Machine("",
numberOfProcessors,argc,argv) ;

// Example of using a partition object (assume number of procesors is >= 64)
Partition_Type Partition_A (64); // Build partition object which uses processors 0-63
floatArray A(100,100,Partition_A); // Build array using default "block-block" distribution
// across the processors represented by Partition_A.

// Example of distribution onto subrange of processors
Range ProcessorSubrange_B (27,37);
Partition_Type Partition_B (ProcessorSubrange_B); // Build partition object which uses processors 27-:
floatArray B(100,100,Partition_B); // Build an array distributed "block-block"over
// processors 27-37

// Simple example of alignment specification
Range all; // Default range object implies "all" of wherever it is used
floatArray C (100,100); // Build array "block-block" over all processors
floatArray D = C (0,all); // Align D with boundary of C

// Simple example of array redistribution
Range all; // Default range object implies "all" of wherever it
Range ProcessorSubrange_E (45,83);
Partition_Type Partition_E (ProcessorSubrange_E); // Build partition object which uses processors 45-¢

floatArray E (100,100,Partition_E); // Build array "block-block" over processors 45-83
floatArray F = E (0,all); // Align F with boundary of E
Partition_E.SpecifyProcessorRange(Range(2-12)); // Redistribute E and F on to processors 2-12

// note that F is STILL aligned with the boundary of

// More complex redistribution example. This example builds a collection
// of different sized arrays each associated with the same partitioning object.
// then the arrays are all repartitioned through simple manipulation of the
// partition object. the arrays are initially distributed onto processor 0,
// then on an increassing number of processors until all processor are used,
// then repartitioned onto a decreassing number of processors untill finally
// distributed only on processor zero.

int Size = 10;

Partitioning_Type Partition (Range(0,0));

doubleArray Temp_A(Size,Partition);

doubleArray Temp_B(Sizex*2,Partition);

doubleArray Temp_C(Size/2,Partition);

doubleArray Temp_D(Size*2,Partition);

doubleArray Temp_E(Size/2,Partition);

doubleArray Temp_F(Size,Partition);

9.2. P++ SPECIFIC EXAMPLES 87

int i;
for (i=0; i < Communication_Manager::Number_0f_Processors; i++)

Partition.SpecifyProcessorRange (Range(0,i)); // redistribute all arrays associated with "Partition"
for (i=0; i < Communication_Manager::Number_0f_Processors; i++)

Partition.SpecifyProcessorRange (Range(i,numberOfProcessors-1));

// Example using scalar indexing on local part of distributed array
intArray v(100);
int ibas = v.getLocalBase(0);
int ibnd = v.getLocalBound(0);
Optimization_Manager::setOptimizedScalarIndexing (On);
for (int i=ibas; i<=ibnd; i++)
v(i) = i;
Optimization_Manager::setOptimizedScalarIndexing (0ff);

// Example of getting local A++ array within P++ distributed array
floatArray X (100,100); // distributed array
floatSerialArray X_local = X.getLocalArray(); // Deep copy of local data
floatSerialArray X_local (X.getLocalArray(),SHALLOW_COPY); // Shallow copy of local data
floatSerialArray X_local (X.getLocalArray(),DEEP_COPY); // Deep copy of local data
floatSerialArray *X_pointer_to_local = X.getSerialArrayPointer(); // pointer to local data

88

CHAPTER 9. EXAMPLES: CODE FRAGMENTS

Chapter 10

Reference

10.1 Legend

type double, float, or int

Variables used in examples below

i,J,k,! integers used as scalar index variables
Span_l,Span_J,Span_K,Span_L objects of type Range

1,J,K,L objects of type Index
List_l,List_J,List_K,List_L objects of type intArray

A,B,C typeArray variables

Mask an intArray variable

n,m,o,p any positive integer
Fortran_Array_Pointer pointer to a Fortran array

X variable of type

axis dimension 0-3 of the 4D typeArray

10.2 Debugging A++P++ Code

10.2.1 Turning On Bounds Checking
Bounds Checking in A++P++ must be turned on and is OFF by default.

Turning On Bounds Checking For All But Scalar Indexing

Bounds checking in A4++P++ must be turned on and is OFF by default.

Index::setBoundsCheck (On); Turns ON array bounds checking!
Index::setBoundsCheck (Off); Turns OFF array bounds checking!

89

90 CHAPTER 10. REFERENCE

Turning On Bounds Checking For Scalar Indexing

Scalar bounds checking in A++P++ must be set at compile time. Bounds checking is OFF
by default. It may be set on the compile command line or at the top of each program file
(before #include<A++.h>).

CC-DBOUNDS_CHECK other options Turns on scalar index bounds checking.
#define BOUNDS_CHECK Turns on scalar index bounds checking in file.

10.2.2 Using dbx with A++4

dbx supports calling functions and with the correct version of dbx that understands C++
name mangling, member functions of the A4+ array objects may be called with the following
example syntax:

call A.display() dbx calls the display member function for an A++P++ array A

10.2.3 Mixing C++ streams and C printf

Mixing of C++ ”cout <<” like [/O syntax with C stype ”printf” I/O syntax will generate
strange behavior in the ordering of the user’s I/O messages. To fix this insert the following
call to the I/O Streams library of C++ at the start of your main program.

ios::sync_with_stdio(); Synchronize C++ and C I/O subsystems!

10.3 Range Objects

10.3.1 Constructors

Note: The base must be less than or equal to the bound to define a valid span of an array, if
base > bound then the range is considered null.

Range Span_K (Xbase,+bound),tstride); Range object Span_K from base, to bound, by stride
Range Span_|; Range object which is null
Range Span_J = Span_l; Span_J is a copy of Span_I (not an alias)

10.3.2 Operators

Span_J = Span_l; assignment operator

Span_l+n; builds new Range object with position of Span_l + n
n+Span_l; builds new Range object with position of Span_l + n
Span_l-n; builds new Range object with position of Span_l - n
n-Span_l; builds new Range object with position of Span_l - n

10.3.3 Access Functions

Span_l.getBase(); returns base of Span_|
Span_l.getBound(); returns bound of Span_I
Span_l.getStride(); returns bound of Span_I
Span_lLlength(); returns (bound-base)+1 for Span_|

10.4. INDEX OBJECTS 91

10.4 Index Objects

10.4.1 Constructors

The stride in the examples below default to 1 (unit stride) if not specified. That we provide
an Index constructor which takes a Range object allows Range objects to be used where ever
Index objects are used (e.g. indexing operators).

Index K (tposition,count); Index object K references from position, for count elements, with default stride = 1
Index K (Zposition,count,stride); Index object K references from position, for count elements, with stride

Index I; Index which references all of any array object

Index I(£i); Index with position=xi, count=1, stride=1

Index J = [; J is a copy of I (not an alias)

Index K = Span_l; Index K is built from a Range object, Span_K

10.4.2 Operators

I4n; new Index with position of Index I + n
n—+l; new Index with position of Index I + n
I-n; new Index with position of Index I - n
n-l; new Index with position of Index I - n
J=1 assignment operator

10.4.3 Access Functions

|.getBase(); returns base of |

I.getBound(); returns bound of |

I.getStride(); returns stride of |

I.length(); returns length of | (accounting for stride)

10.4.4 Display Functions

I.display(”label”); Prints Index values and all other internal data for I along with character string ”label” to sdtout

10.5 Array Objects

10.5.1 Constructors

A++ arrays are replicated on each processor in P+, while P4+ arrays are distributable
across processors using user defined distributions (not covered here). Note that the Range
objects can be used to build an A++ array, if used, they define the size and the base of the
array from the Range object provided for each dimension.

typeArray A; array object A (zero length array)
typeArray B = A; array B as a copy of A
typeArray C (n); 1D array C of length n

typeArray C (n,m); 2D array C of length n X m

92

typeArray C (n,m,0);
typeArray C (n,m,0,p);
typeArray C (Span.l);

CHAPTER 10.

REFERENCE

3D array C of length n x m X o
4D array C of length n X m X o X p
1D array C of length of Span_I

2D array C of length of Span_l x Span_J

3D array C of length of Span_l x Span_J x Span_K
4D array C of length of Span_l X Span_J X Span_K x Span_L

(

(

(
typeArray C (Span_l,Span_J);
typeArray C (Span_l,Span_J,Span_K);
typeArray C (Span_l,Span_J,Span_K,Span_L);

A++ only

typeArray C
typeArray C
typeArray C
typeArray C

Fortran_Array_Pointer, n);
Fortran_Array_Pointer, n,m);
Fortran_Array_Pointer, n,m,0);
Fortran_Array_Pointer, n,m,0,p);

1D array C of length n using existing array

2D array C of length n X m using existing array

3D array C of length n X m X o using existing array

4D array C of length n X m X o X p using existing array

NS~

typeArray C
typeArray C
typeArray C
typeArray C

Fortran_Array_Pointer, Span_I); 1D array C using existing data
Fortran_Array_Pointer, Span_l,Span_J); 2D array C using existing data
Fortran_Array_Pointer, Span_l,Span_J,Span_K); 3D array C using existing data

Fortran_Array_Pointer, Span_l,Span_J,Span_K,Span_L); 4D array C using existing data

NS~

P4+ only

typeArray C (Fortran_Array_Pointer, n, Local_Size_n);
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,
n, Local_Size_n);
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,
n, Local_Size_n,
o, Local_Size_o);
typeArray C (Fortran_Array_Pointer, m, Local_Size_m,
n, Local_Size_n,
o, Local_Size_o,
p, Local_Size_p);

1D array C of length n using existing array

2D array C of length n X m using existing array

3D array C of length n X m X o using existing array

4D array C of length n X m X o X p using existing array

P++ only

typeArray C (n, Partition); Use existing Partitioning_Type
typeArray C (m, n, Partition); Use existing Partitioning_Type
typeArray C (m, n, o, Partition); Use existing Partitioning_Type
typeArray C (' m, n, o, p, Partition); Use existing Partitioning_Type

10.5.2 Assignment Operators

A(l,d) = B(I-1,J+1);
A = x;

Set elements of A equal to elements of B
Set elements of A equal to x

10.5.3 Indexing Operators

Note that indexing support for Range objects is available because Index objects are con-
structed from the Range objects and the resulting Index object is used.

Indexing operators for scalar indexing: denotes a scalar

A(i)

Scalar indexing of a 1D array object

10.5. ARRAY OBJECTS 93

A(i.j) Scalar indexing of a 2D array object
A(ij.k) Scalar indexing of a 3D array object
A(iLj.k,1) Scalar indexing of a 4D array object

Indexing operators for use with Index objects: denotes a typeArray

A(l) Index object indexing of a 1D array object
A(l,d) Index object indexing of a 2D array object
A(1,J,K) Index object indexing of a 3D array object
A(lLlJ.K,L) Index object indexing of a 4D array object

Indexing operators for use with Range objects: denotes a typeArray

A(Span.l) Range object indexing of a 1D array object
A(Span_l,Span_J) Range object indexing of a 2D array object
A(Span_l,Span_J,Span_K) Range object indexing of a 3D array object
A(Span._l,Span_J,Span_K,Span_L) Range object indexing of a 4D array object

Indexing operators for use with intArray objects: denotes a typeArray

A(Listl) intArray object indexing of a 1D array object
A(List_I,List_J) intArray object indexing of a 2D array object
A(Listl,List_J,List_K) intArray object indexing of a 3D array object
A(List_l,List_J,List_K,List_L) intArray object indexing of a 4D array object

10.5.4 Indirect Addressing

The subsection Indexing Operators (above) presents the use of intArrays to index A++
arrays (even other intArray objects). The value of the elements of the intArray are used
to define the relevant elements of the indexed object (view). It is often required to convert
between a mask returned by an relational operator and an intArray whose values represent
the non-zero index positions in the mask, however this conversion of a mask to an intArray is
currently supported only for 1D.

intArray Indirect_Address = Mask.indexMap() builds intArray object with values of non-zero index position in Mask
intArray | = (A == 5).indexMap() builds intArray I as a mapping (into A) of elements in A equal to 5

10.5.5 Arithmetic Operators

All arithmetic operators return a typeArray consistent with their input, no mixed type opera-
tions are allowed presently. Casting operators will be added soon to permit mixed operations.
All operations are performed elementwise and the result returned in a separate typeArray
(unless one of the operands is a result from a previous expression in which case the temporary
operand is reused internally).

B + G Add B and C

B + x; Add B and x

x + C; Add x and C

B +=C; Add C to B store result in B
B += x; Add x to B store result in B
B-C; Subtract C from B

B - x; Subtract x from B

x - C; Subtract C from x

94 CHAPTER 10. REFERENCE

B-=C; Subtract C from B store result in B
B -=x; Subtract x from B store result in B
B * C; Multiply B and C

B * x; Multiply B and x

x * C; Multiply x and C

B *= C; Multiply C and B store result in B

B *= x; Multiply x and B store result in B

B /G Divide B by C

B/ x; Divide B by x

x /G Divide x by C

B /=G Divide B by C store result in B

B /= x; Divide B by x store result in B

B % C; B Modulo C

B % x; B Modulo x

x % C; x Modulo C

B %= C; B Modulo C to store result in B

B %= x; B Modulo x store result in B

10.5.6 Relational Operators

All relational operators return an intArray, no mixed type operations are allowed presently.
All operations are performed elementwise and return conformable mask (intArray object).
Mask values are zero if the conditional test was false, and non-zero if operation was true.
See Indirect Addressing for conversion of zero/non-zero masks into intArrays for use with
indirect address indexing.

B; mask based on test for zero elements of B

B <G mask specifying elements of B < C

B < x; mask specifying elements of B < x

x < G mask specifying elements of C where x < C
B <=C; mask specifying elements of B <= C

B <= x; mask specifying elements of B <= x

x <= G mask specifying elements of C where x <= C
B > G mask specifying elements of B > C

B > x; mask specifying elements of B > x

x > C; mask specifying elements of C where x > C
B >=C mask specifying elements of B >= C

B >=x; mask specifying elements of B >= x

x >= C; mask specifying elements of C where x >= C
B ==C; mask specifying elements of B == C

B == x; mask specifying elements of B == x

x == C; mask specifying elements of C where x == C
B!=¢C mask specifying elements of B! = C

B!=x; mask specifying elements of B ! = x

x!=C; mask specifying elements of C where x ! = C
B && C; mask specifying elements of B && C

B && x; mask specifying elements of B && x

10.5. ARRAY OBJECTS 95

x && C; mask specifying elements of C where x && C
B C; mask specifying elements of B || C

B || x; mask specifying elements of B || x

x || G mask specifying elements of C where x || C

10.5.7 Min Max functions

These functions (except in the case of the single input reduction operations) return array
objects with an elementwise interpretation. Both ”min” and ”max” represent reduction op-
erations in the case of a single array input. These functions thus return a scalar value from
the array input. In A++ the operation is straightforward. In P4+ the reduction operators
return a scalar, but internally do the required message passing to force the same scalar return
value on all processors (assuming a data parallel model of execution).

min (A); return scalar minimum of all array elements
min (B,C); min elements of B and C
min (B,x); min elements of B and x
min (x,C); min elements of x and C
min (A,B,C); min elements of A,B and C
min (x,B,C); min elements of x,B and C
min (A,x C) min elements of A,x and C
min (A,B,x); min elements of A,B and x
ax (A); return scalar maximum of all array elements
ax (B,C); max elements of B and C
ax (B,x); max elements of B and x
max (x,C); max elements of x and C
max (A,B,C); max elements of A,B and C
max (x,B,C); max elements of x,B and C
max (A,x,C); max elements of A,x and C
max (A,B,x); max elements of A,B and x

10.5.8 Miscellaneous Functions

All functions return a typeArray consistent with their input, no mixed type operations are
allowed presently. Functions fmod and mod apply to double or float arrays and integer arrays,
respectively. Functions log, logl0, exp, sqrt, fabs, ceil, floor, cos, sin, tan, acos, asin, atan,
atan2, cosh, sinh, tanh, acosh, asinh, atanh; only apply to doubleArray and floatArray
objects. Function abs applies to only intArray objects.

For P++ operation of reduction functions (”sum,” for example) see note on reduction
operators in P+ in previous subsection (Min Max functions).

fmod (B,C); B modulo C equivalent to operator B % C
fmod (B ,x); B modulo x equivalent to operator B % x
fmod (x,C); x modulo C equivalent to operator x % C
mod (B,C); B modulo C equivalent to operator B % C
mod (B,x); B modulo C equivalent to operator B % x
mod (x,C); B modulo C equivalent to operator x % C
pow (B,C); B(i)¢® for elements of B and C

pow (B,x); B(i)* for elements of B and x

96 CHAPTER 10. REFERENCE

pow (x,C); 2% for elements of x and C

sign (B,C); C with sign of B

sign (B,x); array with values of x but with sign of B
sign (x,C); C with sign of x

sum (B); sum of elements of B

log (B); log of elements of B

log10 (B); log10 of elements of B

exp (B); exp of elements of B

sqrt (B); sqrt of elements of B

fabs (B); fabs of elements of B

ceil (B); ceil of elements of B

floor (B); floor of elements of B

abs (B); abs of elements of B

cos (B); cosine of elements of B

sin (B); sine of elements of B

tan (B); tangent of elements of B

acos (B); arccosine of elements of B

asin (B); arcsine of elements of B

atan (B); arctangent of elements of B

atan2 (B,C); arctangent of elements of B/C

cosh (B); hyperbolic cosine of elements of B
sinh (B); hyperbolic sine of elements of B

tanh (B); hyperbolic tangent of elements of B
acosh (B); arc hyperbolic cosine of elements of B
asinh (B); arc hyperbolic sine of elements of B
atanh (B); arc hyperbolic tangent of elements of B

10.5.9 Replace functions

Replacement of elements is done for non-zero mask elements. Mask and input arrays must
be conformable. Since this feature of A++/P++ is redundent with the where statement
functionality, the replace member function may be devalued at a later date and then removed
from A++/P++ sometime after that.

A.replace (Mask , B); replace elements in A with elements in B depending on value of Mask
A.replace (Mask , x); replace elements in A with scalar x depending on value of Mask
A.replace (x, B); replace elements in A with elements in B depending on value of x

(equivalent to if (x) A = Bj)

10.5.10 Array Type Conversion Functions

The conversion between array types is commonly represented by casting operators. However,
such casting operators could be called as part of automate conversion which can be especially
problematic to debug. To facilitate the conversion between types of arrays we provide member
functions that cast an array of one type to an array of another type explicitly. These member
functions can, for example, convert an array of type intArray to an array of type floatArray.
Or we can convert a floatArray to an intArray. As and example, this mechanism simplifies
the visualization of intArray objects using graphics functionality only written for floatArray
or doubleArray types. Future work implement casting operators that make the conversion
implicit.

A.convertTo_intArray(); return an intArray (convert typeArray A to an intArray

10.5. ARRAY OBJECTS 97

A.convertTo_floatArray();
A.convertTo_doubleArray();

return a floatArray (convert typeArray A to a floatArray
return a doubleArray (convert typeArray A to a doubleArray

10.5.11 User defined Bases

A++/P++ array object may have user defined bases in each array dimension. This allows for
array objects to have a base of 1 (as in FORTRAN), or any other positive or negative value.

A.setBase(+n);
A.setBase(£n,axis);
setGlobalBase(+£n);
setGlobalBase(=£n,axis);

Set base to +n along all axes of A

Set base to £n along axis of A

Set base to +n along all axes for all future array objects
Set base to +n along axis for all future array objects

10.5.12 Indexing of Views

The base and bound of a view of an array object are dependent on the base and bound of the
Index or Range object used to build the view. Thus a view, A(l), of an array, A, is another
array object which carries with it the index space information about it’s view of the subset of
data in the original array, A.

10.5.13 Array Size functions

Array axis numbering starts at zero and ends with the max number of dimensions (a constant
MAX_ARRAY_DIMENSION stores this value) for the A++/P++ array objects minus one.
These provide access into the A4+ objects and assume an A-++ object is being used. An
alternative method is defined to permit access to the same data if a raw pointer is being used,
this later method is required if a pointer to the array data is being passed to FORTRAN. The
access functions for this data have the names getRawBase(), getRawBound(), getRawStride(),
getRawDataSize().

A.getBase();
A.getBase(axis);
A.getRawBase(axis);
getGlobalBase();
getGlobalBase(axis);

A.getStride(axis);
A.getRawStride(axis);

A.getBound(axis);
A.getRawBound (axis);
A.getLength(axis);
A.getFullRange(axis);
A.dimension(axis);
A.elementCount();
A.numberOfDimensions();
A.isAView();
A.isNullArray();
A.isTemporary/();
A.rows();

A.cols();

Get base along all axes of A (bases must be equal)
Get base along axis of A

Get base along axis of A

Get base along all axes for all future array objects
Get base along axis for all future array objects

Get stride along axis of A
Get stride along axis of A
Get bound along axis of A
Get bound along axis of A

Get dimension (array size) of A along axis
return a Range object (base,bound,stride of the array)

Get dimension (array size) of A along axis (returns a Range object)

Get total array size of A

Get total number of dimensions of A

returns TRUE if A is a subArray (view) of another array object
returns TRUE if A is an array of size zero

returns TRUE if A is a result of an expression

Get number of rows of A (for 2D array objects)

Get number of cols of A (for 2D array objects)

98 CHAPTER 10. REFERENCE

10.5.14 Array Object Similarity test functions

Array axis numbering starts at zero and ends with the max number of dimensions (a constant
MAX_ARRAY_DIMENSION stores this value) for the A++/P++ array objects minus one.
These member functions allow for the testing of Bases, Bounds, Strides, etc along each axis
for two array objects. For example, the return value is TRUE if the Bases match along all
axes, and FALSE if they differ along any axis.

A conformability test is included to allow the user to optionally test the conformability
of two array objects before the array operation.

A.isSameBase(B); Check bases of both arrays along all axes (all bases equal return TRUE)
A.isSameBound(B); Check bounds of both arrays along all axes (all bounds equal return TRUE)
A.isSameStride(B); Check strides of both arrays along all axes (all strides equal return TRUE)
A.isSimilar(B); Check bases, bounds, and strides of both arrays along all axes
A.isConformable(B); Checks conformability of both arrays

10.5.15 Array Object Internal Consistancy Test

This function tests the internal values for consistancy it is mostly included for completeness.
It is most usefull within P++ where there is significant testing that can be done between local
and global data to verify consistant internal behavior. It is used within A++ and P++ when
internal debugging is turned on (not the default in distribution versions of A++ and P++.

A.isConsistant(); Checks internal consistancy of array object

10.5.16 Shape functions

These shape functions redimension an existing array object. The reshape function allows the
conversion of an nxm array to an mxn array (2D example), the total number of elements
in the array must remain the same and the data values are preserved. The redim function
redimensions an array to a different total size (larger of smaller), but does not preserve the
data (data is left uninitialized). The resize function is similar to the redim function except
that it preserves the data (truncating the data if the new dimensions are smaller and leaving
new values uninitialized if the new dimensions are larger. Each function can be used with
either scalar or Range object input parameters, additionally each function may be provided
an example array object from which the equivalent Range objects are extracted (internally).
All these member functions preserve (save and reset) the original base of the array object.

A.reshape(i,j.k,l); Change dimensions of array using the same array data (same size)
A.reshape(Span_l,Span_J,Span_K,Span_L); Change dimensions of array using the same array data (same size)
A.reshape(typeArray); Change size of array object using another array object
A.resize(i,j,k,1); Change size of array object (old data is copied and truncated)
A.resize(Span_l,Span_J,Span_K,Span_L); Change size of array object using Range objects
A.resize(typeArray); Change size of array object using another array object
A.redim(i,j,k,1); Change size of array object (old data is lost)
A.redim(Span_l,Span_J,Span_K,Span_L); Change size of array object using Range objects
A.redim(typeArray); Change size of array object using another array object

transpose (A); transpose of elements of A

10.5.17 Display Functions

10.5. ARRAY OBJECTS 99

A(L,J).display(”label”); Prints array data for the view A(I,J) along with character string ”label” to sdtout
A.view(”label”); Prints array data and all other internal data for A along with character string ”label” to sdtout

Details of the display of the values within an array by the display function are controled by
the values assigned to the typeArray::DISPLAY_FORMAT variable. This variable has a
default value of typeArray::SMART _DISPLAY_FORMAT which allows for the auto
selection of either DECIMAL or EXPONENTIAL format depending upon the values within
the array. Display Format Control Values:

typeArray::DISPLAY FORMAT = typeArray::DECIMAL _DISPLAY_FORMAT; Uses xxx.yyyy format
typeArray::DISPLAY FORMAT = typeArray:EXPONENTIAL_DISPLAY_FORMAT; Uses x.yyyye®zz format
typeArray::DISPLAY FORMAT = typeArray::SMART _DISPLAY _FORMAT; Auto-selects either of above formats

10.5.18 Array Expressions Used For Function Input

Functions passing array objects by reference can’t be passed an expression since expressions
return temporaries that are managed differently internally. Functions passing expressions by
value require no special handling.

foo (evaluate (A+B)); Force (A+B) temporary to be persistent for function foo , which passes an array object by reference

10.5.19 Array Aliasing

A++ and P++ arrays can be aliased however all caveats apply as in the use of FORTRAN
equivalence. This permits array object to be views of other array objects or indexed parts of
other array objects. Note that P++’s adopt function must build the distributed array from
the collection of pointers to local memory in each processor and so requires both global and
local domain size information (P++ organizes any communication that is required to build
the distributed array (currently there is no communication required)).

B.reference (A(l,J)); Force B to reference A(l,J)
B.breakReference (); Break reference to A(l,J) (builds a copy of previous reference)
A-++ only
C.adopt (Fortran_Array_Pointer, n); 1D array C of length n using existing array
C.adopt (Fortran_Array_Pointer, n,m); 2D array C of length n X m using existing array
C.adopt (Fortran_Array_Pointer, n,m,0); 3D array C of length n X m X o using existing array
C.adopt (Fortran_Array_Pointer, n,m,o,p); 4D array C of length n X m X o X p using existing array
P++ only
C.adopt (Fortran_Array_Pointer, n, Local_Size_n); 1D array C of length n using existing array
C.adopt (Fortran_Array_Pointer, m, Local_Size_m,
n, Local_Size_n); 2D array C of length n X m using existing array

C.adopt (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o); 3D array C of length n X m X o using existing array
C.adopt C (Fortran_Array_Pointer, m, Local_Size_m,

n, Local_Size_n,

o, Local_Size_o,

p, Local_Size_p); 4D array C of length n X m X o X p using existing array

100 CHAPTER 10. REFERENCE

10.5.20 Fill Function

More fill functions will be added to later releases of A++/P++. Its purpose is to initialize
an array object to value or set of values.

B(I,J).fill(x); Set elements of B(l,J) equal to x
B(1,J).seqAdd(Base,Stride); Set elements of B(I,J) equal to Base, Base+Stride, ... , Base+n*Stride
default value for Base and Stride are 0 and 1

10.5.21 Access To FORTRAN Ordered Array

A++/P++ provides access to the internal data of the array object using the following access
functions. Arrays are stored internally in FORTRAN order and a pointer to the start of the
array can be obtained using the getDataPointer member function. In the case of a view the
pointer is to the start of the view. It is up to the user to correctly manipulate the data (good
luck). Similar access is provide to the array descriptor (though info for it’s use is not contained
in this Quick_Reference_Manual).

Fortran_Array_Pointer = A.getDataPointer(); Array_Descriptor_Type = A.getDescriptorPointer();

10.6 ””where” Statement

Example of where statement support in A++/P++. Note that elsewhere statements may
be cascaded and that an optional parameter (Mask) can be specified. Note that elsewhere
must have a set of parenthesis even if no parameter is specified. The mask must be con-
formable with the array operations in the code block. On the Cray, and with the GNU
g++ compiler, the statement elsewhere(mask) taking a mask as a parameter is called else-
where_mask(mask). This is due to a problem with parameter checking of macros. The
syntaz for elsewhere(), not taking a mask, does not change. This aspect of A++ syntax
may be changed slightly to accommodate these non-portable aspects of the C preprocessor.

where (A == 0)

é = 0; elements of B set to zero at positions where A = 0

A=B+ (G B added to C and assigned to A at positions where A = 0
else‘};vhere (B>0) Use elsewhere_mask on the Cray and with GNU g++

é = A elements of B set to A at positions where A Z 0 and B > 0
else‘};vhere 0

% = A; elements of B set to A at positions where A # 0 and B < 0

10.7 P++ Specific Information

There are access functions to the lower level objects in P++ which can be manipulated by
the user’s program. Specifically we provide access to the Partitioning Type that each array
uses internally (if it is not using the default distribution). The purpose of providing manual
ghost boundary updates is to permit override of the message passing interpretation provide
in P4++. The resulting reduced overhead provides a simple means to optimize performance
of operations the user recognizes as not requiring more than an update of the internal ghost

10.7. P++ SPECIFIC INFORMATION 101

boundaries. The ”displayPartitioning” member function prints out ASCII text which describes
the distribution of the P++ array on the multiprocessor system. The same functions exist in
A++ but don’t do anything, this supports backward compatibility between P++ and A++.

10.7.1 Control Over Array Partitioning (Distributions)

The distribution of P++ array objects is controled though partitioning objects that are asso-
ciated with the array objects. The association of a partitioning object with and array is done
either at construction of the array objects or later in the probram. An unlimited number
of array objects may be associated with a given partitioning object. The manipulation of
the partitioning object translates directly to manipulation of each of the array objects as-
sociated with the partitioning. This feature makes it easier to manipulate large number of
arrays with a simple interface. Partitioning objects are valid object in A++, but have no
meaningful effect, so they are only functional in P++. This is to permit bidirectional porta-
bility between A++ and P++ (the serial and parallel environments). An unlimited number
of Partitioning_Type objects may be used within an application. One of the main purposes
of the partitioning objects is to define the distribution of P++ arrays and permit the dynamic
redistribution. The expected usage is to have many P-++ arrays associated with a relatively
small number of Partitioning_Type objects.

Constructors

At present the constructor taking a intArray as a parameter is not implemented, it’s purpose is
to provide a simple means to control load balancing; it is the interface for a load balancer. But
load balancing is not a part of A++/P++, load balancers used with parallel P4+ applications
are presently separate from P++. The most common usage of the partitioning object is to
either call the constructor which specifies a subrange of the virtual processor space (this will
be truncated to the exitisting virtual processor space if too large a range is specified), or call
the default constructor (the whole virtual processors space) and then call member functions
to modify the partitioning object.

Partitioning_Type P (); Default constructor

Partitioning Type P (Load_Map); Load_Map is a intArray specifying the work distribution
Partitioning_Type P (Number_Of_Processors); integer input specifies number of processors to use (start=0)
Partitioning_Type P (Span_P); Range input specifies range of processors to use
Partitioning Type Pl = P; Deep copy constructor

Member functions

The operations on a Partitioning_Type object are done to all P4+ arrays that are associ-
ated through that Partitioning Type object. This provides a powerful mechanism for the
dynamic control of array distributions; load balancers are expected to take advantage of this
feature. The ”applyPartition” member function is provided so that multiple modifications to
the partitioning object may be done and a single restructuring of the P4+ arrays associated
with the partitioning object completed subsequently. P++ operation is undefined if the par-
titioning is never applied to it’s associated objects. At present, only the partitionAlongAxis
member function does not call the applyPartition function automatically. This detail of the
interface may change in the near future to allow a more simple usage.

The partitionAlongAxis member function takes three parameters: int Axis, bool Parti-
tioned, int GhostBoundaryWidth. This simplifies the setting and modification of the parti-
tioning. Afterward this only takes effect once the applyPartition member function is called.
Then all distributed arrays associated with the partitioning object are redistributed with the
ghost boundaries that were specified.

SpecifyDecompositionAxes (Input_Number_Of_Dimensions_To_Partition); Integer input
SpecifyInternalGhostBoundaryWidths (int,int,int,int); Default input is zero

102 CHAPTER 10. REFERENCE

display (Label); printout partition data
displayDefaultValues (Label); printout default partition data
displayPartitioning (Label); graphics display of partition data
displayDefaultPartitioning (Label); graphics display of default partition data
updateGhostBoundaries (X); X is a P++ array

partitionAlongAxis (int Axis, bool PartitionAxis, int GhostBoundaryWidth)input specifies axis

applyPartition (); force partitioning of previously associated P+

10.7.2 Array Object Member Functions

Array objects have some specific member functions that are meaningful only within P++4-, as
A++ array objects the member functions are defined, but have do nothing. This is done for
backward compatability.

Partitioning_Type *X = A.getPartition(); get the internal partition

A.partition(Partition); repartition dynamically

A.partition(typeArray); repartition same as existing array object
A.getLocalBase(axis); return base of local processor data

A.getLocalBound(axis); return bound of local processor data
A.getLocalStride(axis); return stride of local processor data
A.getLocalLength(axis); return length of local processor data
A.getLocalFullRange(axis); return a Range object (base,bound,stride of the local array)
A.getSerial ArrayPointer(); return a pointer to the local array (and A++ array)
A.getLocalArray(); return a shallow copy of the local array (and A++ array)
A.getLocalArrayWithGhostBoundaries(); return a shallow copy (with ghost boundaries)
A.updateGhostBoundaries(); updates all ghost bondaries

A.displayPartitioning(); prints info on distribution of array data
A.getGhostCellWidth(Axis); access to ghost boundary width

A.getInternalGhost CellWidth(Axis); access to ghost boundary width (devalued, will be removed in future r
A.setInternalGhostCellWidth(int,int,int,int); dynamicly adjusts ghost boundary width

A.setInternalGhostCellWidthSaveData(int,int,int,int)s above but preserves the data and updates ghost boundaries

10.7.3 Distributed vs Replicated Array Data

Within P4+ arrays are distributed, distributions have the following properties:

e 1 An array is distributed in some or all of the dimensions of the array (the user selects
such details).

e 2 An array is distributed over a subset of processors.
e 3 An array is distributed over only a single processor (a trivial case of #2 above).

e 4 An array is built onto only one processor and only that processor knows about it (i.e.
an A4+ array object is built locally on a processor).

e 5 An array is replicated onto all processors (this is really a trival case of #4 above where
each array is built locally on each processor). In this case the user is responciple for
maintaining a consistant representation of the data which is replicated. This later case
is useful for when a small array is required and is analogous to the case of replication
of scalars onto every processor since no overhead of parallel support.

P++ also contains SerialArrays, (e.g. doubleSerialArray). These arrays are simply
A++ array objects on each processor. In a data parallel way, if all processors build a serial
array object, then each processor builds an array and the array is replicated across all proces-
sors. It is up to the user to maintain the consistancy of the array data across all processors
in this case. Many arrays that are small are simply replicated, this costs little in additional
space and avoid any communication when data is accessed.

10.7. P++ SPECIFIC INFORMATION 103

10.7.4 Virtual Processors

P4+ uses a number of processors independent upon the number of actual processors in hard-
ware. On machines that support it the excess processors are evenly distributed among the
hardware processors. This allows for greater control of granularity in the distribution of work.
Where it is important to take advantage of this is application dependent. For most of the
development this has allowed us to test problems on a number of processors indepentend of
the actual number of machines that we have in our workstation cluster.

10.7.5 Synchronization Primative

Note that the Communication_Manager::Sync() is helpful in verifying the all processors reach
a specific point in the parallel execution. This is helpful most often for debugging parallel
codes.

Communication_Manager::Sync(); Call barrier function to sync all processors

10.7.6 Access to specific Parallel Environment Informa-
tion

Although access to the underlying parallel information such as processor number, etc. can be
used to break the data parallel model of execution such information is made available within
P++ because it can be useful if used correctly. As an example of correct useage moving an
application using graphics from A++ to P++ often is simplified if a specific processor is used
for all the graphics work while others are idle. Access to the process number allows the code
on each processor to branch dependent upon the processor number and thus simplifies (at
initially) the movement of large scale A++ applications onto parallel machines using P++.
Some of the data is only valid for either PVM or MPI, and some data is interpreted different
by the two communication libraries.

Communication_Manager::numberOfProcessors(); get number of virtual processors
Communication_Manager::localProcessNumber(); get processor id number
Communication_Manager::Sync(); barrier primative
Communication_Manager::My_Task_ID; get process id
Communication_Manager::MainProcessorGroupName; Name of MPI Group

10.7.7 Escaping from the Data Parallel Execution Model

Since the data parallel style is only assumed for the execution of P4+ array operations, but
not enforced, it is possible to break out of the Data Parallel model and execute any parallel
code desired. Users however are expected to handle their own communication. Since some
degree of syncronization is helpful in moving into and out of the data parallel modes, the
Communication_Manager::Sync() function is expected to be used (though not required).

10.7.8 Access to the local array

Each P++ distributed array on each processor contains a local array (a Seri-
alArray object (same as an A++ array object)). The local array is availabel
with and without ghost boundaries.

104 CHAPTER 10. REFERENCE

Access to the local array without ghost boundaries

The local array stores the local part of the distributed array data. Access to
the localArray is obtained from:

A.getLocalArray(); return a shallow copy of the local array (an A++ array)

Access to the local array with ghost boundaries

Ghost boundaries are not visible within the local array since the local array is a
view of the partition of the distributed space on the current processor. The ghost
boundaries (if the ghost boundary width is nonzero) are present, but access to
them from the view would result in an out of range error. Another mechanism
for accessing the local array is required to get the local array containing the
ghost boundaries.

A.getLocal ArrayWithGhostBoundaries(); return a shallow copy (with include ghost boundaries)

The access to the ghost boundaries is possible from this view, but the user
must know how to interpret the ghost boundaries within the returned local array
object. (Hint: they are at the boundaries and the widths along each access are
given by the ghost boundary widths obtained from the partitions.)

10.7.9 Examples of P++ specific operations

We provide some simple examples within the A++/P++ manual, please consult
that chapter on Examples to see illustrations of the useage of the P++ specific
functions.

10.8 Optimization Manager

Optimization manager is an object whose member functions control properties
of the execution of the A++ and P++ array class (see reference manual). More
member functions later will allow for improved optimization potential. The
setup of the ”Virtual Machine” may be separated outside of the P4+ interface
since not all machine environments require it (both MPI and PVM do, so it is
present in P4+ currently).

The ”Program_Name” should be initialized with the complete name of the
executable (including path), however in environments where it is supported
P++ will automatically search for the string if only "' is specified. This is a
feature that can not be supported on all architectures (or PVM would handle
it internally).

Initialize_Virtual_Machine (char* Program_Name = ”” , int Num_Processors = 1, int argc, cHérst*Pargvs)atement

Exit_Virtual_Machine (); Last P++ statement
setOptimizedScalarIndexing (On_Off_Type On_Off = On); Optimize performance

10.9. DIAGNOSTIC MANAGER 105

10.9 Diagnostic Manager

There are times when you want to know details about what is happening inter-
nally within A++/P++. We provide a limited number of ways of seeing what
is going on internally and getting some data to understand the behavior of the
users application. More will be added in future versions of A++/P++.

10.9.1 Report Generation

There are a number of Diagnostic manager function which generate reports of
the internal useage. Some reports are quite long, other are brief and summarize
the execution history for the whole application.

getSizeOfClasses(); Reports the sizes of all internal classes in A++/P++
getMemoryOverhead(); returns memory overhead for all arrays
getTotalArrayMemoryInUse(); returns memory use for array elements
getTotalMemoryInUse(); reports total memory use for A++/P++
getnumber OfArraysConstantDimensionInUse(dimerspontmbutdiypy dadension
getMessagePassingluterpretationReport(); Communication Report
getReferenceCountingReport(); Reference Counting Report
displayCommunication (const char* Label = ””); communication report by processor
displayPurify (const char* Label = ”"); Displays memory leaks by processor (uses purify)
report(); Generates general report of A++/P++ behavior
setTrackArrayData(Boolean trueFalse = TRUE);Track and report on A++/P++ diagnostics
getTrackArrayData(); get Boolean value for diagnostic mechanism
buildCommunicationMap (); Builds map of communications by processor
buildPurifyMap (); Builds map of purify errors by processor
getPurify UnsupressedMemoryLeaks(); Total Memory leaked

Features and counted quantities include:

e The use of int Diagnostic_Manager::getSizeOfClasses()
displays a text report of the sizes of different internal structures in A++P++.

e The use of int Diagnostic_Manager::getMemoryOverhead()
returns an integer that represents the number fo byte of overhead used to
store intenal array descriptors, partitioning information (P++ only), etc.;
for the whole application at the time that the function is called.

e The use of int Diagnostic_ZManager::getTotal ArrayMemoryInUse()
returns an integer representing the total number of array elements in use
in all array objects at the time that function is called.

e The use of int Diagnostic_Manager::getTotalMemoryInUse()
returns the total number of bytes in use within A++/P++ for all overhead
and array elements at the time the function is called.

106 CHAPTER 10. REFERENCE

e The use of int Diagnostic_Manager::getnumberOfArraysConstantDimensionInUse()
returns the number of arrays of a particular dimension and of a particu-
lar type. this function is an example of the sort of diagnostic questions
that can be written which interogate the runtime system to find out both
global and local properties of its operation.

e The use of int Diagnostic_Manager::getMessagePassingInterpretationReport()

generates a report (organized from each processor, but reported on pro-
cessor 0). The report details the number of MPI sends, MPI receives,
the number of ghost boundary updates (one update implies the update
of all ghost boundaries on an array, even if this generates fewer MPI
messages than ghost boundaries), and the number VSG updates regular
section transfers (the more general communication model which permits
operations between array objects independent of the distribution across
multiple processors).

e The use of int Diagnostic_Manager::getReferenceCountingReport()
generates a report of the internal reference counts used in the execution
of array expressions. This function is mostly for internal debugging of
reference counting problems.

e The use of int Diagnostic_Manager::report()
generates a summary report of the execution of the A++ /P++ application
at the point when it is called.

e The use of int Diagnostic_Manager::setTrackArrayData()
turns on the internal tracking of array objects as part of the internal
diagnostics and permits the summary report to report more detail. It
is off by default so that there is no performance penalty associated with
internal diagnostics. This must be set at the top of an application before
the first array object is built.

10.9.2 Counting Functions

Optional mechanisms in A++/P++ permit many details to be counted inter-
nally as part of the report generation mechanisms. All functions return an
integer.

resetCommunicationCounters (); reset, the internal message passing counting mechanisn
getNumberOfArraysInUse(); returns the number of arrays inuse
getMaxNumberOfArrays(); returns the max arrays in used at any point in time
getNumberOfMessagesSent(); returns the number of messages sent
getNumberOfMessagesReceived(); returns the number of messages received
getNumberOfGhostBoundaryUpdates(); returns number of updates to ghostboundaries
getNumberOfRegularSectionTransfers(); # of uses of general communication mechanism
getNumberOfScalarIndexingOperations(); scalar indexing

getNumberOfScalarIndexingOperationsRequiringéehdbalBrlmadugst(ith communication

10.9. DIAGNOSTIC MANAGER 107

Features and counted quantities include:

e The use of int Diagnostic_Manager::reset CommunicationCounters()
permits the internal counters to be reset to ZERO.

e Number of arrays in use int Diagnostic_Manager::getNumberOfArraysInUse()
The number of arrays in use at any point in the execution is useful for
gauging the relative use od A++/P++ and spotting potential memory
leaks.

e Max arrays in use int Diagnostic_Manager::getMaxNumberOfArrays()
This function tallies the most number of arrays in use at any one time dur-
ring the execution history (note: records use in increments of 300).

e Reset message counting int Diagnostic_Manager::resetCommunicationCounters()
Resest the message counters to ZERO to permit localized counting of mes-
sages generated from code fragements.

e Number of messages (sent) int Diagnostic_Manager::getNumberOfMessagesSent/()
returns the total messages since the beginning of execution or from the
last call to Diagnostic_Manager::reset CommunicationCounters().

e Number of messages (received) int Diagnostic_Manager::get NumberOfMessagesReceived()
returns the total messages since the beginning of execution or from the
last call to Diagnostic_Manager::reset CommunicationCounters().

e Number of messages (received) int Diagnostic_Manager::get NumberOfGhostBoundaryUpdates()
Returns the total number of calls to update the ghost boundaries of arrays.
Note that some calls will not translate into message passing (e.g. if only
run on one processor or if the ghost boundary width is ZERO). Reports
on number of messages since the beginning of execution or from the last
call to Diagnostic_Manager::reset CommunicationCounters().

10.9.3 Debugging Mechanisms

These functions provide mechanisms to simplify the error checking and debug-
ging of A++/P++ applications.

getPurify UnsupressedMemoryLeaks(); Total Memory leaked
setSmartReleaseOfInternalMemory (On/Off); Smart Memory cleanup
getSmartReleaseOflnternalMemory(); get Boolean value for smart memory cleanup
setExitFromGlobalMemoryRelease(Boolean); setup exit mechanism
getExitFromGlobalMemoryRelease(); get Boolean value for exit mechanism

test (typeArray); Destructive test of array object

displayPurify (const char* Label = ””); Displays memory leaks by processor (uses puri

buildPurifyMap (); Builds map of purify errors by processor

108 CHAPTER 10. REFERENCE

e The use of void Diagnostic_Manager::setSmartReleaseOfInternalMemory ()
(called from anywhere in an A++/P++ application) will trigger the mech-
anism to cleanup all internally used memory within A++/P++ after the
last array object has been deleted. Specifically it counts the number of
arrays in use (and the number of arrays used internally (e.g. where state-
ment history, etc.) and when the two values are equal it calls the void
globalMemoryRelease() function which then deletes existing arrays in
use and other data used internally (reference count arrays, etc.). The user
is warned in the output of the void globalMemoryRelease() function
to not call any functions that would use A++/P++ since the results would
be undefined.

e The use of the void Diagnostic_Manager::setExitFromGlobalMemoryRelease()
will force the application to exit after the global memory release (and from
within the void globalMemoryRelease() function itself. The user may
then specify that the normal exit from the base of the main function is
an error and thus detect the proper cleanup of memory in test programs
using the exit status (stored in the $status enviroment variable on all
POSIX operating systems (most flavors of UNIX). If purify is in use (both
A++/P++ configured to use purify and running with purify) then pu-
rify_exit(int) is called. This function or’s the memory leaks, memory
in use, and purify errors into the exist status so that the $status en-
viroment variable can be used to detect purify details within test codes.
A++/P++ test codes are tested this way when A++/P++ is configured
to use PURIFY. P++ applications can not always communicate detected
purify problems on other processes AND output the correct exit status,
this is only a limitation of how mpirun returns it’s exit status.

e The use of void Diagnostic_Manager::test({ypeArray A) allows for
exhaustive (destructive) tests of an arrya object. This is useful in test-
ing an array object for internal correctness (more robust testing than the
nondestructive testing done in the Test_Consistancy() array member func-
tion).

e The use of void Diagnostic_ZManager::displayPurify() generates a
report of purify problems found (currently this mechanism does not work
well, since many purify errors can only be found at exit).

10.9.4 Misc Functions

All other functions not yet documented in detail.

getMessagePassingluterpretationReport(); Communication Report
getReferenceCountingReport(); Reference Counting Report
getSizeOfClasses(); Reports the sizes of all internal classes in A

getMemoryOverhead(); returns memory overhead for all arrays

10.10. DEFERRED EVALUATION

getTotalArrayMemoryInUse();
getTotalMemoryInUse();

109

returns memory use for array elements
reports total memory use for A++/P++

getnumberOfArraysConstantDimensionInUse(dimension,inpu¢fiygie Gydayray dimension

displayPurify (const char* Label = ””);
getPurifyUnsupressedMemoryLeaks();

report();

setSmartReleaseOfInternalMemory (On/Off);
getSmartReleaseOfInternalMemory();
setExitFromGlobalMemoryRelease(Boolean);
getExitFromGlobalMemoryRelease();
setTrackArrayData(Boolean trueFalse = TRUE);
getTrackArrayData();

test (typeArray);

buildCommunicationMap ();

buildPurifyMap ();

displayCommunication (const char* Label = 77);
resetCommunicationCounters ();

10.10 Deferred Evaluation

Displays memory leaks by processor (uses purify)
Total Memory leaked

Generates general report of A++/P++ behavior
Smart Memory cleanup

get Boolean value for smart memory cleanup
setup exit mechanism

get Boolean value for exit mechanism

Track and report on A++/P++ diagnostics

get Boolean value for diagnostic mechanism
Destructive test of array object

Builds map of communications by processor
Builds map of purify errors by processor
communication report by processor

reset the internal message passing counting mechanism

Example of user control of Deferred Evaluation in A4++/P++. Deferred Evalu-
ation is a part of A++ and P++, though it is not well tested in P++ at present.

Set_Of_Tasks Task_Set;

build an empty set of tasks

Deferred _Evaluation (Task_Set) start deferred evaluation

{

B =0; array operation to set B to zero - DEFERRED

A=B+ G
}

Task_Set.Execute();

array operation to set A equal to B plus C - DEFERRED

now execute the deferred operations

10.11 Known Problems in A++4/P++

e Copy counstructors are aggressively optimized away by some compilers and this results
in the equivalent of shallow copies being built in the case where an A++/P++ array
is constructed from a view. Note that as a result shallow copies of A4+ arrays can be
made unexpectedly. A fix for this is being considered, but it is not implemented.

e Performance of A++ is at present half that of optimized FORTRAN 77 code. This is
because of the binary processing of operands and the associated redundent loads and
stored that this execution model introduces. A version of A++/P++ using expression
templates will resolve this problem, this implementation is available and is present
as an option within the A++/P++ array class library. However, compile times for

expression templates are quite long.

110 CHAPTER 10. REFERENCE

e Internal debugging if turned on at compile time for A++/P++ will slow the execution
speed. The effect on A++ is not very dramatic, but for P4+ it is much more dramatic.
This is because P++ has much more internal debugging code. The purpose of the
internal debugging code is to check for errors as agressively as possible before they
effect the execution as a segment fault of other mysterious error.

e Performance of P++ is slower if the array operations are upon array data that is
distributed differently across the multiple processors. This case requires more commu-
nication and for arrays to be built internally to save the copies originally located upon
different processors. P+-+ performance is most efficient if the array objects are aligned
similarly across the multiple processors. This case allows the most efficient communica-
tion model to be used internally. This more efficient communication model introduces
no more communication than an explicitly hand coded parallel implementation on a
statement by statement basis.

The ChangeLog in the top level of the A++P++ distribution records all modifications to
the A++/P++ library.

Chapter 11

Appendix

11.1 A++/P++ Booch Diagrams

Booch diagrams detail the object oriented design of a class library. The separate
clouds represent different classes. Those which are shaded represent classes that
are a part of the user interface, all others are those which are a part of the
implementation. The connections between the ”clouds” represent that the class
uses the lower level class (the one with out the associated ”dot”) within its
implementation.

11.2 A++/P++ Error Messages

111

112 CHAPTER 11. APPENDIX
A++ Class Design

&

1 1

Array Descriptor_Typ
1

Figure 11.1: A++ Class Design.

(d = maximum array dimengion)

array of *intArray

P++ Class Design

[N

TN HONYT ++d/++V ZT)

V

SH

SerialArray_Descriptor_Typ

Array_Descriptor_Type
1§,

d (d=maximum array dimensions) 4 . p on)
= maximum array dimensions)

Where_Statement_Support array of *intSerialArray

array of *intArray

BLOCK PARTI

114 CHAPTER 11. APPENDIX

Chapter 12

Glossary

We define terms used in the A+4/P++ manual which might otherwise be
unclear.

Array Object: Any istantiation of an A++/P++ < type >Array.

Block Parti: Low level library used by P++ for control of partitioning
and communication. Parti uses any of several parallel communication
libraries.

Conformal Operation: An operation between arrays where the refer-
enced sections manipulated are of the same size.

Data Parallelism: Parallel execution of single expressions on data dis-
tributed over multiple processors.

Ghost Boundaries: Internal data which replicate the edge of a partition
(with some width) on the adjacent processor when arrays are partitioned
across multiple processors. Ghost boundaries are only present if an array
is partitioned and the ghost boundary with is specified to be greater then
Z€ro.

Index: Fortran 90 like triple containing base, length, and stride.
Partition: The division of array data across multiple processors.
Range: Fortran 90 like triple containing base, bound, and stride.

Task Parallelism: Parallel execution of multiple expressions on data on
multiple processors. Operations may be different in each task. The con-
trol of task parallelism is more difficult than data parallelism. A++/P++
attempts to mix the two, but requires access to a task parallel model exter-
nally provided (as in use with a parallel C++ language). Since A++/P++
is a class library it can work easily with most research oriented parallel
C++ compilers.

115

116 CHAPTER 12. GLOSSARY

Bibliography

[1]

[2]

[4]

[5]

7]

[9]

[10]

Angus I. G. and Thompkins W. T.: Data Storage, Concurrency, and
Portability: An Object Oriented Approach to Fluid Dynamics; Fourth Con-
ference on Hypercubes, Concurrent Computers, and Applications, 1989.

Baden, S. B.; Kohn, S. R.: Lattice Parallelism: A Parallel Programming
Model for Non-Uniform, Structured Scientific Computations; Technical report
of University of California, San Diego, Vol. CS92-261, September 1992.

Balsara, D., Lemke, M., Quinlan, D.: AMR++, a C4++ Object Oriented
Class Library for Parallel Adaptive Mesh Refinement Fluid Dynamics Appli-
cations, Proceeding of the American Society of Mechanical Engineers, Winter
Anual Meeting, Anahiem, CA, Symposium on Adaptive, Multilevel and Hier-
archical Computational Stratagies, November 8-13, 1992.

Berryman, H.; Saltz, J. ; Scroggs, J.: Execution Time Support for
Adaptive Scientific Algorithms on Distributed Memory Machines; Concur-
rency: Practice and Experience, Vol. 3(3), pg. 159-178, June 1991.

Chandy, K.M.; Kesselman, C.: CC++: A Declarative Concurrent Object-
Oriented Programming Notation; California Institute of Technology, Report,
Pasadena, 1992.

Chase, C.; Cheeung, A.; Reeves, A.; Smith, M.: Paragon: A Parallel
Programming Environment for Scientific Applications Using Communication
Structures; Proceedings of the 1991 Conference on Parallel Processing, IL.

Forslund, D.; Wingate, C.; Ford, P.; Junkins, S.; Jackson, J.; Pope,
S.: Experiences in Writing a Distributed Particle Simulation Code in C++;
USENIX C++ Conference Proceedings, San Francisco, CA, 1990.

High Performance Fortran Forum: Draft High Performance Fortran
Language Specification, Version 0.4, Nov. 1992. Available from titan.cs.rice.edu
by anonymous ftp.

Lee, J. K.; Gannon, D.: Object-Oriented Parallel Programming Exper-
iments and Results; Proceedings of Supercomputing 91 (Albuquerque, Nov.),
IEEE Computer Society and ACM SIGARCH, 1991, pg. 273-282.

Lemke, M.; Quinlan, D.: Fast Adaptive Composite Grid Methods on Dis-
tributed Parallel Architectures; Proceedings of the Fifth Copper Mountain

117

118

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Conference on Multigrid Methods, Copper Mountain, USA-CO, April 1991.
Also in Communications in Applied Numerical Methods, Wiley, Vol. 8 No. 9
Sept. 1992.

Lemke, M.; Quinlan, D.: P++, a C++ Virtual Shared Grids Based Pro-
gramming Environment for Architecture-Independent Development of Struc-
tured Grid Applications; Arbeitspapiere der GMD, No. 611, 20 pages,
Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin, Germany
(West), February 1992.

Lemke, M.; Quinlan, D.: P+4, a C++ Virtual Shared Grids Based Pro-
gramming Environment for Architecture-Independent Development of Struc-
tured Grid Applications; accepted for CONPAR/VAPP V, September 1992,
Lyon, France; to be published in Lecture Notes in Computer Science, Springer
Verlag, September 1992.

Lemke, M., Quinlan, D., Witsch, K.: An Object Oriented Approach for
Parallel Self Adaptive Mesh Refinement on Block Structured Grids, Preceed-
ings of the 9th GAMM-Seminar Kiel, Notes on Numerical Fluid Mechanics,
Vieweg, Germany, 1993.

McCormick, S., Quinlan, D.: Asynchronous Multilevel Adaptive Methods
for Solving Partial Differential Equations on Multiprocessors: Performance
results; Parallel Computing, 12, 1989, pg. 145-156.

McCormick, S.; Quinlan, D.: Multilevel Load Balancing, Internal Report,
Computational Mathematics Group, University of Colorado, Denver, 1987.

[Oliver] Ian Oliver.1993 Programming Classics: Implementing the World’s Best Algo-

[16]

[17]

18]

rithms. Englewood Cliffs,N.J.: Prentice Hall.

Peery, J.; Budge, K.; Robinson, A.; Whitney, D.: Using C++ as
a Scientific Programming Language; Report, Sandia National Laboratories,
Albuquerque, NM, 1991.

Schoenberg, R.: M++, an Array Language Extension to C++; Dyad Soft-
ware Corp., Renton, WA, 1991.

Stroustrup, B.: The C++ Programming Language, 2nd Edition; Addison-
Wesley, 1991.

