
Cgins Reference Manual: An Overture Solver for the Incompressible
Navier–Stokes Equations on Composite Overlapping Grids,

William D. Henshaw1

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551.

November 21, 2012

LLNL-SM-455871

Abstract:
This is the reference guide for Cgins. Cgins is a program that can be used to solve incompressible fluid
flow problems in complex geometry in two and three dimensions using composite overlapping grids. It is
built upon the Overture object-oriented framework. Cgins solves the incompressible Navier-Stokes
equations using a pressure-Poisson formulation. Second-order accurate and fourth-order accurate
approximations are available. This reference guide describes in some detail the equations being solved,
the discrete approximations, time-stepping methods, boundary conditions and convergence results. The
reference guide also contains various notes related to different aspects of the equations. The reference
guide concludes by providing a collection of interesting computations that have been performed with
Cgins.

1This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program.

1

Contents

1 Introduction 4

2 The Equations 4
2.1 Addition of Temperature and Buoyancy: The Boussinesq Approximation 5
2.2 Axisymmetric Problems . 5

2.2.1 The pressure boundary condition for the axisymmetric case 7

3 Discretization 7

4 Dimensional Units and Non-dimensional Equations 8

5 Time stepping methods 9
5.1 Adams Predictor-Corrector . 9
5.2 Implicit multistep method with viscous terms implicit . 10
5.3 Implicit multistep method with the viscous and non-linear terms implicit 11
5.4 Example linearizations . 12
5.5 Variable time stepping . 12

6 Divergence Damping 13
6.1 Artificial Diffusion . 13

7 Boundary Conditions 15

8 Projecting the initial conditions 16

9 Specification of body forces and boundary forcing 17
9.1 Defining body-force and boundary-force regions . 17
9.2 Defining body forces . 18
9.3 Defining boundary forcing . 19
9.4 Defining body force profiles . 19

9.4.1 Parabolic velocity profile . 19
9.5 Defining body region material parameters . 19

10 Probes: defining output quantities at points and on regions 20
10.1 Point probes . 20
10.2 Bounding box probes . 20
10.3 Region probes . 20

11 Boundary conditions for the fourth-order method 22

12 Turbulence models 27
12.1 Wall Shear Stress . 27
12.2 Wall Functions . 28
12.3 Baldwin-Lomax Zero Equation Model . 32
12.4 Spalart-Allmaras turbulence model . 32
12.5 k − ε turbulence model . 35

12.5.1 Full implicit solution of the k-ε turbulence model . 35
12.6 Diffusion Operator . 36
12.7 Revised pressure equation . 36

12.7.1 Revised pressure boundary condition . 38

2

13 Steady state line solver 39
13.1 Fourth-order artificial dissipation . 40

14 Verification and Validation 41
14.1 Heat transfer verificiation and validation . 41

14.1.1 Heated domain with no flow . 41

15 Convergence results 44

16 Performance Results 47
16.1 Performance: two cylinders in a channel . 47
16.2 Performance: pitching-plunging airfoil . 48

17 Some sample simulations 49
17.1 Falling cylinders in an incompressible flow . 49
17.2 Flow past two cylinders . 51
17.3 Pitching and plunging airfoil . 52
17.4 Fluttering plate . 53
17.5 Centrifugal pump . 54
17.6 Flow in a heated room . 55
17.7 Flow in a 3D room . 56
17.8 Simulation of flow past a blood clot filter . 57
17.9 Incompressible flow past a truck . 58
17.10Incompressible flow past a city scape . 59
17.11Flow past an airfoil at different Reynolds numbers . 60
17.12Flow past a pitching-plunging airfoil at different Reynolds numbers 62
17.13Flow past two spheres . 63
17.14Flow past a deforming sphere . 64
17.15Flow past a moving 3D cylinder at different Reynolds numbers 65
17.16Flow past a moving sphere . 66
17.17Flow past a cube in a channel . 67
17.18Flow past a rotating flattened torus . 69
17.19Flow past a rotating disk . 70
17.20Flow past a rounded blade . 73
17.21Wind turbine and tower . 75
17.22Flow over terrain . 77

3

1 Introduction

This is the reference guide for Cgins. Cgins is a program that can be used to solve incompressible fluid
flow problems in complex geometry in two and three dimensions using composite overlapping grids. It
is built upon the Overture object-oriented framework [1],[5],[2]. Cgins solves the incompressible Navier-
Stokes equations using a pressure-Poisson formulation. Second-order accurate and fourth-order accurate
approximations are available. Cgins can be used to

• solve problems in two and three dimensional complex domains,

• solve problems on moving grids (specified motion and rigid body motion),

• solve temperature dependent flows with buoyancy using the Boussinesq approximation,

• solve axisymmetric flows.

This reference guide describes in some detail the equations being solved, the discrete approximations, time-
stepping methods, boundary conditions and convergence results. The reference guide also contains various
notes related to different aspects of the equations. The reference guide concludes by providing a collection
of interesting computations that have been performed with Cgins.
Other documents of interest that are available through the Overture home page are

• The Cgins User Guide [10] for getting started with Cgins and for descriptions of the various run-time
options and parameters.

• The overlapping grid generator, Ogen, [7]. Use this program to make grids for cgins.

• Mapping class documentation : mapping.tex, [6]. Many of the mappings that are used to create an
overlapping grid are documented here.

• Interactive plotting : PlotStuff.tex, [9].

• Oges overlapping grid equation solver, used by cgins to solve implicit time stepping equations and
the Poisson equation for the pressure, [8].

2 The Equations

The incompressible Navier-Stokes equations are

ut + (u · ∇)u +∇p = ν∆u + f , (1)
∇ · u = 0. (2)

We solve the incompressible Navier-Stokes equations written in the form (pressure-poisson system)

ut + (u · ∇)u +∇p− ν∆u− f = 0
∆p + (∇u · ux +∇v · uy +∇w · uz) + Cd(ν)∇ · u−∇ · f = 0

}
x ∈ Ω (3)

B(u, p) = 0
∇ · u = 0

}
x ∈ ∂Ω

u(x, 0) = u0(x) at t = 0

There are nd boundary conditions, B(u, p) = 0, where nd is the number of space dimensions. On a no-slip
wall, for example, u = 0. In addition, a boundary condition is required for the pressure. The boundary
condition ∇ · u = 0 is added. With this extra boundary condition it follows that the above problem is
equivalent to the formulation with the Poisson equation for the pressure replaced by ∇·u = 0 everywhere.
The term Cd(ν)∇ · u appearing in the equation for the pressure is used to damp the divergence [11]. For
further details see also [4]

4

2.1 Addition of Temperature and Buoyancy: The Boussinesq Approximation

The effects of temperature and buoyancy can be modeled with the Boussinesq approximation given by

ut + (u · ∇)u +∇p− ν∆u + αgT − f = 0,

∆p− J (∇u)− α(g · ∇)T −∇ · f = 0,

Tt + (u · ∇)T − k∆T − fT = 0,

J (∇u) ≡ (∇u · ux +∇v · uy +∇w · uz) .

Here T represents a temperature perturbation, g is the acceleration due to gravity, α is the coefficient of
thermal expansivity and k is a coefficient of thermal conductivity, k = λ/(ρCp).

The Rayleigh number and Prandtl number are defined as

Ra = αg∆Td3/(νκ), P r = ν/κ

where ∆T is the representative temperature difference and d is a length scale.

2.2 Axisymmetric Problems

Here I describe the equations that are solved for axisymmetric problems.
Let the cylindrical coordinates be (x, r, θ) where x is the axial variable, r the radial variable and θ

is the azimuthal angle about the axis r = 0. Let the velocity be u = U x̂ + V r̂ + W θ̂ where (U, V,W)
are the components of axial, radial and azimuthal velocities and (x̂, r̂, θ̂) are the three unit vectors in the
coordinate directions.

In cylindrical coordinates we have the general relations

F = x̂F x + r̂F r + θ̂F θ

∇V = x̂Vx + r̂Vr +
θ̂

r
Vθ

n · ∇F = x̂(n · ∇F x) + r̂(n · ∇F r − nθF θ

r
) + θ̂(n · ∇F θ +

nθF r

r
)

∇ · F = F x
x +

1
r
(rF r)r +

1
r
F θ

θ

∆V = Vxx +
1
r
(rVr)r +

1
r2

Vθθ

∆F = x̂(∆F x) + r̂(∆F r − F r

r2
− 2

r2
F θ

θ) + θ̂(∆F θ +
2
r2

F r
θ −

F θ

r2
)

∇× F = x̂(
1
r
(rF θ)r −

1
r
F r

θ) + r̂(
1
r
F x

θ − F θ
x) + θ̂(F r

x − F x
r)

The incompressible Navier-Stokes equations in cylindrical coordinates are (see Batchelor)

Ut + UUx + V Ur +
W

r
Uθ + px = ν(Uxx +

1
r
(rUr)r +

1
r2

Uθθ)

Vt + UVx + V Vr +
W

r
Vθ −

W 2

r
+ pr = ν(Vxx +

1
r
(rVr)r +

1
r2

Vθθ −
V

r2
− 2

r2
Wθ)

Wt + UWx + V Wr +
W

r
Wθ +

V W

r
+

1
r
pθ = ν(Wxx +

1
r
(rWr)r +

1
r2

Wθθ −
W

r2
+

2
r2

Vθ)

Ux +
1
r
(rV)r +

1
r
Wθθ = 0

5

For axisymmetric problems with no swirl, W = 0 and all derivatives with respect to θ are zero,

Ut + UUx + V Ur + px = ν(Uxx +
1
r
(rUr)r (4)

Vt + UVx + V Vr + pr = ν(Vxx +
1
r
(rVr)r −

V

r2
) (5)

Ux +
1
r
(rV)r = 0 (6)

The divergence of the advection terms is

∇ · (UUx + V Ur, UVx + V Vr) = (UUx + V Ur)x +
1
r
[r(UVx + V Vr)]r

= U2
x + 2VxUr + V 2

r + U{(Ux)x +
1
r
[r(Vx)r]}+ V {(Ur)x +

1
r
[r(Vr)]r}

= U2
x + 2VxUr + V 2

r + U(∇ ·U)x + V (∇ ·U)r

and thus pressure equation becomes

pxx +
1
r
(rpr)r = U2

x + 2VxUr + V 2
r

The boundary conditions on the axis of symmetry are (Note that although the normal component of the
velocity usually has even symmetry, V = U · r̂ will have even symmetry at r = 0 since r̂ flips sign as we
cross the axis)

Ur(x, 0) = 0
V (x, 0) = 0 , Vr(x, 0) = 0
pr(x, 0) = 0

In general all odd derivatives of U and p with respect to r will be zero at r = 0.
Note that for r small,

1
r
(rVr)r −

V

r2
= Vrr +

1
r
Vr −

V

r2

= Vrr +
1
r
(Vr(x, 0) + rVrr(x, 0) + O(r2))− 1

r2
(V (x, 0) + rVr(x, 0) +

r2

2
Vrr(x, 0) + O(r3)

=
3
2
Vrr(x, 0) + O(r)

= O(r)

and

1
r
(rUr)r = Urr +

1
r
Ur = 2Urr + O(r)

We can use these last two results to evaluate the viscous terms on the boundary r = 0, (eliminating
the removable singularity) although the dirichlet condition V (x, 0) = 0 obviates the need for the former
equation on the boundary.

Note that in inviscid flow the only difference between the axi-symmetric equations and the 2D equations
is a change to the pressure equation (or to the incompressibility equation) with the addition of the 1

rpr

term. With viscosity there are also differences in the viscous terms.

6

2.2.1 The pressure boundary condition for the axisymmetric case

The pressure boundary condition is formed from the normal component of the momentum equations. For
a no-slip wall this becomes

pn = νnx

(
Uxx +

1
r
(rUr)r

)
+ νnr

(
Vxx + Vrr +

1
r
Vr −

V

r2

)
We can eliminate some of the normal derivatives in this last expression (forming the equivalent of the
curl-curl boundary conditions described in []) by taking derivative of the expression (6) for the divergence,

Ux + Vr +
1
r
V = 0

giving

Uxx = −Vxr −
1
r
Vx = 0

Vrr +
1
r
Vr −

1
r2

V = −Uxr

This leads to the pressure boundary condition

pn = νnx

(
− Vxr + Urr −

1
r
Vx +

1
r
Ur

)
+ νnr

(
Vxx − Uxr

)
(7)

On the axis, r = 0, this becomes

pn = 2νnx

(
− Vxr + Urr

)
+ νnr

(
Vxx − Uxr

)
, (for r = 0).

3 Discretization

Let Vi and Pi denote the discrete approximations to u and p so that

Vi ≈ u(xi) , Pi ≈ p(xi) .

Here Vi = (V1i, V2i, V3i) and i = (i1, i2, i3) is a multi-index. After discretizing in space the equations we
solve are of the form

d
dtVi + (Vi · ∇h)Vi +∇hPi − ν∆hVi − f(xi, t) = 0

∆hPi −
∑

m∇hVm,i ·Dm,hVi − Cd,i∇h ·Vi −∇h · f(xi, t) = 0

}
x ∈ Ω

B(Vi, Pi) = 0
∇h ·Vi = 0

}
xi ∈ ∂Ωh

V(xi, 0) = U0(xi) at t = 0

where the divergence damping coefficient, Cd,i is defined below. The subscript “h” denotes a second or
fourth-order centred difference approximation,

Dm,h ≈
∂

∂xm
, ∇h = (D1,h, D2,h, D3,h) , ∆h ≈

∑
m

∂2

∂x2
m

Extra numerical boundary conditions are also added, see [4] [14] for further details. An artificial diffusion
term can be added to the momentum equations. This is described in section (6.1).

When discretized in space on an overlapping grid this system of PDEs can be thought of as a large
system of ODEs of the form

dU
dt

= F(t,U,P)

where U is a vector of all solution values at all grid points. For the purpose of discussing time-stepping
methods it is often convenient to think of the pressure as simply a function of U, P = P(U) There are
also interpolation equations that need to be satisfied but this causes no difficulties.

7

4 Dimensional Units and Non-dimensional Equations

When you solve the incompressible Navier-Stokes equations with Cgins it solves the following equations

ut + (u · ∇)u +∇p = ν∆u, (8)
∇ · u = 0. (9)

There is only one parameter that you specify and that is ν, the kinematic viscosity. Cgins does NOT scale
the input values that you specify for the initial conditions and boundary conditions. Cgins does not scale
the dimensions of the grid. Also note that the pressure p is only determined up to a constant.

Let’s relate these equations to the equations in dimensional form,

ud
td + (ud · ∇d)ud +

1
ρd
∇dpd =

µ

ρd
∆dud, (10)

∇d · ud = 0. (11)

Here the density ρd is a constant and µ is the constant viscosity. The superscript d denotes dimensional
units. For example, the components of ud might be measured in m/s, lengths in m, the pressure pd in
N/m2 and the viscosity coefficient µ in kg/(m s).

Suppose that you want to use dimensional units, for example MKS units, to specify a problem for
Cgins. The grid should then be built with dimensions in m. The inflow values for the velocity should be
given in m/s. The kinematic viscosity should be set equal to ν = µ/ρd which has units m2/s. Comparing
equation (10) to equation (8) we see that the pressure computed by Cgins will be p = pd/ρd. Thus you
should specify boundary conditions and initial conditions for p from p = pd/ρd (which has units of m2/s2).

In general one may want to non-dimensionalize the equations before solving them with Cgins. Let us
choose appropriate values, U , L, R, to scale the length, velocity and density, and define non-dimensional
variables

xn = xd/L , ρn = ρd/R , (12)

tn = td/(L/U) , un= ud/U , (13)

pn = pd/(RU2) . (14)

The Navier-Stokes equations then become

un
tn + (un · ∇n)un +

1
ρn
∇npn =

µ

ρnRUL
∆nun, (15)

∇n · un = 0. (16)

In this case we will generate the grid with lengths that have been scaled by L. We will specify inflow
velocities with values scaled by U , the pressure will be scaled by RU2, the kinematic viscosity will be
defined by ν = µ/(ρnRUL) and the non-dimensional pressure pn will be related to the computed value p
by p = pn/ρn.

8

5 Time stepping methods

5.1 Adams Predictor-Corrector

Figure 1: Stability regions for the predictor corrector methods. Left: second-order method, PECE mode.
Right: fourth-order method, PECE mode.

If we write the INS equations as
ut = f(u, p)

where we may think of the pressure p as simply a function of u and we may use any time integrator in a
method-of-lines fashion.

The second-order accurate Adams predictor-corrector time stepping method for the INS equa-
tions can be chosen with the “adams PC” option. It is defined by

up − un

∆t
=

3
2
fn − 1

2
fn−1

un+1 − un

∆t
=

1
2
fp +

1
2
fn

where we have shown one correction step (one may optionally correct more than one time). The stability
region for this method is shown in figure (1).

To allow for a time-step that may change we actually use

up − un

∆t
= p0fn + p1fn−1

un+1 − un

∆t
=

1
2
fp +

1
2
fn

p0 = 1 + ∆t/(2∆t1)
p1 = −∆t/(2∆t1)

where ∆t1 = tn − tn − 1.

9

The fourth-order accurate Adams predictor-corrector time stepping method for the INS equa-
tions can be chosen with the “adams PC order 4” option. It is defined by

up − un

∆t
=

1
24

[
55fn − 59fn−1 + 37fn−2 − 9fn−3

]
un+1 − un

∆t
=

1
24

[
9fp + 19fn − 5fn−1 + fn−2

]
(see for example Lambert[15]). The stability region for this method is shown in figure (1).

To allow for a time-step that may change we actually use

up − un

∆t
= p0fn + p1fn−1 + p2fn−2 + p3fn−3

un+1 − un

∆t
= c0fp + c1fn + c2fn−1 + c3fn−2

p0 =(6∆t0∆t2∆t2 + 12∆t2∆t2∆t1 + 8∆t0∆t0∆t2 + 24∆t2∆t0∆t1+
12∆t2∆t1∆t3 + 6∆t3∆t2∆t0 + 24∆t1∆t1∆t2 + 12∆t0∆t3∆t1 + 18∆t0∆t1

∆t1 + 4∆t0∆t0∆t3 + 12∆t1∆t1∆t3 + 3∆t0∆t0∆t0 + 12∆t0∆t0∆t1 + 12∆t1

∆t1∆t1)∆t0/(∆t1 + ∆t2 + ∆t3)/∆t1/(∆t1 + ∆t2)/12
p1 =−∆t0∆t0(6∆t1∆t1 + 6∆t3∆t1 + 12∆t2∆t1 + 8∆t0∆t1 + 3∆t0

∆t0 + 6∆t2∆t3 + 4∆t0∆t3 + 8∆t2∆t0 + 6∆t2∆t2)/∆t1/(∆t2 + ∆t3)/∆t2/12
p2 =∆t0∆t0(6∆t1∆t1 + 6∆t2∆t1 + 6∆t3∆t1 + 8∆t0∆t1 + 3∆t0∆t0

+ 4∆t2∆t0 + 4∆t0∆t3)/∆t3/∆t2/(∆t1 + ∆t2)/12
p3 =− (6∆t1∆t1 + 6∆t2∆t1 + 8∆t0∆t1 + 4∆t2∆t0 + 3∆t0∆t0)∆t0

∆t0/(∆t1 + ∆t2 + ∆t3)/(∆t2 + ∆t3)/∆t3/12
c0 =(6∆t1∆t1 + 6∆t2∆t1 + 8∆t0∆t1 + 4∆t2∆t0 + 3∆t0∆t0)

∆t0/(∆t0 + ∆t1 + ∆t2)/(∆t0 + ∆t1)/12
c1 =∆t0(∆t0∆t0 + 4∆t0∆t1 + 2∆t2∆t0 + 6∆t1∆t1 + 6∆t2∆t1)/(∆t1 + ∆t2)/∆t1/12
c2 =−∆t0∆t0∆t0(∆t0 + 2∆t1 + 2∆t2)/(∆t0 + ∆t1)/∆t2/∆t1/12
c3 =(∆t0 + 2∆t1)∆t0∆t0∆t0/(∆t0 + ∆t1 + ∆t2)/(∆t1 + ∆t2)/∆t2/12

where ∆tm = tn+1−m − tn−m, m = 0, 1, 2, 3.

5.2 Implicit multistep method with viscous terms implicit

With the implicit time stepping method the INS equations are integrated with the viscous terms treated
implicitly and the other terms treated with a 2nd-order Adams predictor corrector. If we split the equations
into an explicit and implicit part,

ut = [−(u · ∇)u−∇p] + ν∆u

ut = fE + Au

fE = −(u · ∇)u−∇p

Au = ν∆u

then the time step consists of a predictor,

up − un

∆t
=

3
2
fn
E −

1
2
fn−1
E + αAup + (1− α)Aun

and a corrector
uc − un

∆t
=

1
2
fp
E +

1
2
fn
E + αAuc + (1− α)Aun

10

The implicit factor α can be set as a parameter. A value of α = 1
2 will give a second-order Crank-

Nicolson method. A value of α = 1 will give a first-order backward-Euler method.

5.3 Implicit multistep method with the viscous and non-linear terms implicit

Consider now the case of treating the viscous and non-linear terms in an implicit manner.
In the general case we are solving a nonlinear equation of the form

ut = f(u).

We linearize a part of the operator f(u) around the state u∗(x, t) and write the equation as

ut = L(u;u∗) +
(
f(u)− L(u;u∗)

)
(17)

= L(u;u∗) + fE(u;u∗) (18)

where

fE(u;u∗) ≡ f(u)− L(u;u∗) (19)

Here L(u;u∗) is a linear operator of u that depends upon u∗. For example if f(u) = (u · ∇)u then one
choice could be L(u;u∗) = (u∗ · ∇)u. Another choice could be L(u;u∗) = (u∗ · ∇)u + (u · ∇)u∗. We can
now define a implicit time-stepping method that uses the form (18). A backward-Euler approximation to
the full equations is

un+1 − un

∆t
= L(un+1;u∗) + fE(un+1;u∗) .

This equation can be solved by implicit iteration (treating the L term implicitly),

vk − un

∆t
= L(vk;u∗) + fE(vk−1;u∗)

where we take v0 = un and iterate on k = 0, 1, 2, ... for some number of steps. If we iterate until convergence
then we will have solved the original equations with backward-Euler, independent of the choice L and u∗,

un+1 − un

∆t
= f(un+1) .

Of course for best convergence for a large value of ∆t, we want make good choices for L and u∗.
We could also solve the equations with the trapezodial like rule

un+1 − un

∆t
= αf(un+1) + (1− α)f(un)

= αL(un+1;u∗) + (1− α)L(un;u∗) + αfE(un+1;u∗) + (1− α)fE(un;u∗),

= αL(un+1;u∗) + αfE(un+1;u∗) + (1− α)f(un)

= αL(un+1;u∗) + α
(
f(un+1)− L(un+1;u∗)

)
+ (1− α)f(un)

where α = 1
2 is the trapezodial rule and α = 1 is backward-Euler. This equation can be solved by the

implicit iteration

vk − un

∆t
= αL(vk;u∗) + α

(
f(vk−1)− L(vk−1;u∗)

)
+ (1− α)f(un)

For α = 1/2, the first iterate v1 is second-order accurate in the implicit part L and first order accurate in
the explicit part fE . If fE(un;u∗) = O(∆t) then the v1 is second-order accurate. For α = 1/2 the second
and later iterates, vk, k ≥ 2, should be second-order accurate.

11

To implement this scheme we need to (1) build the matrix M for the implicit operator,

Mvk = (I − α∆tA(u∗))vk = vk − α∆tL(vk;u∗)

(2) evaluate the right-hand-side f(v), and (3) evaluate the linearized operator L(v;u∗) or the combination
f(v)− L(v;u∗).

We could use a predictor step with an second-order accurate explicit predictor for fE ,

up − un

∆t
= αL(un+1;u∗) + (1− α)L(un;u∗) +

3
2
fE(un;u∗)− 1

2
fE(un−1;u∗).

With α = 1/2 the predicted value up would be second order.

5.4 Example linearizations

Here is an example for the INS:

f(u) = ν∆u− (u · ∇)u−∇p

L(u;u∗) = ν∆u−
(
(u∗ · ∇)u + (u · ∇)u∗

)
fE(u;u∗) = f(u)− L(u;u∗)

= −(u · ∇)u−∇p +
(
(u∗ · ∇)u + (u · ∇)u∗

)
= −∇p− ((u− u∗) · ∇)(u− u∗) + (u∗ · ∇)u∗

When the viscosity is a function of u, ν = ν(u), we could use Here is an example for the INS:

f(u) = ∇ · (ν(u)∇u)− (u · ∇)u−∇p

L(u;u∗) = ∇ · (ν(u∗)∇u) +∇ · (ν(u)∇u∗)−
(
(u∗ · ∇)u + (u · ∇)u∗

)
fE(u;u∗) = f(u)− L(u;u∗)

= ∇ · (ν(u)∇u)−∇ · (ν(u∗)∇u)−∇ · (ν(u)∇u∗)

− (u · ∇)u−∇p +
(
(u∗ · ∇)u + (u · ∇)u∗

)
= ∇ · ((ν(u)− ν(u∗))∇(u− u∗))−∇ · (ν(u∗)∇u∗)
−∇p− ((u− u∗) · ∇)(u− u∗) + (u∗ · ∇)u∗

5.5 Variable time stepping

The variableTimeStepAdamsPredictorCorrector time stepping option allows each grid to have it’s own
time step.

12

6 Divergence Damping

The divergence damping term, Cd,i∇h · Vi, appears in the pressure equation. In simplified terms, the
coefficient Cd is taken proportional to the inverse of the time step, Cd ∼ 1

∆t . In practice we have found
better results by taking Cd ∼ ν

∆x2 . For explicit time stepping theses are very similar since the explicit time
step restriction is something like ν∆t

∆x2 < C. To allow for the case ν = 0 we use the minumum grid spacing,
hmin, instead of ν, if hmin > ν. The size of Cd affects the time step, the stability condition is proportional
to Cd∆t. As a result we do not want Cd to be much larger than 1/∆t, and thus it is limited by Ct

∆t where
Ct is a constant with default value of 0.25. (Note that we don’t actually know the true ∆t at this point,
it depends on Cd, so we just use a guess).

Here is the actual formula for the divergence damping coefficient:

Cd,i = min(Di,
Ct

∆t
)

where

Di = C0 max(ν, hmin)
(

1
(∆0,r1x1,i)2

+
1

(∆0,r2x2,i)2
+

1
(∆0,r3x3,i)2

)
∆0,r1xm,i =

1
2
(xm,i1+1 − xm,i1−1) (undivided second difference)

hmin = min
i

(‖∆+,r1xi‖,∆+,r2xi‖,∆+,r3xi‖) (minimum grid spacing)

and where C0 = 1. by default.

6.1 Artificial Diffusion

Cgins implements artificial diffusions based either on a second-order undivided difference or a fourth-order
undivided difference.

The artificial diffusions are

d2,i = (ad21 + ad22|∇hVi|1)
nd∑

m=1

∆m+∆m−Vi (20)

in the second-order case and

d4,i = − (ad41 + ad42|∇hVi|1)
nd∑

m=1

∆2
m+∆2

m−Vi (21)

in the fourth-order case. Here |∇hVi|1 is the magnitude of the gradient of the velocity and ∆m± are the
forward and backward undivided difference operators in direction m

|∇hVi|1 = n−2
d

∑nd
m=1

∑nd
n=1 |Dm,hVni|

∆1+Vi = Vi1+1 −Vi

∆1−Vi = Vi −Vi1+1

∆2+Vi = Vi2+1 −Vi

∆2−Vi = Vi −Vi2+1 etc.

The artificial diffusion is added to the momentum equations

d

dt
Vi + (Vi · ∇h)Vi +∇hPi − ν∆hVi − f(xi, t)− dm,i = 0

13

but does not change the pressure equation. Typical choices for the constants ad21 = ad41 = 1 and
ad22 = ad42 = 1.. These artificial diffusions should not affect the order of accuracy of the method. With
the artificial diffusion turned on to a sufficient degree, the real viscosity can be set at low as zero, nu = 0.

In difficult cases you may need to increase the coefficients ad21 and ad22 = 1. to keep the solution
stable. I suggest trying ad21 = ad22 = 2. then 4. etc. until the solution doesn’t blow up. I don’t think I
have ever needed a value larger than 10..

This form of the artificial diffusion is based on a theoretical result [12][13] that states that the minimum
scale, λmin, of solutions to the incompressible Navier-Stokes equations is proportional to the square root
of the kinematic viscosity divided by the square root of the maximum velocity gradient:

λmin ∝
√

ν

|∇u|+ c
.

This result is valid locally in space so that |∇u| measures the local value of the velocity gradient. The
minimum scale measures the size of the smallest eddy or width of the sharpest shear layer as a function
of the viscosity and the size of the gradients of u. Scales smaller than the minimum scale are in the
exponentially small part of the spectrum.

This result can be used to tell us the smallest value that we can choose for the (artificial) viscosity, νA,
and still obtain a reasonable numerical solution. We require that the artificial viscosity be large enough
so that the smallest (but still significant) features of the flow are resolved on the given mesh. If the local
grid spacing is h, then we need

h ∝
√

νA

|∇u|+ c
.

This gives
νA = (c1 + c2|∇u|)h2

and thus we can choose an artificial diffusion of

(c1 + c2|∇u|)h2∆u

which is just the form (20).
In the fourth-order accurate case we wish to add an artificial diffusion of the form

−νA∆2u

since, as we will see, this will lead to νA ∝ h4. In this case, if we consider solutions to the incompressible
Navier-Stokes equations with the diffusion term ν∆u replaced by −νA∆2u then the minimum scale would
be

λmin ∝
(

νA

|∇u|

)1/4

Following the previous argument leads us to choose an artificial diffusion of the form

−(c1 + c2|∇u|)h4∆2u

which is just like (21).

14

7 Boundary Conditions

The boundary conditions for method INS are

noSlipWall =

{
u = g velocity specified
∇ · u = 0 divergence zero

slipWall =


n · u = g normal velocity specified
∂n(tm · u) = 0 normal derivative of tangential velcity is zero
∇ · u = 0 divergence zero

inflowWithVelocityGiven =

{
u = g velocity specified
∂np = 0 normal derivative of the pressure zero.

outflow =

{
extrapolate u
αp + β∂np = g mixed derivative of p given.

symmetry =

{
n · u: odd, tm · u: even vector symmetry
∂np = 0 normal derivative of the pressure zero.

dirichletBoundaryCondition =

{
u = g velocity specified
p = P pressure given

15

8 Projecting the initial conditions

In this section we discuss the ‘‘project initial conditions’’ option that is often used with Cgins in
order to adjust the user specfied initial conditions.

The equation ∇·u = 0 imposes some compatibility constraints on the initial and boundary conditions.
For example, the initial conditions should satisfy ∇ · u0 = 0. Imposing the divergence free condition up
to the boundary implies that that the normal component of u0 should equal the normal component of the
velocity specified on the boundary, n · u0 = n · u∂Ω, see [3]. A further constraint follows by integrating
∇ · u over Ω and using the Gauss divergence theorem, giving

∫
∂Ω n · uds = 0.

In many cases it may not be easy to generate initial conditions that satisfy the compatibility conditions.
It is, however, well known how to take a given function uI and to project this function so that it is divergence
free. This projection is defined by

u0 = uI +∇φ x ∈ Ω
u0 = uI x ∈ ∂Ω

∆φ = −∇ · uI x ∈ Ω
n · ∇φ = 0 x ∈ ∂Ω

The function u0 will satisfy ∇ · u0 = 0 and n · u0 will equal n · uI on the boundary. Note, however, that
this projection does not force the tangential components of u0 to be continuous at the boundary.

In the discrete case this projection is easy to compute since the function φ satisfies the same equation
as the pressure, but with different data. However, the discrete projection operator does not make the
discrete divergence exactly zero for the same reason that the discrete divergence is not exactly zero in the
overall scheme. Thus if the initial function, uI , is not smooth then it may be necessary to first smooth uI

before applying the projection. In practice a sequence of smoothing and projection steps is applied until
the discrete divergence nolonger decreases significantly.

16

9 Specification of body forces and boundary forcing

In this section we describe how to define body forces and boundary forcings. Body forces are volume forcing
terms that are added to the right-hand-side of the PDE’s (momentum equations, temperature equation
etc.). Boundary forcings are right-hand-sides added to the boundary conditions.
Examples of body forces are

1. add a heat source to a given region of the domain.

2. add a drag force to a given region of the domain.

3. define an immersed boundary over some region. This option provides an approximate way to add
new geometry (e.g. small or complicated features) to a problem without having to build a proper
overlapping grid for the features.

4. define a wake model such as an actuator disk (e.g. modeling a fan).

5. change material parameters such as thermal conductivity, heat capacity or viscosity over a given
region (needs to be finished).

Examples of boundary forcings are:

1. specify the temperature or heat flux on a sub-region of a grid face.

2. add a local inflow region with parabolic profile to a portion of a grid face.

3. define a temperature boundary condition that varies from Dirichlet (isothermal) to Neumann (adia-
batic) or mixed over a given grid face.

The construction of a body/boundary force requires the specification of

Region : specify a region (e.g. box, cylinder) over which the body force applies.

Parameters : specify parameters that define the force (e.g. inflow velocity, temperature, heat flux)

Profile : define a spatial profile for the force (e.g. parabolic inflow).

Time variation : define the time variation of the force (e.g. define a time varying heat flux on a
sub-region of a boundary).

In addition, a given body force (e.g. drag force or actuator disk) will have parameters associated with it
(e.q. drag law).

Note: If multiple forcings are defined for the same volume or boundary, the corresponding forces are
(by default) added together.

9.1 Defining body-force and boundary-force regions

Forcing regions over which body/boundary forces are applied can be defined using one or more of the
following

Box : a box (square in two-dimensions).

Ellipse : an ellipse (or circle).

mask from grid function : the body is defined by a grid function mask that contains values indicating
whether a grid point is inside or outside the body. Ideally this should be a signed distance function
with negative values being inside the body.

17

Figure 2: This figure, temperature on left and stream-lines on the right, illustrates uses of various body-
forces and boundary-forcings. Boundary-forces are used to define inflow regions on the left and bottom
walls. Immersed-boundary body forces are used to define a square obstacle and elliptical obstacle.

Cylinder : (to do).

Sphere : (to do).

Unstructured surface : (to do).

Note: when defining regions for boundary forcings, the actual boundary should be enclosed in the
region. Thus in two-dimensions, to define a boundary forcing on an interval [xa, xb] of a horizontal wall at
y = yw one should define a narrow box (square) to enclose the interval, B = [xa, xb]× [yw − ε, yw + ε].

9.2 Defining body forces

For the incompressible Navier-Stokes (with Boussinesq approximation), the body forcings, Fu and FT are
added to the momentum and temperature equations as

ut + u · ∇u +∇p = ν∆u + αg(T − T0) + Fu, (22)
Tt + u · ∇T = κ∆T + FT . (23)

Drag force: The drag force consists of the sum of a linear and quadratic drag law,

Fu = −
{

β1(u− ud) +−β2|u− ud|(u− ud)
}
P(x, t), (24)

FT = −βT

∆t
P(x, t)(T − Td), (25)

where P(x, t) is a profile function. The target velocity is ud and the target temperature is Td. In general
(to-do) the target functions can be a function of space and time ud = ud(x, t), Td = Td(x, t).
Immersed boundary: The immersed boundary force takes the form

Fu = − β

∆t
P(x, t)(u− ud), (26)

FT = −βT

∆t
P(x, t)(T − Td), (27)

where P(x, t) is a profile function and ∆t is the time-step.

18

Heat source: For the incompressible Navier-Stokes (with Boussinesq approximation) the heat source
FT (x, t) is added to the right-hand-side of the temperature equation

FT = P(x, t)
1
Cp

FT (x, t). (28)

Question: should we scale the heat source by Cp ?

9.3 Defining boundary forcing

The body-force regions defined in Section 9.1 can be used to construct boundary conditions that vary over
a a given boundary.

9.4 Defining body force profiles

9.4.1 Parabolic velocity profile

A ‘parabolic’ profile can be specified for a body or boundary forcing. The parabolic profile can be useful,
for example, in specifying the velocity profile at an inflow boundary. The parabolic profile is zero at
the boundary of the body force region and increases to a specified value Umax at a distance d from the
boundary:

u(x) =

{
Umax(2− s/d)s/d if s ≤ d

Umax if s > d

Here s is the shortest distance between a point x in the region to the boundary of the region, and d is the
user specified parabolic depth.

9.5 Defining body region material parameters

The material parameters such as κ and Cp can vary in space. ... finish me ...

19

10 Probes: defining output quantities at points and on regions

Probes can be used to output results during a simulation. There are three types of probes,

point probes : e.g. output the solution over time at a one or more locations,

bounding box probes : e.g. output the values of the solution on the faces of a box (the box being in
the index space of a grid),

region probes : e.g. output the average value of a quantity over a region over time.

The values at the probes can be output at specified time steps (e.g. every 10 time-steps).
The probe output is saved to one or more output files (text files). The results in these files can be

plotted with the matlab scripts plotProbes.m for point-probes and plotProbeRegions.m for region-probes.

10.1 Point probes

The location of a point probe can be specified by

1. inputing a grid point (i.e. by grid number and (i1, i2, i3)).

2. inputing a physical location x and having the code determine the nearest grid point.

10.2 Bounding box probes

The bounding box probe can be used to output the solution on the faces (and ghost points) of a bounding
box (in the index space of a grid). These values can be used, for example, to provide time dependent
boundary conditions for a refined calculation.

The bounding box is specified by

1. a component grid number, gbb,

2. an index box: [i1a,i1b], [i2a,i2b], [i3a,i3b] (in the index space of grid gbb),

3. number of layers nl, (i.e. save this many lines of data on each face). For example, on the left face
save the points i1 = i1a− nl + 1, . . . , i1a.

10.3 Region probes

Examples of region probes are

1. output the average value of the velocity over a specfied box enclosed in the domain,

2. output the integral of the temperature over the entire domain,

3. output the integral of the fluid force over the face of a body,

4. output the average heat flux over a portion of a boundary.

The region probe is defined by a region, a quantity, a measure-type and a quantity-measure.

Regions:

full domain region : choose the full domain,

boundary region : choose part of a boundary,

box region : specify a box in physical space,

body force region : choose the region associated with a body forcing (see Section 9),

boundary force region : choose the region associated with a boundary forcing (see Section 9).

20

Quantity:

density, velocity, temperature, pressure, .. : save any component of the solution (the available
components depend on the equations being solved),

heat flux : k∂T/∂n

lift, drag, force : finish me ...

Measure-type:

sum : sum discrete values,

integral : integrate values.

Quantity measure:

average : provide the average of the quantity, i.e. sum of values divided by the number of values (if
measure-type is sum), or integral of values divide by area (if measure-type is integral),

total : provide the total (sum or integral).

21

11 Boundary conditions for the fourth-order method

Here are the analytic and numerical conditions that we impose at a boundary inorder to determine the
values of u at the two ghost points.

noSlipWall: Analytic boundary conditions

u = uB(x, t)

plus numerical boundary conditions

tµ ·
{

ν∆u−∇p− (u · ∇)u− ut

}
= 0

Extrapolate tµ · u = 0
∇ · u = 0

∂n(∇ · u) = 0

inflowWithVelocityGiven or outflow: Analytic boundary conditions for inflow are

u = uI(x, t) (inflow)

For outflow the equation is used on the boundary. The numerical boundary conditions are

tµ · (unn) = 0
Extrapolate tµ · u = 0

∇ · u = 0
∂n(∇ · u) = 0

slipWall: Analytic boundary conditions are

n · u = n · uB

The numerical boundary conditions are

tµ ·
{

ν∆u−∇p− (u · ∇)u− ut

}
= 0 determines tµ · u on the boundary

tµ · (un) = 0
tµ · (unnn) = 0

∇ · u = 0
∂n(∇ · u) = 0

Discretizing the Boundary conditions: For the purposes of this discussion assume that the bound-
ary condition for u is of the form u(x, t) = uB(x, t) for x ∈ ∂Ω. More general boundary conditions on u and
p, such as extrapolation conditions, can also be dealt with although some of the details of implementation
may vary. At a boundary the following conditions are applied

Ui − uB(xi) = 0
∇4 ·Ui = 0

D4n(∇4 ·Ui) = 0
d
dtUi + (Ui · ∇4)Ui +∇4Pi − ν∆4Ui − fi = 0
∆4Pi +

∑nd
m=1∇4Um,i ·D4xmUi −∇4 · fi = 0

 for i ∈ Boundary

tµ ·D4
+mUi = 0

D4
+mPi = 0

}
for i ∈ 2nd fictitious line

22

where tµ, µ = 1, nd − 1 are linearly independent vectors that are tangent to the boundary. In the extrap-
olation conditions either D+m or D−m should be chosen, as appropriate. Thus at each point along the
boundary there are 12 equations for the 12 unknowns (Ui, Pi) located on the boundary and the 2 lines of
fictitious points. Note that two of the numerical boundary conditions couple the pressure and velocity. In
order to advance the velocity with an explicit time stepping method it convenient to decouple the solution
of the pressure equation from the solution of the velocity. A procedure to accomplish this is described in
the next section on time stepping.

Edges and Vertices: An important special case concerns obtaining solution values at points that lie
near edges and vertices of grids (or corners of grids in 2D). Define a boundary edge to be the edge that
is formed at the intersection of adjacent faces of the unit cube where both faces are boundaries of the
computational domain. Along a boundary edge, values of the solution are required at the fictitious points
in the region exterior to both boundary faces. For example, suppose that the edge defined by i1 = n1,a,
i2 = n2,a and i3 = n3,a, . . . , n3,b is a boundary edge. Values must be determined at the exterior points
i = (n1,a + m,n2,a + n, i3) for m,n = −2,−1.

Here we derive a more accurate formula than was in my paper. These expressions will be exact for
polynomials of degree 4. By Taylor series,

u(r1, r2) = u(0, 0) +D1(r1, r2) +D2(r1, r2) +D3(r1, r2) +D4(r1, r2) + O(|r|6)

where

D1(r1, r2) = (r1∂r1 + r2∂r2)u(0, 0)

D2(r1, r2) =
1
2
(r1

2∂2
r1

+ r2
2∂2

r2
+ 2r1r2∂r1∂r2)u(0, 0)

D3(r1, r2) =
1
3!

(r1
3∂3

r + r2
3∂3

r2
+ 3r1

2r2∂
2
r1

∂r2 + 3r1r2
2∂r1∂

2
r2

)u(0, 0)

We also have

u(−r1,−r2) = 2u(0, 0)− u(r1, r2) + 2D2(r1, r2) + 2D4(r1, r2) + O(|r|6) (29)

u(2r1, 2r2) = u(0, 0) + 2D1(r1, r2) + 4D2(r1, r2) + 8D3(r1, r2) + 16D4(r1, r2) + O(|r|6) (30)

8u(r1, r2)− u(2r1, 2r2) = 7u(0, 0) + 6D1(r1, r2) + 4D2(r1, r2)− 8D4(r1, r2) + O(|r|6) (31)

From equation (31) we can solve for D4(r1, r2),

D4(r1, r2) =
7
8
u(0, 0)− u(r1, r2) +

1
8
u(2r1, 2r2) +

3
4
D1(r1, r2) +

1
2
D2(r1, r2) + O(|r|5 + |s|5)

and substitute into equation (29)

u(−r1,−r2) =
15
4

u(0, 0)− 3u(r1, r2) +
1
4
u(2r1, 2r2) +

3
2
D1(r1, r2) + 3D2(r1, r2) + O(|r|6) (32)

We will use this last equation to determine u at the first corner ghost point, U−1,−1,i3 . Proceeding in a
similar way it follows that

u(−2r1,−r2) =
15
4

u(0, 0)− 3u(2r1, r2) +
1
4
u(4r1, 2r2) +

3
2
D1(2r1, r2) + 3D2(2r1, r2) + O(|r|6)O(|r|6)

(33)

u(−r1,−2r2) =
15
4

u(0, 0)− 3u(r1, 2r2) +
1
4
u(2r1, 4r2) +

3
2
D1(r1, 2r2) + 3D2(r1, 2r2) + O(|r|6)O(|r|6)

(34)

u(−2r1,−2r2) = 30u(0, 0)− 32u(r1, r2) + 3u(2r1, 2r2) + 24D1(r1, r2) + 24D2(r1, r2) + O(|r|6)O(|r|6)
(35)

23

from which we will determine the ghost points values at U−2,−2,i3 , U−2,−1,i3 and U−1,−2,i3 . By symmetry we
obtain formulae for ghost points outside all other edges in three-dimensions, U−2:−1,i2,−2:−1, Ui1,−2:−1,−2:−1.
For ghost points outside the vertices in three-dimensions we have

u(−r1,−r2,−r3) =
15
4

u(0, 0)− 3u(r1, r2, r3) +
1
4
u(2r1, 2r2, 2r3) (36)

+
3
2
D1(r1, r2, r3) + 3D2(r1, r2, r3) + O(|r|6)O(|r|6) (37)

where

D1(r1, r2, r3) =
(
r1∂r1 + r2∂r2 + r3∂r3

)
u(0, 0, 0)

D2(r1, r2, r3) =
1
2

(
r1

2∂2
r1

+ r2
2∂2

r2
+ r3

2∂2
r3

+ 2r1r2∂r1∂r2 + 2r1r3∂r1∂r3 + 2r2r3∂r2∂r3

)
u(0, 0, 0)

D3(r1, r2, r3) =
1
3!

3∑
m1=1

3∑
m2=1

3∑
m3=1

rm1rm2rm3∂m1∂m2∂m3u(0, 0, 0)

=
1
3!

(
r1

3∂3
r + r2

3∂3
r2

+ r3
3∂3

r3
+ 3r1

2r2∂
2
r1

∂r2 + 3r1r2
2∂r1∂

2
r2

+ 3r1
2r3∂

2
r1

∂r3 + 3r1r3
2∂r1∂

2
r3

+ 3r2
2r3∂

2
r2

∂r3 + 3r2r3
2∂r2∂

2
r3

+ 6r1r2r3∂r1∂r2∂r3

)
u(0, 0, 0)

In order to evaluate the formulae (32,33,34, 35,37) we need to evaluate the derivatives appearing in
D1 and D2. All the non-mixed derivatives ∂mu(0, 0)/∂m

rn
, m = 1, 2, can be evaluated using the boundary

values since these are all tangential derivatives. The second-order mixed derivative term such as ur1r2

requires a bit more work. In two-dimensions we evaluate this term by taking the parametric derivatives of
the divergence, ∂rm∇ · u = 0. Since

∇ · u =
2∑

n=1

(∂xrn) urn +
2∑

n=1

(∂yrn) vrn

then ∂rm∇ · u = 0 gives

(∂xr2) ur1r2 + (∂yr2) vr1r2 =(∂xr2)r1 ur2 + (∂xr1) ur1r1 + (∂xr1)r1 ∂r1u+
(∂yr2)r1 vr2 + (∂yr1) vr1r1 + (∂yr1)r1 ∂r1v

(∂xr1) ur1r2 + (∂yr1) vr1r2 =(∂xr2) ur2r2 + (∂xr2)r2 ∂r2u...

These last two equations can be solved for ur1r2 and vr1r2 in terms of known tangential derivatives.
In three dimensions taking the two parametric derivatives of the divergence,

(∂xr2) ur1r2 + (∂yr2) vr1r2 + (∂zr2) wr1r2 =... (38)
(∂xr1) ur1r2 + (∂yr1) vr1r2 + (∂zr1) wr1r2 =... (39)

gives only two equations for the three unknowns, ur1r2 , vr1r2 and wr1r2 . We therefore add an extra condition
by extrapolating the tangential component of the velocity,

t3 ·D6
+,1,2Ui1−1,i2−1,i3 = 0 (40)

Solve the last equation for t3 ·Ui1−1,i2−1,i3 gives

t3 ·Ui1−1,i2−1,i3 = E6
+,1,2t3 ·Ui1−1,i2−1,i3 (41)

where we have introduced the operator E6
+,1,2. By substituting this last equation (41) into t3· equation (32),

t3·u(−r1,−r2) = t3·
(

15
4

u(0, 0)− 3u(r1, r2) +
1
4
u(2r1, 2r2) +

3
2
D1(r1, r2)u(0) + 3D2(r1, r2)u(0)

)
+O(|r|6)

24

we can eliminate t3 ·Ui1−1,i2−1,i3 and obtain an equation for t3 · ur1r2 in terms of known quanitites,

t3 ·
(
E6

+,1,2Ui1−1,i2−1,i3

)
= t3 ·

(15
4

u(0, 0)− 3u(r1, r2) +
1
4
u(2r1, 2r2) +

3
2
D1(r1, r2)u(0)

+
3
2
(r1

2∂2
r1

+ r2
2∂2

r2
+ r3

2∂2
r3

+ 2r1r2∂r1∂r2 + 2r1r3∂r1∂r3 + 2r2r3∂r2∂r3)u(0, 0)
)

or re-written as

t3 · ur1r2(0, 0) =
1
3

{
t3 ·

(
E6

+,1,2Ui1−1,i2−1,i3

)
− t3 ·

(15
4

u(0, 0)− 3u(r1, r2) +
1
4
u(2r1, 2r2) +

3
2
D1(r1, r2)u(0)

(42)

+
3
2
(r1

2∂2
r1

+ r2
2∂2

r2
+ r3

2∂2
r3

+ 2r1r3∂r1∂r3 + 2r2r3∂r2∂r3)u(0, 0)
}

To summarize we solve equations (38,39,42) for the three unknowns ur1r2 , vr1r2 and wr1r2 .

Solving the numerical boundary equations: The numerical boundary conditions (??) define the
values of U on two lines of fictitious points in terms of values of the velocity on the boundary and the
interior. The equations couple the unknowns in the tangential direction to the boundary so that in principle
a system of equations for all boundary points must be solved. However, when the grid is nearly orthogonal
to the boundary there is a much more efficient way to solve the boundary conditions. The first step in the
algorithm is to solve for the tangential components of the velocity from

Ui(t)− uB(xi, t) = 0
tµ ·

{
d
dtUi(t) + (Ui(t) · ∇4)Ui(t) +∇4P

∗(t)− ν∆4Ui(t)− f
}

= 0

}
for i ∈ Boundary

tµ ·D6
+m(Ui(t)) = 0

}
for i ∈ Second fictitious line

If the grid is orthogonal to the boundary then the discrete Laplacian applied at boundary will not have
any mixed derivative terms. Therefore the only fictitious points appearing in the equation applied at the
the boundary point (i1, i2, i3) will be the two points (i1, i2, i3 − n) n = 1, 2 (here we assume that i3 is in
the normal direction to the boundary). Thus for each point on the boundary (i1, i2, i3) the values of tµ ·u
can be determined at the fictitious points (i1, i2, i3 − 1) and (i1, i2, i3 − 2). There is no coupling between
adjacent boundary points so no large system of equations need be solved. The tangential components of
the velocity are determined for all fictitious points on the entire boundary. The second step is to determine
the the normal component of the velocity at the fictitious points from

Ui(t)− uB(xi, t) = 0
∇4 ·Ui(t) = 0

D4n(∇4 ·Ui(t)) = 0

 for i ∈ Boundary

If the grid is orthogonal to the boundary then the divergence on the boundary can be written in the form

∇ · u =
1

e1e2e3

{
∂

∂n
(e2e3n · u) +

∂

∂t1
(e1e3t1 · u) +

∂

∂t2
(e1e2t2 · u)

}
where the em are functions of ∂x/∂r. Note that only normal derivatives of n ·u appear in the expression for
the divergence. Thus, at a boundary point, (i1, i2, i3), the stencil for ∇4 ·U will only involve the fictitious
points at (i1, i2, i3−n), n = 1, 2. Similarly, the stencil for D4n(∇4 ·U) at a boundary will only involve the
fictitious points at (i1, i2, i3−n), n = 1, 2. Thus there is no coupling between adjacent boundary points and
the unknown values for n ·u can be easily determined. Note that the equations for D4n(∇4 ·U) will couple
values for tµ · u at fictitious points along the boundary but these values have already been determined in
the first step.

25

In practice the boundary conditions are solved in a correction mode – some initial guess is assumed for
the values at the fictitious points and a correction is computed. If the grid is orthogonal or nearly orthogonal
to the boundary then the first correction will give an accurate answer to the boundary conditions. If the
grid is not orthogonal to the boundary then the solution procedure can repeated one or more times until
a desired accuracy is achieved. This iteration should converge quickly provided that the grid is not overly
skewed.

26

12 Turbulence models

The typical RANS model for the incompressible Navier-Stokes equations which uses the Boussinesq eddy
viscosity approximation is

∂tui + uk∂xk
ui + ∂xip = ∂xk

(
(ν + νT)(∂xk

ui + ∂xiuk)
)

τi,j = (ν + νT)(∂xk
ui + ∂xiuk)

ν̃ = ν + νT

where νT is the turbulent eddy viscosity.

12.1 Wall Shear Stress

The stress on a wall with normal n is

τwall = τ · n
The shear stress is the tangential component of this wall stress,

τ shear = τwall − (n · τwall)n
= τi,jnj − (nkτk,jnj)ni

In two-dimensions for a horizontal wall, n = [0, 1]T and the wall shear stress is

τw = (ν + νT)(∂u/∂y + ∂v/∂x)

Question : Is νT on the wall equal to zero always?
In three-dimensions we define scalar wall shear stress τw in terms of the tangential component of the

velocity at the wall, ut,

τw = t · τ · n,

utan = u− (n · u)n,

t = utan/|utan|.
Given the definition τw we can define (see for example Wilcox [16])

uτ =
√

τw

ρ
Friction velocity

u+ = u/uτ non-dimensional velocity for near wall region
y+ = uτy/ν non-dimensional length for near wall region
U = |utan|

U

uτ
=

1
κ

ln
uτy

ν
+ C law of the wall, κ=Kármán’s constant

U+ =
U

uτ
non-dimensional velocity for near wall region

U+ =
1
κ

ln(Ey+) law of the wall, E=surface roughness parameter

For a horizontal wall, with flow in the x-direction, and ρ = 1, and assuming νT (0) = 0, we have

uτ =
√

νUy(0)

y+ = y
√

Uy(0)/ν

U(y) =

√
νUy(0)

κ
ln

[
Ey

√
Uy(0)/ν

]

27

0 20 40 60 80 100
0

5

10

15

20

y+

u+

Turbulent Boundary Layer

u+=y+

u+ = (1/κ) ln(E y+)

10
0

10
1

10
2

10
3

0

5

10

15

20

25

y+

u+

Turbulent Boundary Layer

u+=y+

u+ = (1/κ) ln(E y+)

Figure 3: A turbulent boundary layer is thought to have an inner viscous sublayer where u+ = y+ and an
outer log-layer where u+ = κ−1 ln(Ey+).

12.2 Wall Functions

Wall functions are used to apply approximate boundary conditions in numerical simulations. They are
used when the grid does not resolve the boundary layer.

The basic wall function approach assumes that the first grid point off the wall is located in the region
where the law of the wall is valid. If yp denotes the first grid point next to the wall then the law of the
wall relates the tangential component of the velocity in the direction of the flow, U(yp), to the wall shear
stress,

U(x, yp) =
uτ

κ
ln [Eypuτ/ν] (43)

U+ = κ−1 ln(Ey+) (44)

uτ =
√

νuy(x, 0) =
√

τw/ρ (friction velocity) (45)

Here E = 9 for smooth walls and κ = 0.41. The law of the wall is thought to be valid in an attached
turbulent boundary layer in region Ωwall−law = { x |20 ≤ y+ ≤ 100}. This condition replaces the wall
no-slip boundary condition, U(0) = 0, on the component of the velocity in the direction of the flow (i.e.
U = t ·U where t = U/|U|) . The condition is combined with the BC n ·U(0) = 0. In 3D we also need a
condition on the other tangential component, which I think that we set to zero.

Note that limy→0 Uy(x, y) 6= uy(x, 0) since the law of the wall does not hold for y+ < 20. Thus the
wall shear stress is defined using the fully resolved solution u(x, y) and not the Reynold’s averaged solution
U(x, y).

In the literature it is usually stated that the law of the wall is used to give τw, given a value U(x, yp),
and this τw is used in the momentum equations to evaluate ∇ · (τ) at the point yp. This doesn’t seem
correct. The correct way would be to use the law of the way to evaluate Uy(x, y) for a point near the wall
and use this value in the momentum equation.

By differentiating the law of the wall w.r.t to y we get

Uy(x, y) =
uτ

κy
, Uyy(x, y) = − uτ

κy2
, (46)

which are valid for x ∈ Ωwall−law.

28

So maybe we can implement the wall function by solving the full momentum equations on the first line
in and by defining U(x, 0) from the two equations

U(x, yp)− U(x, 0)
∆y

≈ Uy(x, yp/2) ≈ uτ

κ

1
yp/2

(47)

U(x, yp) =
uτ

κ
ln [Eypuτ/ν] (48)

The second equation gives uτ as an implicit function of U(x, yp), uτ = F (U(x, yp))

U(x, yp) =
uτ

κ
ln(Eypuτ/ν) ↔ uτ = F (U(x, yp)) (49)

(50)

These equations can be thus used to eliminate uτ to give U(x, 0) in terms of U(x, yp), giving

U(x, 0) = U(x, yp)−
uτ

κ

∆y

yp/2
(51)

= U(x, yp)−
2
κ

F (U(x, yp)) (52)

We can approximate this non-linear boundary condition by linearizing about some current guess for
U(x, yp) ≈ U0

p . Suppose that F (U0
p) = u0

τ . Then expanding F (U0
p + δU) gives

F (U0
p + δU) ≈ F (U0

p) +
∂F

∂U
(U0

p)δU

Differentiating the expression (49) with respect to U gives (*check this*)

∂F

∂U
=

∂uτ

∂U
=

κ

1 + ln(Eypuτ/ν)
=

κ

1 + κU/uτ

Whence the linearized boundary condition is

U(x, 0) = U(x, yp)− 2κ−1F (U(x, yp))

= U(x, yp)− 2κ−1
(
F (U0

p) + FU (U0
p)(U(x, yp)− U0

p)
)

=
(
1− 2κ−1FU (U0

p)
)
U(x, yp)− 2κ−1

(
F (U0

p)− FU (U0
p) U0

p

)
= AwU(x, yp) + Bw

Aw(U0
p) = 1− 2

1 + κU0
p /u0

τ

=
κU0

p /u0
τ − 1

κU0
p /u0

τ + 1
=

ln(Ey+
p)− 1

ln(Ey+
p) + 1

Bw(U0
p) = −2κ−1u0

τ +
2

1 + κU0
p /u0

τ

U0
p =

−2κ−1u0
τ

κU0
p /u0

τ + 1

This gives a boundary condition involving U(x, 0) and U(x, yp) linearized about a state (U0
p , u0

τ) that
satisfies the law of the wall. Also note that 0 < Aw < 1 if Ey+

p > e (recall that E = 9 for smooth walls).
From Wilcox [16], the boundary conditions for k and ε for the k − ε model are then given by

k =
u2

τ√
Cµ

, ε =
u3

τ

κy

These could be imposed on the first line in, y = yp ?

29

Solving for uτ from the law of the wall: Given a value Up = U(x, yp) we need to be able to solve
the nonlinear equation (49) to compute a value for z = uτ satisfying

G(z) ≡ κ−1z ln(Az)− Up = 0
A = Eyp/ν

G′(z) = κ−1(1 + ln(Az))

Note: If Up = 0 then z = 1/A. Using Newton’s method we get the iteration,

zk+1 = zk − G(zk)
G′(zk)

There could be trouble with this iteration if G′(zk) = 0, that is when Azk = e−1. However, if Up ≥ 0 then
Az should satisfy Az ≥ 1 > e−1. This can seen from the fact that z ln(Az) ≤ 0 for Az ≤ 1. Therefore
G(z) = 0 at z = 1/A and thus z should always satisfy z > 1/A which imples G′(z) ≥ κ−1.

An initial guess for z may come from the expression

z =
κUp

ln(Ey+
p)

, → κUp

ln(100E)
< z0 <

κUp

ln(20E)

if we assume that y+
p ∈ [20, 100].

In a boundary layer we might expect that as Re →∞,

τw ∼ R−1/2
e � 1

uτ ∼ R−1/4
e � 1

The viscous length scale is λmin = ν/uτ . If the first grid line is at yp = Mλmin (i.e. at y+ = M) with
M ∈ [20, 100], then

A = Eyp/ν = EM/uτ ∼ EMR1/2
e � 1

Auτ = EM

The product EM ≈ 9M is quite large.
Figure 4 shows a plot of Up verses uτ for the law-of-the wall function We see that a linear fit uτ =

aUp + 1/A is a good approximation where the constant a is chosen as

a =
um

τ − 1/A

κ−1um
τ ln(Aum

τ)

so that Up = κ−1um
τ ln(Aum

τ) for some um
τ which represents some average value for the expected values for

uτ .

30

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

4

5

U
p

uτ

U
p
 = (1/κ) uτ ln(A uτ), A=E y+/ν

U
p

linear−fit
uτ ln(A)/κ

Figure 4: A plot of Up versus uτ for the law-of-the wall function, Up = κ−1uτ ln(Auτ) .

31

12.3 Baldwin-Lomax Zero Equation Model

The Baldwin-Lomax zero equation model is a two layer model [16]. The inner and outer layers are given
by

νT =

{
νTi = ρl2mix|ω| if y < yc

νTo = ραCcpFwakeFKleb(y; ymax/CKleb) if y > yc

,

where

yc = min y such that νTi = νTo ,

lmix = κy
[
1− e−y+/A+

0

]
,

Fwake = min
[
ymaxFmax;CwkymaxU

2
dif/Fmax

]
FKleb(y; δ) = [1 + 5.5(y/δ)6]−1 (Klebanoff intermittency function)

and where ymax and Fmax are determined from the maximum of the function

F (y) = yω
[
1− e−y+/A+

0

]
and ω is the magnitude of the vorticity,

ω2 = (vx − uy)2 + (wy − vz)2 + (uz − wx)2

= 2ΩijΩij

Ωij =
1
2

(
∂ui/∂xj − ∂uj/∂xi

)
For boundary layer flows Udif is the maximum value of ‖u‖ through the layer?? For more general flows it
is

Udif =
(
‖u‖

)
max

−
(
‖u‖

)∣∣∣
y=ymax

Note comment in Wilcox that Udif is NOT the difference between the max and min velocities as specified
in the original BL paper and at http://www.cfd-online.com/Wiki/Baldwin-Lomax model

The model parameters are given by

κ = .40, α = 0.0168, A+
0 = 26

Ccp = 1.6, CKleb = 0.3 Cwk = 1(or .25 from cfd-online)

12.4 Spalart-Allmaras turbulence model

Spalart-Allmaras one equation model

νT = ν̃fv1

∂tν̃ + Uj∂j ν̃ = cb1S̃ν̃ − cw1fw(ν̃/d)2 +
1
σ

[
∂k[(ν + ν̃)∂kν̃] + cb2∂kν̃∂kν̃

]
cb1 = .1355, cb2 = .622,cv1 = 7.1, σ = 2/3

cw1 =
cb1

κ2
+

(1 + cb2)
σ

, cw2 = 0.3, cw3 = 2, κ = .41

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

χ =
ν̃

ν
, g = r + cw2(r6 − r), r =

ν̃

S̃κ2d2

S̃ = S +
ν̃

κ2d2
fv2, S =

√
2ΩijΩij

Ωij = (1/2)(∂iUj − ∂jUi) rotation tensor

32

−1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20

25

r

Spalart−Allmaras functions

g(r)
fw(r)

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

χ

Spalart−Allmaras functions

f
v1

(χ)
f
v2

(χ)

Figure 5: Behaviour of the SpalartConvergence fudge functions

Depends on d, the distance to the nearest surface.
Notes fv2 can be positive or negative but is bounded from above by 1 and below by ??

fv2 = 1− χ

1 + χfv1

= 1− 1
χ−1 + 1/[1 + (cv1/χ)−3]

→ 0 as χ →∞
→ 1 as χ → 0

≈ 1− 1
(1/7) + (1/2)

= −3/4 when χ = cv1

Since fv2 can be negative, so can r and g.
On a rectangular grid this is discretized as

∂tν̃i + UiD0xUi + ViD0yUi = cb1S̃iν̃i − cw1fw(ν̃/d)2

+
1
σ

D+x[(ν + ν̃i1− 1
2
)D−xν̃i + D+y[(ν + ν̃i2− 1

2
)D−yν̃i]

+ cb2

{
(D0xν̃)2 + (D0yν̃)2

}
On curvilinear grids we use the conservative form of the second order term

∇ · (a∇φ) =
1
J

{ ∂

∂r1

(
A11 ∂φ

∂r1

)
+

∂

∂r2

(
A22 ∂φ

∂r2

)
+

∂

∂r1

(
A12 ∂φ

∂r2

)
+

∂

∂r2

(
A21 ∂φ

∂r1

) }
where

A11 = aJ

[
∂r1

∂x1

2

+
∂r1

∂x2

2]
A22 = aJ

[
∂r2

∂x1

2

+
∂r2

∂x2

2]
A12 = aJ

[
∂r1

∂x1

∂r2

∂x1
+

∂r1

∂x2

∂r2

∂x2

]

33

A second-order accurate compact discretization to this expression is

∇ · (a∇φ) ≈ 1
J

{
D+r1

(
A11

i1− 1
2

D−r1φ
)

+ D+r2

(
A22

i2− 1
2

D−r2φ
)

+ D0r1

(
A12D0r2φ

)
+ D0r2

(
A21D0r1φ

) }
where we can define the cell average values for Amn by

A11
i1− 1

2

≈ 1
2
(A11

i1 + A11
i1−1)

A22
i2− 1

2

≈ 1
2
(A22

i2 + A22
i2−1)

34

12.5 k − ε turbulence model

Here is the k − ε model

νT = Cµk2/ε

∂tk + Uj∂jk = τij∂jUi − ε + ∂j [(ν + νT /σk)∂jk]

∂tε + Uj∂jε = Cε1
ε

k
τij∂jUi − Cε2ε

2/k + ∂j [(ν + νT /σε)∂jε]

Cε1 = 1.44, Cε2 = 1.92, Cµ = .09, σk = 1, σε = 1.3

The production term is P = τij∂jUi

P = τij∂jUi

= νT (∂jUi + ∂iUj)∂jUi

=
νT

2
(∂jUi + ∂iUj)(∂jUi + ∂iUj)

=
νT

2

(
(2ux)2 + (2vy)2 + (2wz)2 + 2(uy + vx)2 + 2(uz + wx)2 + 2(vz + wy)2

)
= νT

(
2(u2

x + v2
y + w2

z) + (uy + vx)2 + (uz + wx)2 + (vz + wy)2
)

Note: Here are some references that may be useful: On the implementation of the k − ε turbulence
model in incompressible flow solvers based on a finite element discretization by Kuzmin and Mierka (2006),
and A note on the numerical treatment of the k-epsilon turbulence model by Lew, Buscaglia and Carrica
(200?). The authors make some recommendations on how to solve the k − ε equations. We may want to
adopt some of these suggestions.

12.5.1 Full implicit solution of the k-ε turbulence model

The k-ε turbulence model can be solved using a full-implicit approximation. This form is not the most
memory efficient but should be more robust. In the full-implicit approximation, the variables (u, k, ε) are
solved using a fully coupled system, with the pressure being solved as a separate solve.

The implicit time-stepping procedure is described in Section 5.3. For the k-ε equations the implicit
operator L(u, k, ε;u∗, k∗, ε∗) is given for the u, k and ε equations by

Lu = (u∗ · ∇)u + (u · ∇)u∗ −∇(ν∗T∇u),

Lk = (u∗ · ∇)k + (u · ∇)k∗ −∇((ν + ν∗T /σk)∇k + ε− (2P ∗/k∗)k + (P ∗/ε∗)ε,

Lε = (u∗ · ∇)ε + (u · ∇)ε∗ −∇((ν + ν∗T /σε)∇ε− Cε1CµS∗0k + Cε2(e∗/k∗)2k + Cε2
2ε∗

k∗
ε,

where ν∗T = Cµ(k∗)2/ε∗. Here the star states u∗, k∗, and ε∗ denote the states that are used to linearize the
equations. A large sparse matrix is formed for the implicit system and this is kept fixed for some number
of time steps (chosen by the refactor frequency option).

Notes:

1. The main implicit time-stepping routine is in common/src/ims.C. The RHS for the implicit solve is
computed ins ins/src/ins.C.

2. The file ins/src/insImpKE.bf defines the implicit system that is solved for the k-ε equations.

3. The file ins/src/insImp.h defines some generic macros and subroutines that are used for different
implicit solvers (including the k-ε and Baldwin-Lomax equations, insImpBL.bf).

4. The file ins/src/turbulenceModels.C defines the boundary conditions for the turbulence models
used for explicit time stepping and currently these are also used for the implicit time steppers.

35

5. The fortran routines are called from the C++ file ins/src/implicit.C in function
insImplicitMatrix.

12.6 Diffusion Operator

When a turbulence model is added to the incompressible Navier-Stokes equation the diffusion operator
usually takes the form of

Di =
∑

j

∂xj

(
νT (∂xiuj + ∂xjui)

)
where we will write νT instead of ν + νT in this section. In particular

Du = ∂x(2νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)
Dv = ∂x(νT vx) + ∂y(2νT vy) + ∂z(νT vz) + ∂x(νT uy) + ∂z(νT wy)
Dw = ∂x(νT wx) + ∂y(νT wy) + ∂z(2νT wz) + ∂y(νT vz) + ∂x(νT uz)

We can write these in a more “symmetric” form as follows. Since ux + vy + wz = 0, it follows that

∂x(νT ux) = −∂x(νT vy)− ∂x(νT wz)

and thus

Du = ∂x(νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx)− ∂x(νT vy) + ∂z(νT wx)− ∂x(νT wz)

Therefore the diffusion operator can be written in a form where the principle part is the same for all
components,

Du = ∇ · (νT∇u) + ∂y(νT vx)− ∂x(νT vy) + ∂z(νT wx)− ∂x(νT wz)
Dv = ∇ · (νT∇v) + ∂z(νT wy)− ∂y(νT wz) + ∂x(νT uy)− ∂y(νT ux)
Dw = ∇ · (νT∇w) + ∂x(νT uz)− ∂z(νT ux) + ∂y(νT vz)− ∂z(νT vy)

Note that the highest order derivatives cancel in the last four terms in these expressions,

Du = ∇ · (νT∇u) + ∂y(νT)vx − ∂x(νT)vy + ∂z(νT)wx − ∂x(νT)wz

Dv = ∇ · (νT∇v) + ∂z(νT)wy − ∂y(νT)wz + ∂x(νT)uy − ∂y(νT)ux

Dw = ∇ · (νT∇w) + ∂x(νT)uz − ∂z(νT)ux + ∂y(νT)vz − ∂z(νT)vy

12.7 Revised pressure equation

When a turbulence model is added to the incompressible Navier-Stokes equation the diffusion operator
usually takes the form of

Di =
∑

j

∂xj

(
νT (∂xiuj + ∂xjui)

)
The pressure equation is derived from taking the divergence of the momentum equations,

∂tu + (u · ∇)u +∇p = D

and using ∇ · u = 0 to give
∆p = −∇u : ∇u +∇ · D

36

For a constant viscosity, the last term on the right hand side is zero. When the viscosity is not constant
we need to include the divergence of the diffusion operator in the equation for the pressure. This takes the
form

∇ · D =
∑

i

∑
j

∂xi∂xj

[
νT

(
∂xjui + ∂xiuj

)]
=

∑
j

∂xj

[∑
i

∂xiνT ∂xjui

]
+

∑
i

∂xi

[∑
j

∂xjνT ∂xiuj

]
= 2

∑
i

∂xi

[∑
j

∂xjνT ∂xiuj

]
where we have again used ∇ · u = 0.

In two dimensions this takes the form

∇ · D(2d) = 2
[
∂x

(
∂xνT ∂xu + ∂yνT ∂xv

)
+ ∂y

(
∂xνT ∂yu + ∂yνT ∂yv

)]
= 2

[
∂xνT ∆u + ∂2

xνT ∂xu + ∂x∂yνT ∂yu

+ ∂yνT ∆v + ∂x∂yνT ∂xv + ∂2
yνT ∂yv

]
In three dimensions,

∇ · D(3d) = 2
[
∂x

(
∂xνT ∂xu + ∂yνT ∂xv + ∂zνT ∂xw

)
+ ∂y

(
∂xνT ∂yu + ∂yνT ∂yv + ∂zνT ∂yw

)
+ ∂z

(
∂xνT ∂zu + ∂yνT ∂zv + ∂zνT ∂zw

)]
= 2

[
∂xνT ∆u + ∂2

xνT ∂xu + ∂x∂yνT ∂yu + ∂x∂zνT ∂zu

+ ∂yνT ∆v + ∂x∂yνT ∂xv + ∂2
yνT ∂yv + ∂y∂zνT ∂zv

+ ∂zνT ∆w + ∂x∂zνT ∂xw + ∂y∂zνT ∂yw + ∂2
zνT ∂zw

]
The addition of artificial dissipation also changes the pressure equation. The second-order artificial

dissipation is

d2,i = (ad21 + ad22|∇hVi|1)
nd∑

m=1

∆m+∆m−Vi (53)

while the the fourth-order one is

d4,i = − (ad41 + ad42|∇hVi|1)
nd∑

m=1

∆2
m+∆2

m−Vi (54)

The artificial dissipation is of the form

d =
[
α0 + α1G(∇u)

] nd∑
m=1

∆p
m+∆p

m−u

G(∇u) = |ux|+ |uy|+ |vx|+ |vy|+ . . .

Taking the divergence of this expression results in

∇ · d = α1

[
Gx

∑
m

∆p
m+∆p

m−U + Gy

∑
m

∆p
m+∆p

m−V
]

where

Gx = sgn(ux) uxx + sgn(uy) uxy + sgn(vx) vxx + sgn(vy) vxy + . . .

and sgn(x) is +1, −1 or 0 for x > 0, x < 0 or x = 0.

37

12.7.1 Revised pressure boundary condition

The pressure boundary condition also is changed to include the new diffusion operator:

∂np = n ·
{
− ∂tu− (u · ∇)u +D

}
We would like to write the diffusion operator in a way similiar to curl-curl form,

∆u = −∇×∇× u +∇(∇ · u),

used in the INS equations. Expanding the expression for Du gives

Du = ∂x(2νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)
= 2νT uxx + νT uyy + νT uzz + 2∂xνT ux + ∂yνT (uy + vx) + ∂zνT (uz + wx) + νT (vxy + wxz)
= νT ∆u + 2∂xνT ux + ∂yνT (uy + vx) + ∂zνT (uz + wx)

where we have used vxy + wxz = −uxx Thus we can write

Du = νT ∆u− 2∂xνT (vy + wz) + ∂yνT (uy + vx) + ∂zνT (uz + wx)

This leads in two dimensions to the curl-curl form

D(2D)
u = νT (−vxy + uyy)− 2∂xνT vy + ∂yνT (uy + vx) (55)

D(2D)
v = νT (vxx − uxy)− 2∂yνT ux + ∂xνT (vx + uy) (56)

while in three dimensions,

Du = νT (−vxy − wxz + uyy + uzz)− 2∂xνT (vy + wz) + ∂yνT (uy + vx) + ∂zνT (uz + wx) (57)
Dv = νT (vxx − uxy − wyz + vzz)− 2∂yνT (wz + ux) + ∂zνT (vz + wy) + ∂xνT (vx + uy) (58)
Dw = νT (wxx + wyy − uxz − vyz)− 2∂zνT (ux + vy) + ∂xνT (wx + uz) + ∂yνT (wy + vz) (59)

These curl-curl forms (55-59) remove the normal derivatives of the normal components of the velocity from
n · (Du,Dv,Dw). For example, the expression for Du contains no x-derivatives of u while Dv contains no
y-derivatives of v.

The alternative conservative form is

Du = ∂x(−2νT (vy + wz)) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)
Dv = ∂x(νT vx) + ∂y(−2νT (ux + wz)) + ∂z(νT vz) + ∂x(νT uy) + ∂z(νT wy)
Dw = ∂x(νT wx) + ∂y(νT wy) + ∂z(−2νT (ux + vy)) + ∂y(νT vz) + ∂x(νT uz)

38

13 Steady state line solver

We first consider the case of a rectangular grid in two space dimensions.
The implicit line solver uses local time stepping where the local time step ∆i is defined from

∆ti = ...

We solve implicit scalar-tri-diagonal systems in each spatial direction. Along the x-direction we solve
a tridiagonal system for U , followed by a tridiagonal system for V for the equations

Un+1
i − Un

i

∆ti
= −

{
UnD0xUn+1 + V nD0yU

n + D0xPn
}

+ ν
{

D+xD−xUn+1 + (Un
j+1 − 2Un+1 + Un

j−1)/h2
y

}
+ νA(Un)

{
∆+x∆−xUn+1 + (Un

j+1 − 2Un+1 + Un
j−1)

}
V n+1
i − V n

i

∆ti
= −

{
UnD0xV n+1 + V nD0yV

n + D0yP
n
}

+ ν
{

D+xD−xV n+1 + (V n
j+1 − 2V n+1 + V n

j−1)/h2
y

}
+ ν(2)(Un)

{
∆+x∆−xV n+1 + (V n

j+1 − 2V n+1 + V n
j−1)

}

Here ν(2)(Un) is the coefficient of the artificial dissipation. There is also a self-adjoint version of the
artificial dissipation,

βSA = ∆+x

[
ν

(2)

i1− 1
2

∆−x

]
U + ∆+y

[
ν

(2)

i2− 1
2

∆−y

]
U

= ν
(2)

i1+ 1
2

(Ui1+1 − U)− ν
(2)

i1− 1
2

(U − Ui1−1)

+ ν
(2)

i2+ 1
2

(Ui2+1 − U)− ν
(2)

i2− 1
2

(U − Ui2−1)

= ν
(2)

i1+ 1
2

Ui1+1 + ν
(2)

i1− 1
2

Ui1−1 + ν
(2)

i2+ 1
2

Ui2+1 + ν
(2)

i2− 1
2

Ui2−1

−
(
ν

(2)

i1+ 1
2

+ ν
(2)

i1− 1
2

+ ν
(2)

i2+ 1
2

+ ν
(2)

i2− 1
2

)
U

After solving in the x-direction we then solve along lines in the y-direction.
On curvilinear grids the expressions are a bit more complicated. Before discretization the equations

transformed to the unit-square are

ut = −
{

(urx + vry)ur + (usx + vsy)us + rxpr + sxps

}
+ ν

1
J

{
∂r(J(rxux + ryuy)) + ∂s(J(sxux + syuy))

}
ux = rxur + sxus

uy = ryur + syus

J = |∂x/∂r| = xrys − xsyr

We solve scalar-tridiagonal-systems in the r and s directions.

39

13.1 Fourth-order artificial dissipation

A fourth-order artificial dissipation is

ν(4)(Un)
{

(∆+x∆−x)2U + (∆+y∆−y)2U
}

or in a self-adjoint form

β
(4)
SA = ∆+x∆−x

[
ν

(4)
i ∆+x∆−x

]
U + ∆+y∆−y

[
ν

(4)
i ∆+y∆−y

]
U

= ν
(4)
i1+1∆+x∆−xUi1+1 − 2ν

(4)
i ∆+x∆−xU + ν

(4)
i1−1∆+x∆−xUi1−1

+ ν
(4)
i2+1∆+y∆−yUi2+1 − 2ν

(4)
i ∆+y∆−yU + ν

(4)
i2−1∆+y∆−yUi2−1

= ν
(4)
i1+1Ui1+2 − 2

[
ν

(4)
i1+1 + ν

(4)
i

]
Ui1+1 + ν

(4)
i1−1Ui1−2 − 2

[
ν

(4)
i1−1 + ν

(4)
i

]
Ui1−1

+ ν
(4)
i2+1Ui2+2 − 2

[
ν

(4)
i2+1 + ν

(4)
i

]
Ui2+1 + ν

(4)
i2−1Ui2−2 − 2

[
ν

(4)
i2−1 + ν

(4)
i

]
Ui2−1

+
[
ν

(4)
i1+1 + ν

(4)
i2+1 + 8ν

(4)
i + ν

(4)
i1−1 + ν

(4)
i2−1

]
Ui

40

14 Verification and Validation

14.1 Heat transfer verificiation and validation

In this section we consider some verificiation and validation of the heat transfer capabilities.

14.1.1 Heated domain with no flow

We consider heat transfer in a domain with no fluid flow. The governing equation is thus the heat equation
for the temperature,

Tt = κ∆T + fT , (60)

where fT is the body force and κ = k/(ρCp) is the thermal diffusivity.

Case: heated strip: One-dimensional heat transfer in a periodic strip with a constant body force
heating,

Tt = κTxx + f0, x ∈ (0, 1), (61)
T (0, y, t) = 0, T (1, y, t) = 0, (62)
T (x, y, t) = T (x, y + 1, t), (periodic in y), (63)
T (x, y, 0) = 0. (64)

The steady state solution is

Tp(x) =
f0

2κ
x(1− x), (65)

with heat flux on the walls,

H = kTn = −f0

2
k

κ
= −f0

2
ρCp, (steady state heat flux at x = 0 and x = 1). (66)

The solution to the time dependent problem is

T = Tp(x) +
∞∑

n=1

ane−κ(nπ)2t sin(nπx), (67)

an = −2
∫ 1

0
Tp(x) sin(nπx)dx. (68)

We solve the problem on a square grid for [0, 1]× [0, 1], periodic in the y-direction. The grid is created
with

ogen -noplot squareArg -periodic=np -order=2 -nx=32

Cgins is run with the command (scheme IM2)

cgins heatFlux -g=square32np.order2 -nu=.72 -tp=.5 -adcBoussinesq=0. -thermalConductivity=.1
-gravity="0. 0. 0." -go=halt

where f0 = 1, k = .1, κ = 1.
At t = 10 the peak temperature is .125000 (exact is .125) and the measured heat flux on the left wall

is H = −4.999778677e − 02 (compared to the exact value of H = -5e-2). The numerical solution should
converge in time to the exact steady-state solution since the steady state solution is a polynomial of degree
2.

Fourth-order:

41

ogen -noplot squareArg -periodic=np -order=4 -nx=32 -numGhost=3

Cgins is run with the command (scheme PC24)

cgins heatFlux -g=square32np.order4.ng3 -nu=.72 -ts=pc -tp=.5 -adcBoussinesq=0.
-thermalConductivity=.1 -gravity="0. 0. 0." -go=halt

At t = 2.5 the heat flux at the wall is H = −5.000000000e− 02. (Note that e−2.5π2 ≈ 1.9e− 11 so that the
time-dependent part of (67) is small).

Case: heated square: Two-dimensional heat transfer in the unit square with a body forcing,

fT = f0 sin(mxπx) sin(myπy), (69)
T (x, y, 0) = 0, (70)

has solution

T (x, y, t) =
f0

α
(1− e−αt) sin(mxπx) sin(myπy), (71)

α = (m2
x + m2

y)π
2κ. (72)

The average temperature in the 2D domain [0, 1]2 is

T̄ =

{
f0

α (1− e−αt) 2
mxπ

2
myπ , for mx odd and my odd,

0, otherwise
. (73)

The average heat flux on x = 0 is

H(x = 0) =
∫ 1

0
−kTxdy = −k(1− e−αt)

∫ 1

0
mxπ cos(mxπx) sin(myπy)dy (74)

=

{
−k(1− e−αt) 2mx

my
, for my odd,

0, for my even.
. (75)

Solving this problem with Cgins on grid square32.order2 to steady state (ν = .72, κ = 1, k = .1)
gives a peak temperature of Tmax = 1.000804 (true value Tmax = 1), the average (integrated) temperature
of T̄ = .4050 (true value T̄ = (2/π)2 ≈ .4052847) and the average (summed not integrated – fix me) heat
flux of H(x = 0) = −.1946 (true value H(0) = −.2).

Case: heated box: Three-dimensional heat transfer in the unit square with a body forcing,

fT = f0 sin(mxπx) sin(myπy) sin(mzπz), (76)
T (x, y, z, 0) = 0, (77)

has solution

T (x, y, t) =
f0

α
(1− e−αt) sin(mxπx) sin(myπy) sin(mzπz), (78)

α = (m2
x + m2

y + m2
z)π

2κ. (79)

The average temperature in the 3D domain [0, 1]3 is

T̄ =

{
f0

α (1− e−αt) 2
mxπ

2
myπ

2
mzπ for mx odd and my odd and mzy odd,

0, otherwise
. (80)

42

The average heat flux on the face x = 0 is

H(x = 0) =
∫ 1

0

∫ 1

0
−kTxdydz (81)

= −k(1− e−αt)
∫ 1

0

∫ 1

0
−kmxπ cos(mxπx) sin(myπy)sin(mzπz)dydz (82)

=

{
−k(1− e−αt) 4mx

πmymz
, for my odd and mz odd,

0, for my even.
. (83)

Solving this problem with Cgins on grid box32.order2 to steady state (ν = .72, κ = 1, k = .1) gives
a peak temperature of Tmax = 1.000804 (true value Tmax = 1), the average (integrated) temperature of
T̄ = .2576 (true value T̄ = (2/π)3 ≈ .258012) and the average (summed not integrated – fix me) heat flux
of H(x = 0) = −.120 (true value H(0) = −.127324).

Case: steady heated box: Steady state heating of a box. If we choose a constant source of heat in the
sub-region R = [.5(1 − d), .5(1 + d)]3 (i.e. a sub-cube of width d in each direction and volume d3) of the
unit box [0, 1]3,

fT = f0, for x ∈ R, (84)

then in steady state the total heat flux through the boundary will be∫
∂B

kTndS = −k

κ

∫
B

fT dx, (85)

= −k

κ
f0d

3. (86)

43

15 Convergence results

This section details the results of various convergence tests. Convergence results are run using the twilight-
zone option, also known less formally as the method of analytic solutions. In this case the equations
are forced so the the solution will be a known analytic function.

The tables show the maximum errors in the solution components. The rate shown is estimated conver-
gence rate, σ, assuming error ∝ hσ. The rate is estimated by a least squares fit to the data.

The 2D trigonometric solution used as a twilight zone function is

u =
1
2

cos(πω0x) cos(πω1y) cos(ω3πt) +
1
2

v =
1
2

sin(πω0x) sin(πω1y) cos(ω3πt) +
1
2

p = cos(πω0x) cos(πω1y) cos(ω3πt) +
1
2

The 3D trigonometric solution is

u = cos(πω0x) cos(πω1y) cos(πω2z) cos(ω3πt)

v =
1
2

sin(πω0x) sin(πω1y) cos(πω2z) cos(ω3πt)

w =
1
2

sin(πω0x) sin(πω1y) sin(πω2z) cos(ω3πt)

p =
1
2

sin(πω0x) cos(πω1y) cos(πω2z) sin(ω3πt)

When ω0 = ω1 = ω2 it follows that ∇ · u = 0. There are also algebraic polynomial solutions of different
orders.

Tables (2-6) show results from running Cgins on various grids.

grid N p u v u ∇ · u
square20 20 2.9× 10−1 3.4× 10−2 3.4× 10−2 3.4× 10−2 5.0× 10−1

square30 30 9.6× 10−2 1.3× 10−2 1.2× 10−2 1.3× 10−2 1.8× 10−1

square40 40 4.5× 10−2 7.2× 10−3 6.7× 10−3 7.2× 10−3 8.1× 10−2

rate 2.69 2.23 2.34 2.24 2.61

Table 1: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, square, trig TZ, ω = 5.1, α = 1

grid N p u v u ∇ · u
square16.order4 16 8.3× 10−2 1.2× 10−2 1.2× 10−2 1.2× 10−2 1.4× 10−1

square32.order4 32 6.5× 10−3 4.8× 10−4 3.9× 10−4 4.8× 10−4 7.6× 10−3

square64.order4 64 3.4× 10−4 2.6× 10−5 2.3× 10−5 2.6× 10−5 2.6× 10−4

rate 3.97 4.41 4.50 4.41 4.54

Table 2: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, square, trig TZ, ω = 5.1, α = 1

44

grid N p u v ∇ · u
cic1 13 2.6× 10−1 1.5× 10−1 1.6× 10−1 5.2× 10−1

cic2 25 5.6× 10−2 2.4× 10−2 2.6× 10−2 1.3× 10−1

cic3 49 1.5× 10−2 5.1× 10−3 4.3× 10−3 2.3× 10−2

cic4 73 3.9× 10−3 1.3× 10−3 7.4× 10−4 4.9× 10−3

rate 2.4 2.7 3.0 2.7

Table 3: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, cic, trig TZ, ω = 2

grid N p u v u ∇ · u
cicb.order4 61 1.2× 10−4 3.8× 10−5 3.7× 10−5 3.8× 10−5 1.9× 10−4

cic.order4 121 9.6× 10−6 1.7× 10−6 2.1× 10−6 2.1× 10−6 9.6× 10−6

cic2.order4 241 6.2× 10−7 1.0× 10−7 1.2× 10−7 1.2× 10−7 1.0× 10−6

rate 3.86 4.30 4.18 4.19 3.78

Table 4: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, cic, trig TZ, ω = 1, α = 1

grid N p u v w ∇ · u
box10 10 2.0× 10−2 2.0× 10−3 2.1× 10−3 2.1× 10−3 1.7× 10−2

box20 20 5.0× 10−3 3.4× 10−4 3.1× 10−4 3.1× 10−4 2.7× 10−3

box30 30 2.4× 10−3 1.3× 10−4 1.0× 10−4 1.0× 10−4 8.1× 10−4

rate 1.9 2.5 2.8 2.8 2.8

Table 5: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, box, trig TZ, ω = 2

grid N p u v w ∇ · u
box8.order4 8 1.4× 10−3 2.9× 10−4 2.6× 10−4 2.6× 10−4 1.2× 10−3

box16.order4 16 3.8× 10−5 8.4× 10−6 7.8× 10−6 7.8× 10−6 6.6× 10−5

box32.order4 32 3.6× 10−6 1.7× 10−7 1.8× 10−7 1.8× 10−7 1.6× 10−6

rate 4.3 5.4 5.2 5.2 4.8

Table 6: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, box, trig TZ, ω = 2

grid N p u v w ∇ · u
sib1 17 2.8× 10−1 2.1× 10−1 1.4× 10−1 1.2× 10−1 6.2× 10−1

sib2 33 6.2× 10−2 5.0× 10−2 3.0× 10−2 1.9× 10−2 1.9× 10−1

sib2a 49 3.0× 10−2 1.7× 10−2 8.8× 10−3 1.2× 10−2 7.8× 10−2

rate 2.1 2.4 2.6 2.2 1.9

Table 7: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, sib, trig TZ, ω = 2

45

grid N p u v w u ∇ · u
sib1.order4 30 1.0× 10−2 1.6× 10−2 8.8× 10−3 7.5× 10−3 1.6× 10−2 8.3× 10−2

sib1a.order4 60 8.2× 10−4 9.9× 10−4 4.5× 10−4 6.6× 10−4 9.9× 10−4 6.2× 10−3

sib2.order4 80 1.2× 10−4 8.7× 10−5 5.0× 10−5 7.8× 10−5 8.7× 10−5 7.8× 10−4

rate 4.38 5.08 5.10 4.44 5.08 4.57

Table 8: incompressible Navier Stokes, order=4, ν = 0.05, t = 1, sib, trig TZ, ω = 1, α = 1

grid N p u v w u ∇ · u
curvedPipe1 1 1.4× 10−3 7.0× 10−4 1.2× 10−3 4.9× 10−4 1.2× 10−3 4.4× 10−2

curvedPipe2 2 4.6× 10−4 2.0× 10−4 2.3× 10−4 1.4× 10−4 2.3× 10−4 1.5× 10−2

curvedPipe3 3 2.6× 10−4 9.4× 10−5 8.8× 10−5 1.1× 10−4 1.1× 10−4 8.9× 10−3

rate 1.51 1.82 2.37 1.39 2.16 1.46

Table 9: INS, curvedPipe, order=2, ν = 0.025, t = 0.1, cdv=1, poly TZ

Figure 6: Incompressible N-S, twilight zone solution for convergence test

46

16 Performance Results

The normalized measure of CPU, time-to-solution (TTS), defined below, can be used to compare results
from different time-stepping schemes, different numbers of processors and even different grids. Smaller
values of TTS correspond to faster schemes.

Ng = number of grid points,
Np = number of processors,
Ns = number of time steps,
∆t = tfinal/Ns = average time-step,

∆ta = velocity-scale/average grid spacing = time-step scale for advection,

TPS = total-wall-clock-time/Ns = average CPU time (s) per step,

TPSM = average CPU time (s) per step per million grid points per processor,
= Np × TPS/(Ng/106),

TTS = normalized average CPU time (s) to solve,
= TPSM×∆ta/∆t

The normalized memory usage, RPG, measures the number of reals-per-grid-point (i.e. the equivalent
number of double precision values (8 bytes, 64 bits) per grid point) for the entire memory use.

RPG = (total memory usage (btyes))/(number-of-grid-points× (8 bytes/real))

16.1 Performance: two cylinders in a channel

Grid Pts Method P-solver Np TPSM TTS RPG
tcilce16 1.4M IM22 BICGS(3) serial 18 54 200

PC22 BICGS(3) serial 9.6 62 67
IM24 BICGS(3) serial 32 170 314
IM24 MG serial 5.5 29 171

IM24MG MG serial 3.9 20 49
AFS22 MG serial 11 16 27
AFS24 MG serial 13 21 31

Table 10: Performance of Cgins for different time-stepping methods and different linear solvers for the
pressure equation. TTS is the normalized time-to-solution. RPG is the total memory usage in reals-per-
grid-point.

Grid Pts Method P-solver Np TPSM TTS RPG
tcilce64 22.M PC24 BICGS(5) 16 840 16000 205

PC24 MG 16 15 210 67
IM24MG MG 16 34 180 46
AFS24 MG 16 34 54 32

Table 11: Performance of Cgins for different time-stepping methods and different linear solvers for the
pressure equation. TTS is the normalized time-to-solution. RPG is the total memory usage in reals-per-
grid-point.

Table 11 gives performance results for grid tcilce64.order4.ml4. NOTE: Case IM24MG-MG was
run at ν = 10−4 while the other cases were run at ν = 10−5 so the value of TTS is not exactly comparable.

47

IM
22

-K
3

P
C

22
-K

3

IM
24

-K
3

IM
24

-M
G

IM
24

M
G

-M
G

A
F
S2

2-
M

G

A
F
S2

4-
M

G

0

100

200

300

54 62

170

29 20 16 21

200

67

314

171

49
27 31R

el
at

iv
e

pe
rf

or
m

an
ce

Cgins, tcilc16 (1.4M pts)

CPU Memory

Figure 7: Performance of Cgins for different time stepping methods for flow past two cylinders in a channel.
The CPU is a normalized time-to-solution (TTS). The memory usage is measured in reals-per-grid-point.
K3 stands for the Krylov solver BiCGStab-ILU(3).

16.2 Performance: pitching-plunging airfoil

We consider flow past a two-dimensional Joukowsky airfoil that undergoes a pitching and plunging motion.
Let G(j)

j denote the grid for this problem with target grid spacing of ∆s = .05/j.

Grid G(16)
j has approximately 1.7M grid points. Grid G(32)

j has approximately 6.8M grid points.

Grid Pts Method P-solver Np TPSM TTS RPG
joukowsky16 1.7M AFS24 BICGS(5) 8 340 1, 700 246

AFS24 MG 8 29 140 79
joukowsky32 6.8M AFS24 BICGS(5) 16 660 3, 700 235

AFS24 MG 16 40 230 65
AFS24 MG 8 32 99 54

Table 12: Performance of Cgins for different time-stepping methods and different linear solvers for the
pressure equation. TTS is the normalized time-to-solution. RPG is the total memory usage in reals-per-
grid-point.

Grid Pts Method P-solver Np TPSM TTS RPG
joukowsky32 6.8M AFS24 BICGS(5) 16 1100 1800 235

AFS24 MG 16 52 76 66

Table 13: RESTART. Performance of Cgins for different time-stepping methods and different linear solvers
for the pressure equation. TTS is the normalized time-to-solution. RPG is the total memory usage in reals-
per-grid-point.

48

17 Some sample simulations

Here is a collection of interesting examples computed with the Cgins incompressible solver.
The examples include

1. Falling cylinders in an incompressible flow, Section 17.1.

2. Flow past two cylinders, Section 17.2.

3. A pitching and plunging airfoil, Section 17.3.

4. A fluttering plate, Section 17.4.

5. Centrifugal pump, Section 17.5.

6. Flow in a 2d heated room, Section 17.6.

7. Flow in a 3d heated room, Section 17.7.

8. Simulation of flow past a blood clot filter, Section 17.8.

9. Incompressible flow past a truck, Section 17.9.

10. Incompressible flow past a city scape, Section 17.10.

11. Flow past an airfoil at different Reynolds numbers, Section 17.11.

12. Flow past a pitching-plunging airfoil at different Reynolds numbers, Section 17.12.

13. Flow past two spheres, Section 17.13.

14. Flow past a deforming sphere, Section 17.14.

15. Flow past a moving 3D cylinder at different Reynolds numbers, Section 17.15.

16. Flow past a moving sphere, Section 17.16.

17. Flow past a cube in a channel, Section 17.17.

18. Flow past a rotating flattened torus, Section 17.18.

19. Flow past a rotating disk, Section 17.19.

20. Flow past a rounded blade, Section 17.20.

21. Wind turbine and tower, Section 17.21.

17.1 Falling cylinders in an incompressible flow

To run this example see cg/ins/runs/drops/Readme.
Figure (8) shows multiple rigid bodies failing under the influence of gravity in an incompressible flow.

There is an upward flow that nearly matches the speed of the falling drops. This solution was computed
using the multigrid solver for the pressure equation.

49

Figure 8: Multiple cylinders falling in an incompressible flow, contour plots of the flow speed. Solution at
times t = 1, 3, 5 and 7.

50

17.2 Flow past two cylinders

Figure 9 shows the simulation of a high Reynolds number flow past two cylinders. The simula-
tion used the command file cg/ins/cmd/tcilc.cmd and the grid was made with the ogen script
Overture/sampleGrids/tcilc.cmd. The radius of the cylinders was 1/2. The grid had about 22 mil-
lion grid points.

Figure 9: Flow past two cylinders in a channel computed with Cgins. Contour plots of the vorticity.

51

17.3 Pitching and plunging airfoil

This example shows the simulation of a pitching and plunging airfoil, The simulation used
the command file cg/ins/cmd/wing2d.cmd and the grid was made with the ogen script
Overture/sampleGrids/joukowsky2d.cmd. The computation was performed in parallel and demonstrates
the parallel moving grid capabilities (starting with v24). The grid had 1.7M points.

Figure 10: A pitching and plunging airfoil, computed in parallel with Cgins. Contour plots of the vorticity.

52

17.4 Fluttering plate

This example shows the simulation of a light plate falling under the influence of gravity. There is an upward
flow with speed approximately equal to the rate at which the plate falls. The plate starts to sway from
side to side and eventually also tumbles. This example demonstrates the new time stepping scheme that
has been developed to treat the motion of “light” rigid bodies (v24).

Figure 11: A fluttering plate computed with Cgins. A light plate falling due to the force of gravity in an
incompressible flow. Contour plots of the vorticity.

53

17.5 Centrifugal pump

This example shows the simulation of a centrifugal pump. Fluid flows into the domain through the central
core and is accelerated by the counter-clockwise rotating blades before exiting at the top outlet. The
grid was constructed with the ogen command file pump2dGrid.cmd. The command file for cgins was
pump2d.cmd. Thanks to Franck Monmont for help with the problem.

Figure 12: Centrifugal pump. Streamlines and pressure at t = 0.5 (top) and t = 4.0 (bottom).

54

17.6 Flow in a heated room

This example shows the simulation cool air entering a two-dimensional model of a room with a desk,
computer and partition. Flow enters the domain through an inlet on the ceiling and leaves through an
outlet on the ceiling. The computer under the desk is heated. We solve the INS equations with Boussinesq
approximation (i.e. with gravity and buoyancy effects). The grid was constructed with the ogen command
file room2d.cmd. The command file for cgins was heatedRoom.cmd.

t = 2

t = 4

t = 8

t = 12

t = 16

t = 20

Figure 13: Results from a high-resolution simulation of cool air entering a 2D model of a room. Contours
of the temperature are shown.

55

17.7 Flow in a 3D room

Figure 14 shows some results from a simulation of the flow in a small three-dimensional room with a desk,
hot computer, inlet and outlet. Cold air enters through an inlet vent on the ceiling into a room with
an initially uniform temperature. We solve the INS equations with Boussinesq approximation (i.e. with
gravity and buoyancy effects). The grid was constructed with the ogen command file room3d.cmd. The
command file for cgins was heatedRoom3d.cmd.

Figure 14: Results from a computation of flow in a 3D room. The figure shows contours of the temperature
on selected cutting planes at t = 15.5 from a time dependent simulation.

56

17.8 Simulation of flow past a blood clot filter

Figure 15 shows results from computations of the incompressible flow in a three-dimensional cylindrical
pipe (“vein”) with an embedded wire frame “filter” and embedded blood clots. The computations were
performed with the pseudo steady-state solution algorithm.

Further details on these simulations can be found in M.A. Singer, WDH, S.L. Wang, Computational
Modeling of Blood Flow in the Trapease Inferior Vena Cava Filter, Journal of Vascular and Interventional
Radiology, 20, 2009.

Figure 15: Flow past a blood-clot filter using cgins.

57

17.9 Incompressible flow past a truck

Figure (16) shows a computation of the incompressible Navier-Stokes equations for flow past the cab of a
truck. The steady state line solver was used for this computation.

Figure 16: Incompressible flow past the cab of a truck. Shown are the CAD geometry, the grids and some
tracer particles.

58

17.10 Incompressible flow past a city scape

Figure (17) shows a computation of the incompressible Navier-Stokes equations for flow past a city
scape. The steady state line solver was used for this computation. The command file for gen-
erating this grid is Overture/sampleGrids/multiBuildings.cmd and the Cgins command file is
ins/cmd/multiBuildings.cmd.

Figure 17: Incompressible flow through a city scape

Notes:

♦ pseudo steady-state line implicit solver, 4th-order dissipation,
♦ local time-stepping (spatially varying dt)
♦ requires 1.4GB of memory,
♦ cpu = 29s/step,
♦ 2.2 GHz Xeon, 2 GB of memory

59

17.11 Flow past an airfoil at different Reynolds numbers

We simulate the flow past an airfoil using the second- and fourth-order accurate versions of the AFS scheme.
The second-order and fourth-order SSLES turbulence models are used. The results indicate how the flow
character changes as the effective Reynolds number increases.

AFS2, G(4), vorticity [−30, 30]

AFS4, G(4), vorticity [−30, 30]

Figure 18: Flow past an airfoil on grid G(4). Contour plots of the vorticity at t = 10.

AFS2, G(8), vorticity [−30, 30]

AFS4, G(8), vorticity [−30, 30]

Figure 19: Flow past an airfoil on grid G(8). Contour plots of the vorticity at t = 10.

The simulations used the command file cg/ins/cmd/wing2d.cmd and the grid was made with the ogen

60

AFS2, G(16), vorticity [−30, 30]

AFS4, G(16), vorticity [−50, 50]

Figure 20: Flow past an airfoil on grid G(16). Contour plots of the vorticity at t = 10.

script Overture/sampleGrids/joukowsky2d.cmd. AFS2 denotes the second-order accurate AFS scheme
and AFS4 is the fourth-order accurate. Grid G(j) has a background grid spacing of about 1/(20j). The
chord length of th airfoil is 1.

61

17.12 Flow past a pitching-plunging airfoil at different Reynolds numbers

We simulate the flow past a pitching-plunging airfoil using the second- and fourth-order accurate versions
of the AFS scheme. The second-order and fourth-order SSLES turbulence models are used. The results
indicate how the flow character changes as the effective Reynolds number increases.

AFS4, G(8), vorticity [−150, 150]

Figure 21: Flow past a pitching-plunging airfoil on grid G(8). Contour plots of the vorticity at t = 5.

62

17.13 Flow past two spheres

t = 7, G(8) t = 9, G(8)

t = 11, G(8) t = 13, G(8)

Figure 22: Flow past two spheres in channel. Top: Overlapping grid, G(3) (fourth-order), for the spheres
and channel. Contour plots of the enstrophy (max contour ξ = 40) on Grid G(8) (41M pts) using the
fourth-order accurate scheme AFS42.

We simulate the flow past two spheres in a channel. The grid for this problem was generated from
the ogen command file twoSpheresInAChannelGrid.cmd. The solution was computed with the Cgins
command file cg/ins/cmd/sib.cmd.

The geometry for the problem, as shown in Figure 22, consists of two spheres in a channel. The radius
of each sphere is 0.5. They are each covered by three overlapping patches. The spheres are embedded
in a refinement patch that extends a short distance into the wake. A coarser background grid covers the
majority of the channel. Let G(j) denote the composite grid for this geometry. The target grid spacing is
∆s = 1/(10j). The grid spacing is stretched in the normal direction to the body so that the boundary
layer spacing is ∆sbl.

Figure 22 shows the solution on grid G(8). The incoming flow is in the x-direction with u = 1. Contours
of the enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇×u‖) are shown. The solution was computed
with the scheme AFS4 and the SSLES4 turbulence model (ν = 2× 10−5).

63

17.14 Flow past a deforming sphere

Figure 23: Flow past a deforming sphere.

In this section the flow past a deforming sphere is simulated. The grid for this problem was generated
from the ogen command file sibDeform.cmd. The solution was computed with the Cgins command file
cg/ins/cmd/deform.cmd.

The geometry for the problem, as shown in Figure 23, initially consists of a sphere of radius 0.5 in a
channel. The sphere is covered by three overlapping patches. Let G(j) denote the composite grid for this
geometry. The target grid spacing is ∆s = 2/(10j).

The surface of the sphere is deformed over time into an ellipsoid and back again. The axes of the ellipse
evolve according to

a(t) = 1 + (a0 − 1) sin(ωπt),
b(t) = 1 + (b0 − 1) sin(ωπt),
c(t) = 1 + (c0 − 1) sin(ωπt),

where a0 = 0.8α and b0 = c0 = 1.2α with α = 1. The deformed surface is defined by

x(r, t) = (a(t)x0(r), b(t)y0(r), c(t)z0(r)),

where the initial surface of the sphere is (x0(r), y0(r), z0(r)). The grids near the surface are recomputed at
each time step using the hyperbolic grid generator.

Figure 23 shows the solution (magnitude of the velocity) at three times. The incoming flow is in the
x-direction with u = 1.

64

17.15 Flow past a moving 3D cylinder at different Reynolds numbers

We simulate the flow past a moving three-dimensional cylinder using the second- and fourth-order accurate
versions of the AFS scheme. The second-order and fourth-order SSLES turbulence models are used. The
results indicate how the flow character changes as the effective Reynolds number increases.

The grid for this problem was generated from the ogen command file cylinderInAChannel.cmd. The
solution was computed with the Cgins command file cg/ins/cmd/cyl3d.cmd.

The geometry for the problem consists of a cylinder of radius r = 0.25 in a channel [−1, 3]× [−1, 1]×
[−1, 1]. The axis of the cylinder is in the z-direction and the center of the cylinder is initially located
at (x, y) = (0, 0). Let G(j) denote the composite grid for this geometry. The target grid spacing is
∆s = 1/(10j). The grid spacing is stretched in the normal direction to the cylinder so that the boundary
layer spacing is ∆sbl.

The incoming flow is in the x-direction with u = 1.
Figure 24 shows the solution for a cylinder that oscillates up and down in the y-direction with a

sinusoidal motion given by

y(t) = a0 sin(2πf0t),

where the amplitude is taken as a0 = 0.25 and the frequency is f0 = 0.25. The grid is G(2) and the
boundary layer spacing is 5 times smaller than the target grid spacing, with ∆sbl/∆s = 1/5. Contours of
the enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇× u‖) are shown. The solution was computed
with the scheme AFS4 and the SSLES4 turbulence model (ν = 10−3). The results show that the flow
develops into a fully three-dimensional wake with vortices being shed.

t = 3.5 t = 4.0

t = 4.5 t = 5.0

Figure 24: Flow past a 3D oscillating cylinder using Scheme AFS4 on grid G(2). Contour plots of the
enstrophy times t = 3.5, 4.0, 4.5 and 5.0. The contour levels are scaled to [0, 20]. The cylinder is moving
the y − direction.

65

17.16 Flow past a moving sphere

We simulate the flow past a moving sphere.
The grid for this problem was generated from the ogen command file sphereInABox.cmd. The solution

was computed with the Cgins command file cg/ins/cmd/sphereMove.cmd.
The geometry for the problem consists of a sphere of radius r = 1.0, centered at the origin, in a channel

[−3, 6]× [−3, 3]× [−3, 3]. Let G(j) denote the composite grid for this geometry. The target grid spacing is
∆s = 1/(10j). The grid spacing is stretched in the normal direction to the cylinder so that the boundary
layer spacing is ∆sbl.

Figure 25 shows the solution for a sphere that oscillates up and down in the y-direction with a sinusoidal
motion given by

y(t) = a0 sin(2πf0t),

where the amplitude is taken as a0 = 0.25 and the frequency is f0 = 0.5. The incoming flow is in the
x-direction with u = 1.

Grid G(2) t = 14

t = 15 t = 16

Figure 25: Flow past an oscillating sphere using scheme IM2 on grid G(4) with ν = 2×10−4. Contour plots
of the enstrophy. The contour levels are scaled to [0, ??]. The cylinder is moving the y − direction.

66

17.17 Flow past a cube in a channel

t = 10 t = 10

Figure 26: Flow past a cube in a channel. Top: Overlapping grid for the cube and channel. Bottom:
contour plots of the enstrophy from a simulation on grid G(8) (14M grid points), using the scheme AFS42.
Evident is the transition of the enstrophy midway in the wake onto the coarser background grid.

We simulate the flow past the exterior of a cube (with rounded corners).
The grid for this problem was generated from the ogen command file loftedBox.cmd. The solution

was computed with the Cgins command file cg/ins/cmd/boxInAChannel.cmd.
The geometry for the problem consists of a cube with sides of length one in a channel [−1, 2.5]×[−2, 2]×

[−2, 2]. Let G(j) denote the composite grid for this geometry. The target grid spacing is ∆s = 1/(10j).
The grid spacing is stretched in the normal direction to the box so that the boundary layer spacing is ∆sbl.
The grid is shown in Figure 26. The grid for the cube consists three grids, a main patch covering four faces
and all edges and two end caps. This grid was generated with the LoftedSurfaceMapping. We note that is
quite difficult to make a high quality grid for this apparently simple geometry since the edges and corners
must be sufficiently resolved. The cube grid are embedded in a Cartesian refinement grid (block boundaries
shown in green), which is in turn located in a larger background Cartesian grid with grid spacing 2∆s.

The incoming flow is in the x-direction with u = 1. Figure 26 shows the solution computed on grid
G(8), which had a total of approximately 14M grid points. Contours of the enstrophy ξ, (magnitude of
the vorticity vector, ξ = ‖∇ × u‖) are shown. The solution was computed with the scheme AFS4 and the
SSLES4 turbulence model (ν = 2× 10−5).

Figure 27 shows results from flow past a rotating cube.

67

t = 5 t = 6

t = 7 t = 8

Figure 27: Flow past a rotating cube in a channel. Contour plots of the enstrophy from a simulation on
grid G(4), using the scheme AFS42.

68

17.18 Flow past a rotating flattened torus

t = 5 t = 7

t = 6 t = 8

Figure 28: Flow past a rotating flattened torus in channel. Top: Overlapping grid for the torus and channel.
Contour plots of the enstrophy on grid G(8) (14M grid points), using scheme AFS42.

We simulate the flow past a moving torus (the cross section of the torus being a smoothed thin rect-
angle). The grid for this problem was generated from the ogen command file flattenedTorusGrid.cmd.
The solution was computed with the Cgins command file cg/ins/cmd/flattenedTorus.cmd.

The geometry for the problem, as shown in Figure 28, consists of toroidal shaped body of revolution
with cross-section defined by a smoothed polygon for the rectangle [−.05, .05]×[−.5,−5]. This cross-section
is rotated about the line through the point (0, .5, 0) with tangent along the y-axis. This toridal ring is
placed in a channel with dimensions ??. Let G(j) denote the composite grid for this geometry. The target
grid spacing is ∆s = 1/(10j). The grid spacing is stretched in the normal direction to the box so that the
boundary layer spacing is ∆sbl.

The incoming flow is in the x-direction with u = 1. Figure 28 shows the solution for ... Contours of
the enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇× u‖) are shown. The solution was computed
with the scheme AFS4 and the SSLES4 turbulence model (ν = 10??).

69

17.19 Flow past a rotating disk

We simulate the flow past a rotating disk (“pill” or “coin”). The grid for this problem was generated
from the ogen command file pillInABoxGrid.cmd. The solution was computed with the Cgins command
file cg/ins/cmd/pillInABox.cmd. The geometry for the problem, as shown in Figure 29, consists of disk
(“pill”) shaped body. The edge of the disk is constructed from a body of revolution using a cross-section
defined by a smooth-polygon. The disk is embedded in a channel. A refinement patch is located near the
disk. A coarser background grid covers the majority of the channel. Let G(j) denote the composite grid
for this geometry. The target grid spacing is ∆s = 1/(10j). The grid spacing is stretched in the normal
direction to the body so that the boundary layer spacing is ∆sbl.

Figure 29 shows the solution on grid G(8) (7M pts). The incoming flow is in the x-direction with u = 1.
Contours of the enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇×u‖) are shown with the maximum
contour level set at ξ = 40. The solution was computed with the scheme AFS4 and the SSLES4 turbulence
model (ν = 10−4).

Figure 30 shows the solution on the finer grid G(16) (51M pts).

70

t = 1 (1/8 rotation) t = 3 (3/8 rotations)

t = 5 (5/8 rotations) t = 11 (1 3/8 rotations)

t = 12 (1 5/8 rotations) t = 14 (1 6/8 rotations)

Figure 29: Flow past a rotating disk in channel. Top: Overlapping grid, G(2) (second-order), for the disk
and channel. Contour plots of the enstrophy (max contour ξ = 40) on grid G(8), using the fourth-order
accurate scheme AFS42.

71

t = 1 (1/8 rotation) t = 2 (2/8 rotations)

t = 3 (3/8 rotations) t = 4 (4/8 rotations)

t = 5 (5/8 rotations) t = 6 (6/8 rotations)

Figure 30: FINISH ME. Flow past a rotating disk in channel. Contour plots of the enstrophy (max contour
ξ = 50) on grid G(16), using the fourth-order accurate scheme AFS42.

72

17.20 Flow past a rounded blade

t = 7 t = 8

t = 9 t = 10

Figure 31: Flow past a rounded blade in channel. Top: Overlapping grid for the blade and channel. Contour
plots of the enstrophy on grid G(4) (7M pts), using scheme AFS42.

We simulate the flow past a stationary and moving rounded blade.
The grid for this problem was generated from the ogen command file roundedBladeGrid.cmd. The

solution was computed with the Cgins command file cg/ins/cmd/roundedBlade.cmd.
The geometry for the problem, as shown in Figure 31, consists of flattened cylinder with rounded ends.

Let G(j) denote the composite grid for this geometry. The target grid spacing is ∆s = 1/(10j). The grid
spacing is stretched in the normal direction to the box so that the boundary layer spacing is ∆sbl.

The incoming flow is in the y-direction with v = 1.
Figure 31 shows the solution for a non-rotating blade while Figure 32 shows results for a rotating

blade (one full rotation takes 4 seconds). Contours of the enstrophy ξ, (magnitude of the vorticity vector,
ξ = ‖∇ × u‖) are shown. The solution was computed with the scheme AFS4 and the SSLES4 turbulence
model (ν = 10??).

73

t = 7.5 t = 7.75

t = 8.0 t = 8.25

Figure 32: Flow past a rotating rounded blade in channel. Contour plots of the enstrophy on grid G(4) (7M
pts), using scheme AFS42.

74

17.21 Wind turbine and tower

As a demonstration, we simulate the flow past a model of a wind turbine. The turbine consists of a
stationary tower and three rotating blades.

Figure 33: Overlapping grid for a model wind turbine consisting of a tower and three blades.

t = 0.5 t = 1.0 t = 1.5

t = 2.0 t = 2.5 t = 3.0

Figure 34: Flow past a wind turbine with rotating blades. The blades rotated in a clockwise direction and
make one full revolution every 2 time units. Contour plots of the enstrophy on grid G(2) (2.5M pts), using
scheme AFS22.

The grid for this problem was generated from the ogen command file turbineAndTower.cmd. The
solution was computed with the Cgins command file cg/ins/cmd/turbineAndTower.cmd.

75

The geometry for the problem, as shown in Figure 33, consists of tower and three blades. Let G(j)

denote the composite grid for this geometry. The target grid spacing is ∆s = 1/(10j). The grid spacing is
stretched in the normal direction to the box so that the boundary layer spacing is ∆sbl.

The incoming flow is in the y-direction with v = 2.
Figure 34 shows the solution on the grid G(2) (2.5M pts), using scheme AFS22. Contours of the

enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇ × u‖) are shown.
Figure 35 shows the solution on the grid G(2) (2.5M pts), using the fourth-order accurate scheme AFS42.

Contours of the enstrophy ξ, (magnitude of the vorticity vector, ξ = ‖∇ × u‖) are shown.

t = 0.5 t = 1.0 t = 1.5

t = 2.0 t = 2.5 t = 3.0

Figure 35: Flow past a wind turbine with rotating blades. The blades rotated in a clockwise direction and
make one full revolution every 2 time units. Contour plots of the enstrophy on grid G(2) (2.5M pts), using
the fourth-order accurate scheme AFS42.

76

17.22 Flow over terrain

To run this example see cg/ins/runs/terrain/Readme.
We consider the flow over a terrain. The terrain elevation data is obtained from the USGS web site ...
The matlab script convertGIS.m is used to convert the GIS data into Cartesian coordinates (from

lat-long). This matlab script can also be used to optionally smooth the terrain, choose a sub-region, or
choose a two-dimensional cross section.

The ogen script terrainGrid.cmd takes the output from convertGIS.m and constructs an overlapping
grid for the terrain.

Figure 36 shows a 2D and 3D grid and some preliminary solutions.

Figure 36: Flow over terrain.

Figure 37 shows some results from the fourth-order accurate scheme AFS24 on grid G(4)
t (10M pts).

The size the of the domain is approximately 1.5km× 1.5km in the horizontal. The grid spacing near the
surface is approximately 5m in the horizontal and .5m for the grid cell next to the surface.

77

Figure 37: Flow over site300 terrain using grid G(4)
t (10M pts) and scheme AFS24. Left: speed, right:

enstrophy. The surface grid is coarsened by a factor of 2 for plotting purposes.

References

[1] D. L. Brown, G. S. Chesshire, W. D. Henshaw, and D. J. Quinlan, Overture: An object
oriented software system for solving partial differential equations in serial and parallel environments,
in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, 1997.

[2] D. L. Brown, W. D. Henshaw, and D. J. Quinlan, Overture: An object oriented framework
for solving partial differential equations, in Scientific Computing in Object-Oriented Parallel Environ-
ments, Springer Lecture Notes in Computer Science, 1343, 1997, pp. 177–194.

[3] P. M. Gresho, Some interesting issues in incompressible fluid dynamics, both in the continuum and
in the numerical simulation, Advances in Applied Mechanics, 28 (1992).

[4] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-Stokes equations on
overlapping grids, J. Comput. Phys., 113 (1994), pp. 13–25. publications/icns1994.pdf.

[5] , Overture: An object-oriented system for solving PDEs in moving geometries on overlapping
grids, in First AFOSR Conference on Dynamic Motion CFD, June 1996, L. Sakell and D. D. Knight,
eds., 1996, pp. 281–290.

[6] , Mappings for Overture, a description of the Mapping class and documentation for many useful
Mappings, Research Report UCRL-MA-132239, Lawrence Livermore National Laboratory, 1998.

[7] , Ogen: An overlapping grid generator for Overture, Research Report UCRL-MA-132237,
Lawrence Livermore National Laboratory, 1998.

[8] , Oges user guide, a solver for steady state boundary value problems on overlapping grids, Research
Report UCRL-MA-132234, Lawrence Livermore National Laboratory, 1998.

[9] , Plotstuff: A class for plotting stuff from Overture, Research Report UCRL-MA-132238,
Lawrence Livermore National Laboratory, 1998.

[10] , Cgins user guide: An Overture solver for the incompressible Navier-Stokes equations on compos-
ite overlapping grids, Software Manual LLNL-SM-455851, Lawrence Livermore National Laboratory,
2010. publications/CginsUserGuide.pdf.

[11] W. D. Henshaw and H.-O. Kreiss, Analysis of a difference approximation for the incompressible
Navier-Stokes equations, Research Report LA-UR-95-3536, Los Alamos National Laboratory, 1995.

78

publications/icns1994.pdf
publications/CginsUserGuide.pdf

[12] W. D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna, On the smallest scale for the incompressible
Navier-Stokes equations, Theoretical and Computational Fluid Dynamics, 1 (1989), pp. 65–95.

[13] , Smallest scale estimates for the incompressible Navier-Stokes equations, Arch. Rational Mech.
Anal., 112 (1990), pp. 21–44.

[14] , A fourth-order accurate difference approximation for the incompressible Navier-Stokes equations,
Comput. Fluids, 23 (1994), pp. 575–593. publications/HenshawKreissReynaFouthOrderINS1994.
pdf.

[15] J. D. Lambert, Computational Methods in Ordinary Differential Equations, Cambridge University
Press, New York, 1973.

[16] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, 2000.

79

publications/HenshawKreissReynaFouthOrderINS1994.pdf
publications/HenshawKreissReynaFouthOrderINS1994.pdf

Index

artificial diffusion, 13
axisymmetric, 5

boundary conditions, 15

convergence results
INS, 44

discretization
incompressible Navier-Stokes, 7

divergence damping, 13

minimum scale, 14

pressure-poisson system, 4

time stepping, 9
Adams predictor corrector, 9
implicit multistep, 10, 11

variable time stepping, 12

80

	Introduction
	The Equations
	Addition of Temperature and Buoyancy: The Boussinesq Approximation
	Axisymmetric Problems
	The pressure boundary condition for the axisymmetric case

	 Discretization
	Dimensional Units and Non-dimensional Equations
	Time stepping methods
	Adams Predictor-Corrector
	Implicit multistep method with viscous terms implicit
	Implicit multistep method with the viscous and non-linear terms implicit
	Example linearizations
	Variable time stepping

	Divergence Damping
	Artificial Diffusion

	Boundary Conditions
	Projecting the initial conditions
	Specification of body forces and boundary forcing
	Defining body-force and boundary-force regions
	Defining body forces
	Defining boundary forcing
	Defining body force profiles
	Parabolic velocity profile

	Defining body region material parameters

	Probes: defining output quantities at points and on regions
	Point probes
	Bounding box probes
	Region probes

	Boundary conditions for the fourth-order method
	Turbulence models
	Wall Shear Stress
	Wall Functions
	Baldwin-Lomax Zero Equation Model
	Spalart-Allmaras turbulence model
	k- turbulence model
	Full implicit solution of the k- turbulence model

	Diffusion Operator
	Revised pressure equation
	Revised pressure boundary condition

	Steady state line solver
	Fourth-order artificial dissipation

	Verification and Validation
	Heat transfer verificiation and validation
	Heated domain with no flow

	Convergence results
	Performance Results
	Performance: two cylinders in a channel
	Performance: pitching-plunging airfoil

	Some sample simulations
	Falling cylinders in an incompressible flow
	Flow past two cylinders
	Pitching and plunging airfoil
	Fluttering plate
	Centrifugal pump
	Flow in a heated room
	Flow in a 3D room
	Simulation of flow past a blood clot filter
	Incompressible flow past a truck
	Incompressible flow past a city scape
	Flow past an airfoil at different Reynolds numbers
	Flow past a pitching-plunging airfoil at different Reynolds numbers
	Flow past two spheres
	Flow past a deforming sphere
	Flow past a moving 3D cylinder at different Reynolds numbers
	Flow past a moving sphere
	Flow past a cube in a channel
	Flow past a rotating flattened torus
	Flow past a rotating disk
	Flow past a rounded blade
	Wind turbine and tower
	Flow over terrain

