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Abstract: This is the user guide for Cgins. Cgins is a program that can be used to solve incompressible
fluid flow problems in complex geometry in two and three dimensions using composite overlapping grids. It
is built upon the Overture object-oriented framework. Cgins solves the incompressible Navier-Stokes
equations using a pressure-Poisson formulation. Second-order accurate and fourth-order accurate
approximations are available. Cgins can be used to

e solve problems in two and three dimensional complex domains,

e solve problems on moving grids (specified motion and rigid body motion),

e solve temperature dependent flows with buoyancy using the Boussinesq approximation,
e solve axisymmetric flows.

This user guide describes how to get started and how to run Cgins. Various examples are given. The
options for running the code along with specification of initial conditions and boundary conditions are
described.

IThis work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program.
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1 Introduction

Cgins? is an incompressible fluid flow solver for overlapping grids built upon the Overture frame-

work [2],[0],[3]. More information about Overture can be found on the Overture home page,
http://www.1llnl.gov/casc/Overture.
Cgins solves the incompressible Navier-Stokes equations using a pressure-Poisson formulation [5]. Second-

order accurate and fourth-order accurate approximations are available. Cgins can be used to
e solve problems in two and three dimensional complex domains,
e solve problems on moving grids (specified motion and rigid body motion),
e solve temperature dependent flows with buoyancy using the Boussinesq approximation,
e solve axisymmetric flows.

This user guide describes how to get started and how to run Cgins. Various examples are given. The options
for running the code along with specification of initial conditions and boundary conditions are described.

The Cgins solver is found in the ins directory in the cg distribution and has sub-directories
bin : contains the executable, cgins. You may want to put this directory in your path.
check : contains regression tests.
cmd : sample command files for running cgins, see section (2).
1ib : contains the Cgins library, 1ibCgins. so.
src : source files

Other documents of interest that are available through the Overture home page are

e The Cgins Reference Manual [11] for detailed descriptions of the equations, algorithms and discretiza-
tions.

e The overlapping grid generator, Ogen, [3]. Use this program to make grids for cgins.

e Mapping class documentation : mapping.tex, [7]. Many of the mappings that are used to create an

overlapping grid are documented here.
e Interactive plotting : PlotStuff.tex, [L0].
e Oges overlapping grid equation solver, used by Cgins to solve implicit time stepping equations and the
Poisson equation for the pressure, [9].
1.1 Basic steps
Here are the basic steps to solve a problem with Cgins.
1. Generate an overlapping grid with ogen. Make the grid with 2 ghost lines (this is the default).

2. Run cgins (note lowercase ’c’, found in the bin/cgins directory) and choose the PDE you want to
solve.

3. Assign the boundary conditions and initial conditions.
4. Choose the parameters for the PDE (Reynold’s number, Mach number etc.)

5. Choose run time parameters, time to integrate to, time stepping method etc.

2Thanks to Kyle Chand for all his contributions to Cgins including the development of the AFS algorithm.



6. Compute the solution (optionally plotting the results as the code runs).
7. When the code is finished you can look at the results (provided you saved a ‘show file’) using plotStuff.

The commands that you enter to run cgins can be saved in a command file (by default they are saved in the
file ‘cgins.cmd’). This command file can be used to re-run the same problem by typing ‘cgins file.cmd’. The
command file can be edited to change parameters.
To get started you can run one of the demo’s that come with cgins, these are explained next in section (2).
Papers that describe some of the algorithms used in Cgins include

1. A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping
Grids [5],

2. A Split-Step Scheme for the Incompressible Navier-Stokes Equations [13],
3. Composite Overlapping Meshes for the Solution of Partial Differential Equations [4],

4. Analysis of a Difference Approximation for the Incompressible Navier-Stokes Equations [12].
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Figure 1: Snapshot of cgins showing the run time dialog menu.



2 Sample command files for running cgins

Command files are supported throughout the Overture. They are files that contain lists of commands. These
commands can initially be saved when the user is interactively choosing options. The command files can
then be used to re-run the job. Command files can be edited and changed.

In this section we present a number of command files that can be used to run cgins. See the file
cg/ins/cmd/Readme for a list and brief description of the command files found in cg/ins/cmd.

2.1 Running a command file

Given a command file for cgins such as cylinder.cmd, found in cmd/cylinder.cmd, one can type ‘cgins
cylinder.cmd’ to run this command file . You can also just type ‘cgins cylinder, leaving off the .cmd
suffix. Typing ‘cgins noplot cylinder’ will run without interactive graphics (unless the command file
turns on graphics). Note that here it is assumed that the bin directory is in your path so that the cgins
command is found when you type it’s name. The Cgins sample command files will automatically look for
an overlapping grid in the Overture/sampleGrids directory, unless the grid is first found in the location
specified in the command file.

When you run a command file a graphics screen will appear and after some processing the run-time
dialog should appear and the initial conditions will be plotted, see Figure 1.1. The program will also print
out some information about the problem being solved. Many of the command files such as the stirring-stick
problem, stir.cmd, can take command line arguments. For example, here are two command lines that run
a problem with different grids and parameters:

cgins stir -g=stir.hdf -nu=.05 -tf=1. -tp=.025
cgins stir -g=stir2.hdf -nu=.01 -tf=1. -tp=.002 -rate=8.

See the comments at the top of stir.cmd for further explanation and examples.

2.2 Incompressible flow past a cylinder in a long channel

The command file cg/ins/cmd/cylinder. cmd can be used to compute the incompressible flow past a cylinder
in a channel, see Figure 2. This example uses the grid Overture/sampleGrids/cilc.hdf.

incompressible NS: t=0.00e+00, (u\v) incompressible NS, nu=5.000000e—03 (u,v)
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Figure 2: Incompressible flow around a cylinder. Left: the initial conditions are obtained by projecting a
uniform flow, (u,v) = (1,0). Right: the solution at time ¢ = 40.

To run cgins with the cylinder.cmd script, type

cgins $ins/cmd/cylinder.cmd



Then choose one of:

continue : to advance to the next output time.

plot component : to plot different solution components.
streamlines : to plot streamlines (choose erase first).
grid : to plot the grid (choose erase first).

movie mode : to run and plot.

break : to break from movie mode.

final time 50. : to increase the final time.

Further description of the options available in the run time dialog can be found in Section 3.4.

Note: If cgins cannot find the cilc.hdf grid file, you can generate it with:
ogen -noplot $sampleGrids/cilc.cmd
Here are some more examples using the command line arguments to choose different options:

cgins cylinder -g=cilc.hdf -tf=50. -tp=1. : specify the grid, final time and time to plot.
cgins cylinder -g=cilce2.order4 -tf=50. -tp=.1 -nu=.01: solve a fourth-order accurate
problem 3.

Notes:

e If the overlapping grid file, cilc.hdf is not found then you may need to specify the full path to its
location, -g=/home/henshaw/myGrids/cilc.hdf. The suffix ‘.hdf’ is optional when specifying grids
as Overture will tack on ¢.hdf’ if necessary. If Cgins does not find the file specified it will also by
default look for the file in the Overture/sampleGrids directory.

e The initial conditions are assigned to be a uniform flow, (u,v) = (1,0). These initial conditions are
projected to nearly satisfy V- u = 0 by using the ‘project initial conditions’ option (see [11]).

e The time-stepping method is chosen so that the grid around the cylinder uses implicit time-stepping
while the back-ground grid uses explicit time-stepping. This was done for efficiency. The grids around
the cylinder have small grid spacings so that implicit time stepping is especially useful. The back-
ground grid does not have small grid spacings so there is not much of an advantage in using implicit
time stepping. By treating the back-ground grid explicitly the implicit time stepping equations require
less storage and cpu time to solve.

e By default the implicit equations and elliptic pressure equation are solved with a direct sparse solver.
This usually is the best approach for 2D problems, unless the grids get large, since the matrix is
factored only once. In later examples it will be shown how to specify an iterative method.

3By default, Cgins determines the order of accuracy from the grid: the order of accuracy of the grid is specified when the
grid is constructed using ogen. A fourth-order accurate grid will have two layers of interpolation points (to support a 5 point
stencil) and use high-order accurate interpolation with a interpolation stencil width of 5 in each direction.



2.3 Flow past two cylinders using different time-stepping methods

In this section we compute the flow past two cylinders in order to demonstrate the use of some different time-
stepping methods for Cgins. These time-stepping methods include the explicit predictor-corrector (PC), the
implicit predictor-corrector (IM) the approximate factored scheme (AFS), and the (pseudo) steady-state line
solver (SS). Figure 3 shows two grids at different resolutions(-factor=2,4 with -order=2 as described below)
and the solution (on a grid -factor=8, -order=4).

W)

Wl

Figure 3: Incompressible flow past two cylinders. Left: overlapping grids at two resolutions. Right: vorticity
and streamlines at time ¢ = 10, (AFS24, tcilceS8.order4.ml3, v = 107%).

The examples in this section use the Cgins command file cg/ins/cmd/tcilc.cmd. This script optionally
takes numerous command line arguments that can be used to change parameters:

cgins [-noplot] tcilc -g=<grid-name> -nu=<> -tf=<> -tp=<> -show=<> -debug=<>
-project=[0|1] -ad2=[0|1] -ad4=[0]1] -ad41=<> -ad42=<> ... -ts=[pclim|afs|ss]
-solver=[best|mg|yale] -psolver=[best|mg|yale] -rtolp=<>

-tf, -tp: final time and times to plot.

-show : mname of show file.

-project : 1=project initial conditions to be approximate divergence free.
-ad2 : 1=turn on 2nd-order artificial dissipation.

-ad4 : 1=turn on 4th-order artificial dissipation.

-ad41, -ad42 : coefficients in fourth-order non-linear dissipation.

-ts : time-stepping method.

-solver : 1linear solver for implicit time-stepping equation.

-psolver : 1linear solver for the pressure equation.

-rtolp : relative convergence tolerance for the pressure equation solver.

The different grids used in this section can be computed with the Ogen command file
Overture/sampleGrids/tcilc.cmd. Here are some examples

ogen -noplot tcilc -order=2 -interp=e -factor=2: [tcilce2.order2.hdf]
ogen -noplot tcilc -order=2 -interp=e -factor=4: [tcilced.order2.hdf]
ogen -noplot tcilc -order=2 -interp=e -ml=3 -factor=8: [tcilce8.order2.ml3.hdf]

The -factor option specifies the grid resolution factor: the grid spacing is approximately 0.1 divided by this
factor. The -ml option indicates that the grid should support at least this many multigrid levels (needed if
the multigrid solver is used as a linear solver).



Here is a list of commands that can be used to simulate the flow using different time-stepping methods
and parameters.

PC22 : second-order accurate predictor corrector, Yale direct sparse solver for pressure:
cgins tcilc —g=tcilced4.order2 -ts=pc -nu=1l.e-4 -ad2=1 -tp=.05 -tf=5.-debug=3
-psolver=yale -show="tcilc.show" -go=halt

IM22 : second-order accurate implicit predictor corrector (viscous terms implicit), PETSc BiCG-Stab
ILU(3) implicit solver and pressure solver:

cgins -noplot tcilc -g=tcilce32.order2 -ts=im -nu=.2e-4 -ad2=1 -tp=.1 -tf=10.
-solver=best -psolver=best -rtolp=1.e-4 -go=go

PC24 : second-order accurate in time, fourth-order accurate in space, predictor corrector, multigrid
pressure solver:

cgins tcilc -g=tcilce32.order4.ml4 -ts=pc -nu=.2e-4 -ad4=1 -tp=.5 -tf=5. -psolver=mg
-rtolp=1.e-4 -go=halt

IM24 : second-order accurate in time, fourth-order accurate in space, implicit predictor corrector,
multigrid implicit solver, multigrid pressure solver, (note: decrease ad42 coefficient to avoid time-step
restriction):

cgins tcilc —-g=tcilcel6.order4.ml3 -ts=im -nu=le-4 -ad4=1 -ad42=.1 -tp=.1 -tf=5.
-solver=mg -psolver=mg -rtolp=1.e-4 -debug=3 -go=halt

AF'S24 : second-order accurate in time, fourth-order accurate in space predictor corrector, multigrid
pressure solver:

cgins tcilc -g=tcilce32.order4.ml4 -nu=.2e-4 -ad4=1 -ts=afs -cfl=4 -tp=.1 -tf=.2
-psolver=mg -rtolp=1.e-4 -go=halt

SS2 : second-order accurate pseudo-steady-state line solver (local time stepping), MG pressure solver
solver:

cgins -noplot tcilc -g=tcilce4.order2.ml2 -nu=.1 -ts=ss -plotIterations=100
-maxIterations=5000 -psolver=mg -show="tcilc.show" -go=go

IM22-F1 : second-order accurate full-implicit solver:

cgins tcilc -g=tcilce2.order2 -nu=.1 -ts=im -implicitVariation=full -implicitFactor=1.
-refactorFrequency=20 -tp=.5 -tf=100. -dtMax=.1 -solver=yale -psolver=yale
-plotResiduals=1

Note: The implicit methods (IM22, IM24 and AFS24) are generally faster when there is a fine boundary
layer grid since the viscous terms generally require explicit schemes to have a small time-step.

Note: The Yale direct sparse solver is usually fastest linear solver for small to moderate size 2D problems.
The MG solver is otherwise generally the fastest.

Note: The AFS solver can run at CFL numbers bigger than one. Currently this requires some trial and
error to determine how to choose the —cf1 parameter and other AFS parameters, see Section 3.3 for more
details.

Note: The generally fastest overall solver for bigger problems, or moving grid problems is AFS24 with
the MG pressure solver.

Note: The SS2 solver is very memory efficient and is useful for problems where time accuracy is not
important or for low Reynolds number flows where the solution reaches a steady state.

Note: The full implicit solver IM22-FI treates the momentum equations with all terms implicit (expect
the pressure gradient). This method requires more memory.
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Figure 4: Incompressible flow past two cylinders. Steady state solution computed with the steady-state line
solver (or full implicit solver), v = 0.1.

2.4 Incompressible flow around a naca airfoil

The command file cg/ins/cmd/naca.cmd can be used with cgins to compute the flow around a naca airfoil.
This example uses the overlapping grid Overture/sampleGrids/naca0012.hdf generated using the com-
mand file Overture/sampleGrids/naca0012.cmd generated with Overture/sampleGrids/naca.hype.cmd

)

Figure 5: Incompressible flow past a NACA 0012 airfoil, pressure.

This example demonstrates the use of the second-order non-linear artificial diffusion (described in the
Cgins reference guide [?]). The default value for v = 10~8 is much too small to have any affect on the solution
for the grid being used. The value of the artificial diffusion is determined in a local way that depends on
the velocity gradients so as to keep the solution nicely behaved but with a minimum of dissipation. There
is sometimes some fiddling required to get the coefficients of the artificial diffusion correct. The values are
usually always around be .1 and 5..

2.5 Incompressible flow around a moving stirring stick

The command file cg/ins/cmd/stir.cmd can be used with cgins to compute the flow around a rotating
tongue depressor. This example uses the overlapping grid Overture/sampleGrids/stir.hdf generated
using the command file Overture/sampleGrids/stir.cmd.

10



incompressible NS: t=2.50e—01, (u,v)
dt=2.6e—-03, nu=1.0e-02
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Figure 6: Incompressible flow around a rotating stirring stick demonstrating the use of moving grids.

2.6 Axisymetric incompressible flow past a sphere

The command file cg/ins/cmd/axisym.cmd can be used to compute the axisymmetric flow past a sphere.
The (two-dimensional) grid can be created with Overture/sampleGrids/halfCylinder.hdf. Cgins assumes
that the axis of symmetry is the x-axis (y = 0).

Figure 7: Incompressible axisymmetric flow past a sphere.

2.7 Incompressible flow past a backward facing step, a C-Grid and an H-grid

The command files cg/ins/cmd/backStep.cmd, cg/ins/cmd/cgrid.cmd and cg/ins/cmd/hgrid.cmd can
be used to solve the problems illustrated in this section. All of these grids use the mixed boundary condition
feature, where portions of a physical boundary interpolate from another grid. The grids can be generated
with the command files Overture/sampleGrids/backStep.cmd, Overture/sampleGrids/cgrid.cmd and
Overture/sampleGrids/hgrid.cmd.

In general it is preferable NOT to use grids that have been generated with a mixed boundary. For example,
the flow around the convex corner in the backward facing step is not well resolved. It is recommended to
round off convex corners. See the command file cg/ins/cmd/backStepSmooth.cmd for flow past a back step
with a smoothed corner.

2.8 Incompressible flow past a sphere

The command file cg/ins/cmd/sib.cmd can be used with cgins to compute the flow past a sphere in a box.

11
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Figure 8: Incompressible flow past a backward facing step, a C-grid and an H-grid.

Incompressible NS, nu=5.00e-03 u
t=5.000, dt=B.06e-03
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Figure 9: Incompressible flow past a sphere.

For 3D problems it is almost always necessary to use an iterative solver for the pressure equation and
the implicit time stepping equations. The PETSc linear solvers are recommended. Iterative solvers require
a convergence tolerance and you may have to play around with this tolerance (if the tolerance for the
pressure equation is too large, then the divergence may grow large). See the Oges documentation[9] for more
information on linear solvers.

2.9 Incompressible flow through some intersecting pipes

The command file can be cg/ins/cmd/pipes.cmnd used with cgins to compute the flow through two inter-
secting pipes. The pipes intersect using the poor man’s intersection option. This example uses the overlap-

12



ping grid Overture/sampleGrids/pipes.hdf generated using the command file Overture/sampleGrids/-

pipes.cmd. See also the command file cg/ins/cmd/twoPipes.cmd where the pipes are joined with a smooth
fillet.

incompressible NS, nu=5.000000e—-02 p
t= 1.000, dt=5.56e-03

3644

3.356

3067

2778

2490

2201

1.912

1.624

1.335

1.046

0758

Figure 10: Incompressible flow through some pipes.

This example demonstrates the use of the parabolic profile for the inflow boundary condition as described
in section (3.6.1).

13



2.10 Two falling drops in an incompressible flow

Figure (11) shows two rigid bodies (“drops”) failing under the influence of gravity in an incompressible flow.

()
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Figure 11: Two drops falling in an incompressible flow, contour plots of the vorticity. The upper drop wants
to “draft” in behind the lower drop where the pressure is lower.

This computation used the command file cg/ins/cmd/twoDrop.cmd. The grid can be created with
Overture/sampleGrids/twoDrop.cmd (finer grids with Overture/sampleGrids/twoDropArg.cmd). The
initial conditions for the drops include their initial position, velocity, and angular velocity. The mass and
moments of inertia must be specified for each drop. There can be problems for the grid generator if the drops
get too close together since there will not be enough grid points in the gap between the drops. To avoid this
problem there is an option “detect collisions” that has been turned on that will detect when the drops get
close and perform an elastic collision. This collision detection currently only works for circular drops.

14



2.11 Specifying the boundary conditions correctly

It can be confusing to get all the boundary conditions correct. To help you do this you should plot the grid
and display the boundaries coloured by the boundary condition number (this is the default) as shown in
figure (12). In 3D you will need to ’plot shaded surfaces’ to see the boundary colours. This will help
you see if all the faces are correct. Cgins prints out the number that corresponds to each boundary.

ay
7o

Figure 12: After specifying boundary conditions it is helpful to plot the grid with boundaries coloured
by the boundary condition number. Here we see that the inflow boundary for the main pipe is number 2
(inflowWithVelocityGiven) the outflow boundary for the branch pipe is number 5 (outflow) and the walls
are number 1 (noSlipWall). This figure is best seen in colour.

15



3 Options and Parameters

There are many options and parameters for cgins. Be warned that not all combinations of options will work.
It is best to start from an existing command file and make make minor changes.

3.1 Cgins Setup menu

The Cgins Setup dialog appears after cgins is run and a grid is chosen. At this point one specifies which
PDE to solve.
The options for pde are

incompressible Navier Stokes : solve the incompressible Navier-Stokes in 2D or 3D or 2D-
axisymmetric.

The options for model are
standard model : (default) choose this for the plain vanilla incompressible Navier-Stokes.
Boussinesq model : temperature dependent flows with buoyancy.
visco-plastic model : (under development).
two-phase flow model : (under development).
The options for turbulence model are
noTurbulenceModel : (default)
Baldwin-Lomax : under development
k-epsilon : under development
k-omega : under development
Spalart Allmaras : under development
Other options include:

passive scalar advection : add an extra passive scalar variable that is advected with the flow.

3.2 Cgins Parameters Dialog and Popup menu

After choosing the PDE to solve the user will be given the opportunity to change the parameters that define
the problem.

At the current time there is both a dialog menu (new) and a popup menu (old). There are some options
that appear in both menus. Eventually most of the popup menu should disappear. From the main Parameters
dialog window one can open other dialog windows such as the Time Stepping Parameters dialog.

The Cgins Parameters Dialog push buttons are

time stepping parameters... : open the time stepping parameters dialog (see section 3.2.2).
plot options... : open the plot options dialog (see section 3.2.3).

output options... : open the output options dialog (see section 3.2.4).

pde options... : open the pde options dialog (see section 3.2.1).

boundary conditions... : open the boundary conditions dialog (see section 3.2.5).

initial conditions options... : open the initial conditions options dialog (see section 3.2.6).

forcing options... : open the forcing options dialog (see section 3.2.7).
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twilight zone options... : open the twilight zone options dialog (see section 3.2.8).
showfile options... : open the showfile options dialog (see section 3.2.9).

general options... : open the general options dialog (see section 3.2.10).

adaptive grid options... : open the adaptive grid options dialog (see section 3.2.11).
moving grid options... : open the moving grid options dialog (see section 3.2.12)
plot the grid : plot the grid

display parameters : display current values of parameters

3.2.1 Incompressible NS parameters Dialog (pde options...)

Here is a description of the Incompressible NS parameters Dialog which defines options that affect the
equations being solved.
The toggle buttons are

project initial conditions : project initial conditions to nearly satisfy V -u = 0.
second-order artificial diffusion : turn on/off
fourth-order artificial diffusion : turn on/off
sixth-order artificial diffusion : turn on/off
use implicit fourth-order artificial diffusion :
use split-step implicit artificial diffusion :
use new fourth order boundary conditions :
use self-adjoint diffusion operator :
include artificial diffusion in pressure equation :
The text commands are
nu : kinematic viscosity (constant).
divergence damping : coefficient of the divergence damping term in the pressure equation.

cDt div damping : scaling coefficient for the divergence damping term when using implicit time
stepping.

ad21,ad22 : coefficient of linear and non-linear terms in the second-order artificial diffusion.
ad41,ad42 : coefficient of linear and non-linear terms in the fourth-order artificial diffusion.
ad61,ad62 : coefficient of linear and non-linear terms in the sixth-order artificial diffusion.
kThermal : thermal diffusivity.

thermal conductivity : thermal conductivity

passive scalar diffusion coefficient : coefficient of diffusion for the passive scalar.
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3.2.2 Cgins Time Stepping Parameters Dialog (time stepping parameters...)

Here is a description of the Cgins Time Stepping Parameters dialog. These define options related to time-
stepping.

The options for method are the available time-stepping methods. The usual choices are one of adams PC,
implicit or steady state RK-line.

forward Euler :

adams order 2 :

adams PC : (default) Adams predictor corrector, order 2.

adams PC order 4 :

midpoint :

Runge-Kutta : (does this work?)

implicit : implicit time stepping (other options determine the exact form for this). See implicitVari-
ation and choose grids for implicit.

variable time step PC :
steady state RK :
steady state RK-line : pseudo steady-state line solver (very memory efficient).
The implicit Variation options are
implicitViscous : treat viscous terms only implicitly.
implicitAdvectionAndViscous : treat viscous and advection terms only implicitly.
implicitFullLinearized : full implicit method
The accuracy options are
second order accurate : second-order accurate in space.
fourth order accurate : fourth-order accurate in space.
The time accuracy options specify the accuracy of the time stepping:
solve for steady state : time accuracy does not matter in this case.
second order accurate in time
fourth order accurate in time
The predictor order options specify the order of the predictor step for predictor corrector methods:
default order predictor :
first order predictor :
second order predictor :
third order predictor” :
fourth order predictor” :

The push buttons are
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choose grids for implicit : For use with the implicit time stepping option. Choose which grids to
integrate implicitly and which to integrate explicitly. Normally one should choose those grids with fine
grid spacing (such as in boundary layers) to be implicit while a back-ground grid could be explicit.

The toggle buttons are
use local time stepping : for steady state solvers, use a different At for each grid point.
adjust dt for moving bodies :
use full implicit system :
apply explicit BCs to implicit grids :
The text strings are
final time : Integrate to this time.
max iterations : maximum number of iterations for steady state solvers.

cfl :Set the cfl parameter. The maximum time step based on stability is scaled by this factor. By
default cf1=.9.

dtMax : Restrict the time step to be no larger than this value.

implicit factor :This value in [0.,1.] is used with the implicit time-stepping. A value of .5 will corre-
spond to a 2nd-order Crank-Nicolson approach for the viscous terms, a value of 1. will be backward-
Euler and a value of 0. will be forward-Euler. See the the reference manual for more details.

recompute dt every : The time step, dt, is recomputed every time the solution is plotted/saved. In
addition you may specify the maximum number of steps that will be taken before dt is recomputed.
Use this if the solution is not plotted very often. See also ‘slow start steps’ for recomputing dt more
often during a slow start.

slow start cfl : The initial time step for the slow start option is determined by this cfl value, default=
0.25.

slow start steps : Ramp the time step At from a small value (determined by slow start cfl) to its
maximum value (as determined by the cf1 parameter) over this many steps (over-rides ‘slow start’
based on the time interval).

slow start : Ramp the time step At from a small value (determined by slow start cfl) to its maximum
value (as determined by the cfl parameter) over this time interval.

slow start recompute dt : during the slow start interval, recompute the time-step every this many
steps.

fixup unused frequency : specifies how often to fixup unused points (which may get very large
values over time that can eventually lead to the program crashing).

cfilMin, cfiMax :
preconditioner frequency :

number of PC corrections : specify how many correction iterations should be taken for predictor
correction time-stepping (default=1).
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3.2.3 Plot Options Dialog (plot options...)

Here is a description of the Plot Options dialog.
The plot option choices are

plot and wait first time :
plot with no waiting :
plot and always wait :
no plotting :
The toggle buttons are
disable plotting : disable all plotting (this can save memory when running in batch).
plot residuals : plot residual for steady state solvers.
The text commands are

times to plot : Specify the time interval between plotting (and saving in a show file). See also the
frequency to save command.

plot iterations : For steady-state solvers, specify the number of iterations between plotting (and
saving in a show file). See also the frequency to save command.

3.2.4 Output Options Dialog (output options...)

Here is a description of the Output Options dialog.
The push buttons are

output periodically to a file : output solution info to a text file.
show file options... : specify show file options (see 3.2.9).
The toggle buttons are
save a restart file : (under development)
allow user defined output : allow user defined output (see 4.5).
The text commands are
check file cutoffs : used internally for regression tests.

debug : This is a bit flag that turns on various messages. The more bits turned on, the more detailed
the messages that appear. Thus a value of debug=3 (1+2) would have the first 2 bits turned on and
would display few messages. A value of debug=63 (1+2+4+8+16+32) would have 6 bits turned on
and would results in a lot of information.

info flag :

output format : specify the output format for printing solution values (e.g. %9.2¢).

20



3.2.5 Boundary conditions dialog (boundary conditions...)

The boundary conditions dialog can be used to construct commands that define the boundary conditions.
The form of the boundary condition commands are given in section 3.5. It is often easiest to look at sample
boundary conditions in existing command files and make changes to these.

As one chooses options in this dialog, a BC command is constructed in the bc command text command.
The command is not actually applied until one chooses the apply bc command push button.
The boundary options are

all : apply the BC to all grids.
”grid name” : apply the BC to a particular grid (the grid names will appear here).

The bc number options allow one to apply a BC to all faces that have a particular boundary condition
(assigned when the grid was made).

”bc=value” : assign the BC to all faces with this BC number (the list of BC values used on the grid
are listed here).

The set face options allow one to apply the BC to a particular face (when assigning BCs to a given grid).
all : set all faces of the grid.
left : set the face (side,axis)=(0,0).
right : set the face (side,axis)=(1,0).
bottom : set the face (side,axis)=(0,1).
top : set the face (side,axis)=(1,1).
forward : set the face (side,axis)=(0,2).
back : set the face (side,axis)=(1,2).
The bc options list all the available boundary conditions. For example, these might include
noSlipWall :
inflowWithVelocityGiven :
output :
The option options are available qualifiers that go with a boundary condition. These include
no option :
uniform : define uniform conditions
parabolic : define a parabolic inflow, see section 3.6.1.
blasius : define a blasius profile
pressure : define a mixed BC on the pressure
jet : define a jet profile, see section 3.6.2
user defined : use a user defined boundary value, see section 4.2.
The option2 options are available second qualifiers that go with a boundary condition. These include
no option2 :

oscillate : define a time varying BC, see section 3.6.3.
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ramp : define a BC that turns on slowing, see section 3.6.4.

The extrap option options are

polynomial extrapolation : where extrapolation is applied used normal polynomial based extrapo-
lation.

limited extrapolation : use a limited extrapolation (for certain boundary conditions).

The push button commands are

apply bc command : apply the BC command that appears in the bc command text command
input box.

help : print help.
plot grid : plot the grid
The text commands are
bc command : the BC command is constructed here.

default state : set the default values for each component.

order of extrap for interp neighours : set the order of extrapolation when filling in unused points
next to interpolation neighbours (these points are needed in certain situations such as when a fourth-
order dissipation is added to a second-order scheme).

order of extrap for 2nd ghost line : set the order of extrapolation for assigning the 2nd ghost

line (these values are used in certain situations such as when a fourth-order dissipation is added to a
second-order scheme).

3.2.6 Initial Conditions Options dialog (initial conditions options...)

The plot component option menu allows one to choose the solution component to plot when displaying the
initial conditions.

The Forcing Options options are
no forcing :

showfile forcing : supply a forcing function from a show file.

The push buttons are

uniform flow... : open the Uniform Flow Parameters dialog:

The push button commands are

assign uniform state : evaluate the initial conditions.

The text commands are

uniform state : assign values to the components in the form p=0, u=1, v=2.
step function... : open the Step Function Parameters dialog.

The push button commands are
assign step function : evaluate the initial conditions.
The text commands are

state behind : assign values to the components in the form p=0, u=2, v=1.
state ahead : assign values to the components in the form p=0, u=1, v=0.
step: a*x+b*y+c*z=d : supply a,b, c,d for the equation of the plane.
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step sharpness : exponent in the tanh functions used to smooth out the step. Choose a
value of —1 for a true step function.

read from a show file... : open the Read From a Show File dialog.

The push button commands are

assign solution from show file : evaluate the initial conditions.
choose file from menu... : choose the show file from a file menu.

The toggle buttons are

use grid from show file : if true (toggle on) then use the grid in the show file. If false
(toggle off) then interpolate the solution from the grid in the show file.

The text commands are

show file name : choose the name of a show file.
solution number : choose a solution number in the show file.

twilight zone... : open the twilight zone dialog (see section 3.2.8).
user defined... : choose a user defined initial condition (see section 4.1.
change contour plot : enter the contour plotter menu.

The text commands are

initial time : set the initial time. Normally the initial time is set to ¢ = 0. unless a solution is read
from a show file (restart) in which case th initial time equals that from the show file.

3.2.7 Forcing Options Dialog (forcing options...)

Here is a description of the Forcing Options dialog.
The push button options are

user defined forcing : add user defined forcing (see section 4.4).

3.2.8 Twilight Zone Options Dialog (twilight zone options...)

Here is a description of the Twilight Zone Options Dialog.
The twilight zone type options are

polynomial : a polynomial function.

trigonometric : a trigonometric function.

pulse : a generalized Gaussian pulse.
The Error Norm options are (use this norm when reporting errors)

maximum norm :

11 norm :

12 norm :
The push button options are

assign polynomial coefficients : specify the coefficients in the polynomial function.
The toggle button options are

twilight zone flow : turn on the twilight zone flow.
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use 2D function in 3D : use the 2D twilight zone function even in 3D.

compare 3D run to 2D : this option will adjust the equations and forcing so that a 3D run on an
extruded 2D grid can be compared to the 2D computation. This includes setting the twilight-zone

function to be 2D and changing the divergence damping (INS) to be two-dimensional (otherwise it is
scaled in the wrong way).

assign TZ initial conditions : initial conditions are assigned the twilight zone solution.
The text commands are

degree in space : set the degree in space of the polynomial function.

degree in time : set the degree in time of the polynomial function.

frequencies (x,y,z,t) : set the frequencies in the trigonometric function.

3.2.9 Show File Options Dialog (showfile options...)

Here is a description of the Show File Options dialog.
The pull down menu commands are

show variables : toggle on/off variables that should be saved in the show file.

The mode options are

compressed : a compressed file will be smaller (especially for AMR runs that create many grids) but
a compressed file may not be readable by future versions.

uncompressed :

The push button commands are
open : open a show file. You will be prompted for the name.
close : close the show file.

The text commands are

frequency to save : By default the solution is saved in the show file as often as it is plotted according
to ’times to plot’. To save the solution less often set this integer value to be greater than 1. A
value of 2 for example will save solutions every 2nd time the solution is plotted.

frequency to flush : Save this many solutions in each show file so that multiple show files will be
created (these are automatically handled by plotStuff). See section (3.7.1) for why you might do this.

frequency to save sequences : specify how often to save sequences (such as the residual for steady
state problems).

maximum number of parallel sub-files : On a parallel machine the show file is split into parallel
sub-files. If speed of the parallel writing depends on the number of processors and this value. A good
value may be about 8 or 16 (depends on the number of I/O channels).

3.2.10 General Options Dialog (general options...)

Here is a description of the General Options dialog.
The push buttons are

pressure solver options : change the linear solver parameters for the pressure solver.

implicit time step solver options : change the linear solver parameters for implicit time stepping.
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The toggle buttons are
axisymmetric flow : turn on/off axisymmetric flow.

iterative implicit interpolation : if true, solve the implicit interpolation equations by iteration
rather than factoring the sparse matrix. This option should almost always be used in 3D since it can
save memory and the time it takes to factor the matrix.

check for floating point errors : if true, periodically check for floating point errors such as Nan’s.
The text commands are

maximum iterations for implicit interpolation : specify the maximum number of iterations for
implicit interpolation (usually a value of 10 gives sufficient accuracy).

reduce interpolation width : reduce the interpolation width from the value found in the grid.

3.2.11 Adaptive Grid Options Dialog (adaptive grid options...)

Here is a description of the Adaptive Grid Options dialog.
The push button options are

change adaptive grid parameters : change adaptive grid parameters related to regriding (enter
the Regrid menu).

change error estimator parameters : change error estimator parameters (enter the ErrorEstima-
tor menu).

top hat parameters : set parameters for the top hat error function (used for testing AMR).
The toggle buttons are

use adaptive grids : turn on/off adpative grids

show amr error function : plot the amr error function with the other components.

use user defined error estimator : turn on the user defined error estimator, see section 4.3.

use default error estimator : turn on/off the default error estimator.

use front tracking : (under development).
The text commands are

error threshold : set the error threshold.

regrid frequency : specify how often to perform an AMR regrid. If you increase this value then you
should also increase the number of AMR buffer zones.

truncation error coefficient : set the coefficient of the truncation term (this is defined with certain
problems such as when solving the reactive Euler equations).

order of AMR interpolation : set the order of interpolation for AMR.

tracking frequency : (under development).
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3.2.12 Moving Grid Options Dialog (moving grid options...)

Here is a description of the Moving Grid Options dialog.
The push button options are

specify grids to move : specify the grids that should move and the manner in which they move.
The toggle buttons are

use moving grids : turn on/off moving grids.

detect collisions : turn on/off collision detection.
The text commands are

minimum separation for collisions : specify the minimum separation (in grid lines) between grids
during a collision. This separation is needed so that the overlapping grid remains valid.

frequency for full grid gen update : Specify how often the full grid generation algorithm is called.
For moving grids, the overlapping grid generator is called at every time step. An optimized moving grid
generation algorithm is used which does not minimize the overlap. Once in a while the full algorithm is
used — you can change the frequency this occurs here. Choosing a value of 1 will mean the full update
is always called.

3.2.13 Choosing grids for implicit time stepping.

When the option ‘choose grids for implicit’ is chosen from the main parameter menu one can specify
which grids should be treated implicitly or explicitly with the implicit time stepping option. Type a line of
the form

<grid name>=[explicit] [implicit]
where <grid name> is the name of a grid or ‘all’. Type ‘help’ to see the names. Examples:

square=explicit
all=implicit
cylinder=implicit

Type ‘done’ when finished.

3.3 Choosing parameters for the AFS scheme

The AFS scheme has a number of parameters. Choosing values for these parameters may require a little
trial and error (at least for now).

The AFS scheme uses an iteration to solve the factored equations on overlapping grids to some tolerance
ears. The number of iterations depends on a tolerance as well as the CFL number:

cfl : The AFS scheme can run at CFL numbers greater than 1. A value of cfl=2 will usually always work,
but sometimes values up to cfl=7 can be used. range 1 to 7 can be used, depending on the problem.

AF correction relative tol : expg

max number of AF corrections : maximum number of iterations allowed. The code will intentionally
halt if the iterations appear to be diverging.
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3.4 Cgins Run time dialog

After the equations have been specified, parameters set and initial conditions chosen, the run time dialog
window will appear, see figure(1.1). Note that cgins is in the process of converting from popup menus (right
mouse button) to dialog windows so sometimes you will need to look for the command in the popup menu
if it is not in the dialog.

Normally one would choose continue to integrate to the next output time or movie mode to integrate
until the final time.
The plot component option menu allows one to choose the solution component to plot.
The push button commands are

break : If running in movie mode this command will cause the program to halt at the next time to
plot.

continue : compute the solution to the next time to plot.

movie mode : compute the solution to the final time without waiting. The solution will be plotted
at each output time interval.

movie and save : movie mode plus save each frame as a ppm file.

contour : enter the contour plotting function in PlotStuff. Here you will more options to change
the plot.

streamlines : enter the streamlines plotting function from PlotStuff.

grid : enter the grid plotting function from PlotStuff. If you don’t first erase the contour plot then
both the contours and the grid will be shown.

plot parallel dist. plot the grid showing the parallel distribution.

erase : erase the screen.

change the grid : add, remove or change existing grids. (poor man’s adaptive mesh refinement).
adaptive grids... : open up a new dialog to show parameters adaptive grids.

use adaptive grids : turn adaptive grids on or off.

error threshold : specify the error threshold.
show file options... : choose show file options; e.g. open or close a show file, see section 3.2.9.

file output... : specify options for saving solutions to an ascii file (for plotting with matlab for ex-
ample). There are a number of options available as to what data should be saved. See also the
userDefinedOutput routine where you can customize output.

output periodically to a file : Open a file for output; specify how often to save data in the
file (every step, every second step...); specify what data to save in the file (only grid 1, only values
on some boundaries etc). Each time this menu item is selected a new file is opened, allowing one,
for example, to save certain information every step and other information every tenth step.

close an output file : Close a file opened by the command ‘output periodically to a file’.

save a restart file : save the current solution as a restart file; usually I just use the show file
for restarts.

pde parameters... change PDE parameters at run time, see section 3.2.1.
general options... open the general options dialog (see section 3.2.10).

The text commands are
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final time : change the value for the final time to integrate to.
times to plot : change the time interval between plotting (and output).

debug : enter an integer to turn on debugging info. This is a bit flag with debug=1 turning on just a
bit of info, debug=3 (142) showing more, debug=7 (14+2+4) even more etc.

The finish button means do not compute any further, exit and save the show files etc.

3.5 Boundary Conditions

In order to compute the correct flow the user must choose the correct boundary conditions. Each physical

boundary of each grid must be given a boundary condition.
The names of the available boundary conditions are

enum BoundaryCondition

{
interpolation=0,
noSlipWall,
inflowWithVelocityGiven,
inflowWithPressureAndTangentialVelocityGiven,
slipWall,
outflow,

symmetry,

dirichletBoundaryCondition,

axisymmetric,

convectiveOutflow,

tractionFree,

number0fBCNames // counts number of entries

};

Not all boundary conditions can be used with all PDEs. Boundary conditions are specified interactively
(or in a command file) by choosing the ‘boundary condition’ option from the main parameters menu and
then typing a string that takes one of the following forms

<grid name>(side,axis)=< boundary condition name> [,option] [,option] ...
to change the boundary condition on a given side of a given grid, or

<grid name>=<boundary condition name> [,option] [,option] ...

to change all boundaries on a given grid, or

bcNumber<num>=<boundary condition name> [,option] [,option] ...

to change all boundaries that currently have a boundary condition value equal to the integer ‘num’. Here
<grid name> is the name of the grid, side=0,1 and axis=0,1,2. <grid name> can also be ‘all’. The
optional arguments specify data for the boundary conditions:

option = ‘uniform(p=1.,u=1.,...)" : to specify a uniform inflow profile

option = ‘parabolic(d=2,p=1.,...)" : to specify a parabolic inflow profile

option = ‘jet(r=1.,x=0.,y=0,z=0.,d=.1,p=1.,u=Uax,V=Vinaxs-..)’ : specify a jet inflow profile.
option = ‘pressure(.1*p+1.*p.n=0.)" : pressure boundary condition at outflow

option = ‘oscillate(t0=.5,omega=1.,a0=.5,a1=.5,u0=0.,v0=0.,w0=0.)" : oscillating inflow pa-
rameters

option = ‘ramp(ta=0.,tb=1.,ua=0.,ub=1.,...)" : ramped inflow parameters

option = ‘userDefinedBoundaryData’ : use a user defined boundary value option.
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option = ‘mixedDerivative(1.¥*t+2.%t.n=3.)’ : Mixed derivative on the Temperature.
Examples:

square(0,0)=inflowWithVelocityGiven , uniform(p=1.,u=1.)

square(1,0)=outflow

annulus=noSlipWall

all=slipWall

bcNumberl=noSlipWall

square(0,1)=outflow , pressure(.1*p+1.*p.n=0.)

square(0,0)=inflowWithVelocityGiven , parabolic(d=.25,p=1.,u=1.) ,
oscillate(t0=0.,omega=1.,a0=.5,a1=.5)

square(0,0)=inflowWithVelocityGiven , userDefinedBoundaryData
square(0,0)=inflowWithVelocityGiven , parabolic(d=.25,p=1.,u=1.) , userDefinedBoundaryData
square(0,0)=noSlipWall, uniform(u=2,v=0,T=1.), mixedDerivative(0.*t+1.*t.n=0)

The first example, square(0,0)=inflowWithVelocityGiven, will set the left edge of the square to be
an inflow BC, while square(1,0)=outflow will set the right edge to be an outflow boundary. The line,
annulus=noSlipWall, will set all physical boundaries of the annulus to be no-slip walls. Note that an
annulus will normally have a branch cut and possibly an interpolation boundary. The boundary conditions
on these non-physical boundaries are never changed. The command, all=slipWall, will make all physical
boundaries slip-walls (and thus over-ride any previous changes to boundary conditions).

3.6 Data for Boundary Conditions

Some boundary conditions require ‘data’, such as an inflow boundary that requires values for certain quan-
tities such as the velocity. These data values are optionally specified when the boundary condition is given.
Here are some examples:

square(0,0)=inflowWithVelocityGiven , uniform(p=1.,u=1.)

square(0,1)=outflow , pressure(.1*p+l.%p.n=0.)

square(0,0)=inflowWithVelocityGiven , parabolic(d=.2,p=1.,u=1.), oscillate(tO=.3,omega=2.5)
The available options are

uniform(component=value [,component=value]...) Specify a uniform inflow profile and supply values
for some of the components (components not specified will have a value of zero). Here component0 is
the name of a component such as ‘p’ or ‘u’.

parabolic([d=boundary layer width][,component=value]...) Specify a parabolic inflow profile with
a given width. See section (3.6.1) for more details.

pressure(a*p+b*p.n=c) Specify the parameters a,b,c for a pressure outflow boundary condition. Here
p=pressure and p.n=normal derivative of p. Note that a and b should have the same sign or
else the condition is unstable.

mixedDerivative(a*t+b*t.n=c) Specify the parameters a,b,c for a mixed boundary condition on the
Temperature.

oscillate([t0=value][,omega=value]) Specify parameters for an oscillating inflow boundary condition.
See section (3.6.3) for more details.

ramp([ta=value][,tb=value][,...]) : specify values for a ramped inflow. See section (3.6.4).

userDefinedBoundaryData : choose from the currently available user defined options. See section (4)
for how to define your own boundary conditions.

Note that not all options can be used with all boundary conditions.
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3.6.1 Parabolic velocity profile

A ‘parabolic’ profile can be specified as a Dirichlet type boundary condition. The parabolic profile is zero
at the boundary and increases to a specified value Uy, at a distance d from the boundary:

_ if s <
u(x) = Unax(2 — s/d)s/d ?f s<d
Upnax ifs>d

Here s is the shortest distance between the point x on the inflow face to the next nearest adjacent boundary.
and d is the user specified boundary layer width. The algorithm is quite smart at correctly determining the
distance s even if the inflow boundary is covered by one or more overlapping grids (such as the pipe flow
example or inlet-outlet grid).

The parabolic profile can be useful, for example, in specifying the velocity profile at an inflow boundary
that is adjacent to a no-slip wall. A uniform profile would have a discontinuity at the wall.

3.6.2 Jet velocity profile

The jet option is ‘jet(r=1.,x=0.,y=0,2z=0.,d=.1,p=1.,u=Upnax,v=Viax, w=Wnaxs-.-) .
A ‘jet’ profile can be used to define inflow over a portion of a boundary. The jet has a a center, (xg, Yo, 20),
a radius 7, and a maximum value of Upax for u (or Vijax for v or Wiy for w) at r = 0:

Umax 1if |[x —x0| <7r
u(x) = .
0 if |x —xg| > r

In 3D the jet will have a cylindrical cross section. The jet can also be defined to go to zero at it’s boundary
using the parameter d which defines the width of the transition layer,

Umnax if [x —xg| <r—d
u(x) = Unax([1 = (§/d)?] ifr —d < [x —xo| <7
0 if |x —xg| >r

Here £ = |x — xo| — (r — d).

3.6.3 Oscillating values

An inflow boundary condition, uniformInflow or parabolicInflow, can be given an oscillating time de-
pendence of the form

{ag + a; cos2mw(t — to)]} x {uniform/parabolic profile} + ug

The parameters omega, t0,20,al,u0,v0,w0 are specified with the oscillate option. Here ug = (u0, v0, w0).

3.6.4 Ramped Inflow

An inflow boundary condition can be ramped from one value (usually zero) to another value. The ramp
function is a cubic polynomial on the interval (¢4, %,). The polynomial is monotone increasing on this interval
with slope zero at the ends. The variables (u, v, w) vary from (uq, V4, wq) to (up, vp, wp). Thus the u boundary
condition ramp function would be:

Ug for t <t,
u(t) = Q (t—ta)2(=(t —t — )3+ (ty — ta)/2)6 525220 +ua for ta <t <ty
Up for t >t

The ramped inflow can also be combined with the parabolic profile as in
square (0,0)=inflowWithVelocityGiven , parabolic(d=.25,p=1.,u=1.) , ramp(ta=0.,tb=1.,ua=0.,ub=2.)

to give a ramped parabolic profile.
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3.7 The show file

The ‘show file’ is a data base file of a particular format that contains the solutions from Cgins. The post-
processing routine plotStuff [10] knows how to read this file and find all the solutions and the different
grids if the grids are moving or adaptive. The show can be looked at by typing ‘plotStuff file.show’ or
just ‘plotStuff file’, where file.show is the name that you gave to the show file when running cgins.
The program plotStuff is found in Overture/bin.

3.7.1 Flushing the show file

It is not possible to look at results in a show file while the program is running and the show file is open
and being written to. As a result, if the program crashes for some reason you will not be able to look at
the results. To overcome this problem it is possible to automatically save multiple show files, with each
show file containing one or more solutions. The number of solutions saved in each show file is determined
by the frequency the show file is flushed. Use the ‘frequency to flush’ option to specify how many
solutions should be saved in each show file. The files are named ‘file.show’, ‘file.show1’, ‘file.show?2’ etc.
where ‘file.show’ was the name given to the show file. The plotStuff program will automatically read all
these different files if you just type ‘plotStuff file.show’.

It is thus possible to look at the solutions when cgins crashes or while it is still running. Only the most
recent solutions that belong to the most recent (open) show file will be unavailable.

3.8 Restarts

The easiest way to restart is to choose your initial conditions to come from the show file that you saved in
a previous run, see section 3.2.6. The program will let one choose any solution in the show file as an initial
condition. Remember to rename the show file from the previous run so that it doesn’t get over-written before
you have a chance to read from it.

You can also restart using an explicit restart file. To do this you need to turn on the saving of a restart
file, see section (3). In this case cgins will write a restart file every time the solution is output. Actually, to
be safe, two files are created named ‘obl.restart’ and ‘ob2.restart’. This is in case the program crashes while
the restart file is being written. Usually both files will be valid as use for restart files.

To read the restart file you simply specify this option and the file to use when assigning initial
conditions, see section (3.2.6).

4 User defined functions

Here is a list of functions that can be changed by a user. After rewriting any of these files, compile and link
cgins with the new file.

4.1 User defined initial conditions

The function userDefinedInitialConditions in cg/common/src/userDefinedInitialConditions.C de-
fines initial conditions. Rewrite this function to define arbitrary initial conditions. This function is accessed
when interactively setting parameters in the ‘initial conditions’ menu under ‘user defined’.

4.2 User defined boundary values

The functions chooseUserDefinedBoundaryValues, userDefinedBoundaryValues in cg/common/-
src/userDefinedBoundaryValues.C define values for boundary conditions. Change these functions in order
to define new right-hand-side values for boundary conditions. For example, you may want to define the inflow
velocity profile to have a certain shape and/or time dependence. The chooseUserDefinedBoundaryValues
is accessed when you specify boundary conditions and choose the userDefinedBoundaryData option.
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4.3 User defined error estimator

Change the file cg/common/src/userDefinedErrorEstimator.C to provide your own AMR error estimator.
You will need to ¢ ‘use user defined error estimator’’, see section 3.2.11.

4.4 User defined forcing

Change the file cg/common/src/userDefinedForcing.C to add forcing functions to the equations.

4.5 User defined output

Change the file cg/common/src/userDefinedOutput.C to output information at each time step. You will
need to ¢ ‘allow user defined output’’, see section 77.

4.6 User defined grid motion

Change the file cg/common/movingsrc/userDefinedMotion.C to define a grid motion.
Change the file cg/common/movingsrc/userDefinedDeformingSurface.C to define a deforming surface
motion.

5 Hints for running cgins

e Start out with a simple problem on a coarse grid so that the problem can be quickly run to determine
if you have the boundary conditions correct etc.

e Start out by taking only a few time steps and looking at the solution to see if it looks correct.

e The rule of thumb for choosing the viscosity v is that if the velocities are order 1 and the domain is
order 1 then v > h2 where hpax is the maximum grid spacing as reported by cgins when it runs.

max’

This comes from the minimum scale result as discussed in section (?7).

e If you want to use as small a viscosity as possible then set v = 0 and use artificial diffusion as discussed
in section (3.2.1).

e If cgins blows up it could be the time step is not computed correctly. Reduce the cfl parameter (default
is .9) to a value like .5 or .25 to see if this is the problem. There are known problems with the time
step determination for implicit time stepping and a large viscosity (relative to the grid spacing).

6 Trouble Shooting and Frequently asked Questions

Question: I wonder what is the meaning of this error and what can I do to avoid it.

computeNumberOfStepsAndAdjustTheTimeStep:ERROR: time step too small? dtNew=1.560026e-61, timeInterval=7
t=3.699269e+00, tFinal=6.000000e+00, nextTimeToPrint=3.700000e+00, tPrint=1.000000e-03

error

Overture::abort: I am now going to purposely abort so that you can get a traceback from a debugger
Abort

This error usually occurs when the solution develops an instability and gets very large (blows up being
the technical term). The computed time step will then be very small. This situation may be caused by a
number of factors.

The first thing to do is to look at the solution just before it blows up. If there are oscillations developing
in the interior of the domain or near a no-slip wall or interpolation boundary then you probably do not
have enough dissipation. Increase the real viscosity v, or increase the number of grid points or increase the
artificial dissipation and re-run the problem to see if it runs longer. It could also be that the time step being
chosen is too large or not being re-computed often enough. Decrease the cfl number to see if it has an effect.
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You can also decrease the number of time steps between recomputing the time step with a command like
recompute dt every 15.

The solution may also blow up if the flow enters the domain at an outflow boundary. This could happen
if a strong vortex leaves the domain. You can set the option check for inflow at outflow and then the
outflow boundary condition will be changed if there is inflow detected. You may also be able to move the
outflow boundary farther downstream to reduce this problem.
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7 Post-processing: Reading a show file and computing some Aero-
dynamic Quantities

The program bin/aero.C shows how to read a show file that has been generated by cgins and access the
solution values stored there. This program can then be used to plot the pressure coefficient on the surface
of a body and to compute the lift and drag on a body.

The file aero.C can be altered to compute other quantities that may be of particular interest to your
application. All information about the grid, solutions and cgins parameters are accessible from the show
file. You could, for example use this program to output the solution values to a data file format suitable for
some other plotting or analysis program.

Prassure Coefficient

0.75

0.50
0.25

0.00

-0.25

—0.50

Figure 13: The areo.C program can be used to read a show file generated by cgins and compute the coefficient
of pressure on the surface of a body.

7.1 Using PETSc and cgins

PETSc, the Portable Extensible Toolkit for Scientific computations|[l1], can be used in cgins to solve implicit

systems.
To use PETSc you should

1. build PETSc on your machine.
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2. define the PETSC_LIB and PETSC_ARCH environmental variables (as required to use PETSc nor-
mally).

3. edit the file cg/ins/Makfile and turn on the PETSc option.
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