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Abstract:
OverBlown is a program that can be used to solve fluid flow problems on overlapping grids. It is built
upon the Overture object-oriented framework. This is the reference guide for OverBlown . This
document provides detailed information about the equations, discretizations and algorithms used. Refer
to the OverBlown User Guide [10] for an introduction to OverBlown and its capabilities.
OverBlown has a number of different algorithms that can be used to solve problems for a range of Mach
numbers. The Mach number, M, is the ratio of the flow speed to the speed of sound. In particular there
are algorithms suited for

• incompressible flow, M = 0, (method INS)

• low Mach number flows, M < .5, (method ASF)

• moderate Mach numbers .25 < M < 1.0, (method CNS) and high Mach number flows 25 < M ,
(method CNSCAD).

• reactive Euler equations in 2D (method CNSGOD).

OverBlown can be used to solve problems on moving grids. OverBlown can also be used to solve
simple chemically reacting flows.
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1 Introduction

OverBlown is a fluid flow solver for overlapping grids built upon the Overture framework [1],[5],[2].
OverBlown can be used to solve the incompressible Navier-Stokes equations (INS), and the compress-
ible Navier-Stokes equations using either an all-speed flow algorithm (ASF), a moderate Mach number
algorithm (CNS) or a high Mach number algorithm (CNSCAD). The ASF algorithm would be appropriate
from low to moderate Mach number, say M < .5, the CNS algorithm best for .25 < M < 1. while the
CNSCAD algorithm is best for M > .25 (approximately).

More information about Overture can be found on the Overture home page,
http://www.llnl.gov/casc/Overture. For installation procedures see the OverBlown
user guide.
Other documents of interest that are available through the Overture home page are

• The OverBlown User Guide [10] shows how to run OverBlown and specify parameters.

• The overlapping grid generator, Ogen, [7]. Use this program to make grids for OverBlown .

• Mapping class documentation : mapping.tex, [6]. Many of the mappings that are used to create
an overlapping grid are documented here.

• Interactive plotting : PlotStuff.tex, [9].

• Oges overlapping grid equation solver, used by OverBlown to solve implicit time stepping equa-
tions and the Poisson equation for the pressure, [8].
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2 Structure of the OverBlown Code

Here is a brief overview of the Classes that make up OverBlown .

class OB Parameters : Contains the parameters associated with OverBlown , such as

enum PDE pde : holds the pde we are solving such as incompressibleNavierStokes.

enum TimeSteppingMethod timeSteppingMethod : The time stepping method we are using such
as adamsPredictorCorrector2.

real machNumber, reynoldsNumber,... : parameters associated with the PDE’s we know how to
solve.

int numberOfComponents : The number of ‘components’ in the equations; this would be 3
(u, v, p) for the 2D incompressible Navier-Stokes.

int rc,uc,vc,pc,... : integers that indicate the positions of the density (rc), horizontal velocity (uc),...
in the grid functions. For example for the compressible Navier Stokes the density is stored as
u(I1,I2,I3,rc)

class OB MappedGridSolver : contains methods associated with solving a PDE at the MappedGrid
level.

method getUt : generic routine for computing du/dt on a MappedGrid.

method getUtINS, getUtCNS,... : compute du/dt for different equations, for example getUtINS is
the routine for the incompressible Navier-Stokes.

method getTimeStep : generic routine for computing the time step required for a component grid.

method getTimeSteppingEigenvalue : generic routine for computing the time stepping “eigen-
value” from which the time stepping condition can be computed.

method getTimeSteppingEigenvalueINS,getTimeSteppingEigenvalueCNS,... : compute time
stepping eigenvalue for different PDEs.

class OB CompositeGridFunction : container class holding a realCompositeGridFunction, a Compos-
iteGrid, the time the grid function lives at and the grid velocity. This function also knows how to
convert itself from primitive variables to conservative variables.

class OB CompositeGridSolver : solvers on a CompositeGrid level. Includes method of lines time
stepping routines and an Euler time step routine.

OB CompositeGridFunction gf[ ] : an array of grid functions used to hold different time levels
required by the time stepping method.

method advance : The main time stepping coordination routine to advance to a given final time,
plot and save results, change the time step.

method printTimeStepInfo : this is the function that prints information to the screen whenever the
solution is plotted or saved in a file.

method advanceAdamsPredictorCorrector, advanceMidPoint,... : advance the solution some
number of steps using a particular method.

OB MappedGridSolver ∗∗mappedGridSolver : an array of pointers to solvers for each Mapped-
Grid (different grids could use different solvers).
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class OverBlown : controlling class for all of OverBlown .

setParameterValuesInteractively : Main function for changing parameters.

setBoundaryConditionsInteractively : specify boundary conditions.

getInitialConditions : assign initial conditions.

solve : solve the problem.

The main program (overBlown.C) looks something like

main()
{

getFromADataBase(cg,nameOfOGFile);
OverBlown solver(cg,&plotStuff,showFile,plotOption);

solver.setParametersInteractively();

solver.solve();

}

The setParametersInteractively function in OverBlown assigns parameters, boundary condi-
tions and initial conditions,

OverBlown::setParametersInteractively()
{

// choose a pde to solve

// set PDE, runtime parameters, BC’s

// initialize solvers
initialize();

// get initial conditions
compositeGridSolver[0]->initializeSolution()

}

The solve function in OverBlown just calls the advance function for the OB CompositeGridSolver’s, of
which there is only one at the moment,

OverBlown::solve()
{

compositeGridSolver[0]->advance(tFinal);
}

The CompositeGridSolver advance function:

OB_CompositeGridSolver::advance(tFinal)
{

while( t<tFinal )
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{
// output results
plot(...); // Here we wait for interactive changes
saveShow(...);

// compute the time step
computeNumberOfStepsAndAdjustTheTimeStep(...);

// advance numberOfSubSteps time steps :
if( use predictor corrector )

advanceAdamsPredictorCorrector(...);
else if( use implicit )

advanceImplicitMultiStep(...);
else

...
}

}
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3 Time stepping methods

3.1 Adams Predictor-Corrector

Figure 1: Stability regions for the predictor corrector methods. Left: second-order method, PECE mode.
Right: fourth-order method, PECE mode.

If we write the INS equations as
ut = f(u, p)

where we may think of the pressure p as simply a function of u and we may use any time integrator in a
method-of-lines fashion.

The second-order accurate Adams predictor-corrector time stepping method for the INS equations
can be chosen with the “adams PC” option. It is defined by

up − un

∆t
=

3

2
fn −

1

2
fn−1

un+1 − un

∆t
=

1

2
fp +

1

2
fn

where we have shown one correction step (one may optionally correct more than one time). The stability
region for this method is shown in figure (1).

To allow for a time-step that may change we actually use

up − un

∆t
= p0f

n + p1f
n−1

un+1 − un

∆t
=

1

2
fp +

1

2
fn

p0 = 1 + ∆t/(2∆t1)

p1 = −∆t/(2∆t1)
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where ∆t1 = tn − tn − 1.
The fourth-order accurate Adams predictor-corrector time stepping method for the INS equations

can be chosen with the “adams PC order 4” option. It is defined by

up − un

∆t
=

1

24

[

55fn − 59fn−1 + 37fn−2 − 9fn−3

]

un+1 − un

∆t
=

1

24

[

9fp + 19fn − 5fn−1 + fn−2

]

(see for example Lambert[?]). The stability region for this method is shown in figure (1).
To allow for a time-step that may change we actually use

up − un

∆t
= p0f

n + p1f
n−1 + p2fn−2 + p3fn−3

un+1 − un

∆t
= c0f

p + c1f
n + c2f

n−1 + c3fn−2

p0 =(6∆t0∆t2∆t2 + 12∆t2∆t2∆t1 + 8∆t0∆t0∆t2 + 24∆t2∆t0∆t1+

12∆t2∆t1∆t3 + 6∆t3∆t2∆t0 + 24∆t1∆t1∆t2 + 12∆t0∆t3∆t1 + 18∆t0∆t1

∆t1 + 4∆t0∆t0∆t3 + 12∆t1∆t1∆t3 + 3∆t0∆t0∆t0 + 12∆t0∆t0∆t1 + 12∆t1

∆t1∆t1)∆t0/(∆t1 + ∆t2 + ∆t3)/∆t1/(∆t1 + ∆t2)/12

p1 = − ∆t0∆t0(6∆t1∆t1 + 6∆t3∆t1 + 12∆t2∆t1 + 8∆t0∆t1 + 3∆t0

∆t0 + 6∆t2∆t3 + 4∆t0∆t3 + 8∆t2∆t0 + 6∆t2∆t2)/∆t1/(∆t2 + ∆t3)/∆t2/12

p2 =∆t0∆t0(6∆t1∆t1 + 6∆t2∆t1 + 6∆t3∆t1 + 8∆t0∆t1 + 3∆t0∆t0

+ 4∆t2∆t0 + 4∆t0∆t3)/∆t3/∆t2/(∆t1 + ∆t2)/12

p3 = − (6∆t1∆t1 + 6∆t2∆t1 + 8∆t0∆t1 + 4∆t2∆t0 + 3∆t0∆t0)∆t0

∆t0/(∆t1 + ∆t2 + ∆t3)/(∆t2 + ∆t3)/∆t3/12

c0 =(6∆t1∆t1 + 6∆t2∆t1 + 8∆t0∆t1 + 4∆t2∆t0 + 3∆t0∆t0)

∆t0/(∆t0 + ∆t1 + ∆t2)/(∆t0 + ∆t1)/12

c1 =∆t0(∆t0∆t0 + 4∆t0∆t1 + 2∆t2∆t0 + 6∆t1∆t1 + 6∆t2∆t1)/(∆t1 + ∆t2)/∆t1/12

c2 = − ∆t0∆t0∆t0(∆t0 + 2∆t1 + 2∆t2)/(∆t0 + ∆t1)/∆t2/∆t1/12

c3 =(∆t0 + 2∆t1)∆t0∆t0∆t0/(∆t0 + ∆t1 + ∆t2)/(∆t1 + ∆t2)/∆t2/12

where ∆tm = tn+1−m − tn−m, m = 0, 1, 2, 3.

3.2 Implicit multistep method

With the implicit time stepping method the INS equations are integrated with the viscous terms treated
implicitly and the other terms treated with a 2nd-order Adams predictor corrector. If we split the equations
into an explicit and implicit part,

ut = [−(u · ∇)u −∇p] + ν∆u

ut = fE + Au

fE = −(u · ∇)u −∇p

Au = ν∆u
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then the time step consists of a predictor,

up − un

∆t
=

3

2
fn
E −

1

2
fn−1
E + αAup + (1 − α)Aun

and a corrector
uc − un

∆t
=

1

2
f

p
E +

1

2
fn
E + αAuc + (1 − α)Aun

The implicit factor α can be set as a parameter. A value of α = 1
2

will give a second-order
Crank-Nicolson method. A value of α = 1 will give a first-order backward-Euler method.

3.3 Variable time stepping

The variableTimeStepAdamsPredictorCorrector time stepping option allows each grid to
have it’s own time step.

4 Equations

4.1 Method INS: Incompressible Navier-Stokes Equations

See the OverBlownINS document [?] for a description of the OverBlown’s incompressible Navier-Stokes
solver.

4.2 Compressible Navier-Stokes Equations

OverBlown can solve the compressible Navier-Stokes equations. Currently there are four different meth-
ods available to solve these equations,

1. Method CNSCAD: Solve the equations in conservation form with a conservative discretization.

2. Method CNSGOD: Solve the Euler equations iin 2D with a Godnuov method.

3. Method CNS: Solve the equations in non-conservative form

4. Method ASF: An all-speed flow algorithm valid for low Mach number flows.
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4.3 Method CNSCAD: Compressible Navier-Stokes equations using a conserva-
tive discretization

In this section we describe the method that solves the compressible Navier-Stokes and Euler equations
with a conservative discretization.

Currently the code is second order accurate in two and three space dimensions. The discretization is
conservative and vertex centred. The artificial viscosity we use is based on that developed by Jameson [15].
Interpolation is not done in a conservative fashion although in principle this could be done, as described
in [3]. Future plans include incorporating some flux limiting methods as an alternative to artificial viscosity
and some fourth-order accurate methods.

The compressible Navier-Stokes equations can be written in conservation form

ut +
∂F

∂x1

+
∂G

∂x2

+
∂H

∂x3

= 0.

The vector of conserved variables u is

u =













ρ
E
ρv1

ρv2

ρv3













,

where ρ, E and v = [v1, v2, v3]
T denote the density, energy and velocity vector with components parallel

to the x1, x2, and x3 axes, respectively. The fluxes




F

G

H



 =





FC

GC

HC



 −





FV

GV

HV





are a combination of convective fluxes [FC ,GC ,HC ]T and viscous fluxes [FV ,GV ,HV ]T . The convective
(or Euler) fluxes are given by

FC =













ρv1

v1(E + p)
ρv2

1 + p
ρv2v1

ρv3v1













, GC =













ρv2

v2(E + p)
ρv1v2

ρv2
2 + p

ρv3v2













, HC =













ρv3

v3(E + p)
ρv1v3

ρv2v3

ρv2
3 + p













,

and the viscous fluxes are

FV =













0
∑

n vnτ1n − q1

τ11

τ12

τ13













, GV =













0
∑

n vnτ2n − q2

τ21

τ22

τ23













, HV =













0
∑

n vnτ3n − q3

τ31

τ32

τ33













.

The pressure, p, and temperature, T , are given by the relations

p = (γ − 1)[E −
1

2
ρ(v2

1 + v2
2 + v2

3)],

T =
p

ρRg

,
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where Rg is the gas constant. The viscous stress terms, τmn, and heat flux, qn, are given by

τmn = µ(
∂vn

∂xm

+
∂vm

∂xn

) −
2

3
µ(∇ · v)δmn,

qn = −k
∂T

∂xn

= −
k

Rg

∂

∂xn

(

p

ρ

)

:= −k̃
∂

∂xn

(

p

ρ

)

,

where δmn is the Kronecker delta and k̃ = k/Rg is a scaled thermal conductivity.

4.3.1 Discretizing the equations

In this section the discretization of the equations is described. Let x = d(r) denote a smooth mapping
from the unit square, r = (r1, r2, r3), into some portion of the physical domain. This mapping will define
the region covered by a component grid. In the curvilinear coordinates, (r1, r2, r3), the equations can be
written in the conservation form

ut +
1

J
(

∂f

∂r1

+
∂g

∂r2

+
∂h

∂r3

) = 0,

where

f = a11F + a12G + a13H,

g = a21F + a22G + a23H,

h = a31F + a32G + a33H,

J = det
[∂x

∂r

]

.

The Jacobian J is the determinant of the Jacobian matrix ∂x/∂r. The transformation matrix A = [amn] is
given by

[amn] = J

[

∂r

∂x

]

= J

[

∂x

∂r

]

−1

.

For example

a11 = det

[

∂x2

∂r2

∂x2

∂r3

∂x3

∂r2

∂x3

∂r3

]

, a12 = −det

[

∂x1

∂r2

∂x1

∂r3

∂x3

∂r2

∂x3

∂r3

]

. . .

To obtain the two-dimensional results set ∂x3/∂rn = δ3n.
These equations are discretized with finite differences. Let Ui denote the discrete approximation to

u(xi, t), and Vi = [V1,i, V2,i, V3,i]
T the discrete approximation to the velocity v(xi, t). Here i = (i1, i2, i3)

is a multi-index. For convenience Ui1+1 will be used to denote Ui1+1,i2,i3 , Ui2+1 will denote Ui1,i2+1,i3 ,
and so on. In addition to the convective and viscous fluxes we will also add an artificial viscosity with
fluxes denoted by [fA,gA,hA]T . The numerical approximation is given as

d

dt
Ui +

1

Ji

[D0r1
fC
i + D0r2

gC
i + D0r3

hC
i ]

−
1

Ji

[D−r1
fV
i1+ 1

2
i2

+ D−r2
gV

i2+ 1

2

+ D−r3
hV

i3+ 1

2

]

−
1

Ji

[∆−r1
fA
i1+ 1

2
i2

+ ∆−r2
gA

i2+ 1

2

+ ∆−r3
hA

i3+ 1

2

] = 0.
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The difference operators are defined as

D0r1
Ui =

Ui1+1 − Ui1−1

2∆r1

, D−r1
Ui =

Ui1 − Ui1−1

∆r1

, D+r1
Ui =

Ui1+1 − Ui1

∆r1

∆+r1
Ui = Ui1+1 − Ui1 , ∆−r1

Ui = Ui1 − Ui1−1

The entries in the Jacobian matrix ∂x/∂r are assumed to be known at the grid points. The discrete
convective fluxes are given by

fC
i = a11,iF(Ui) + a12,iG(Ui) + a13,iH(Ui),

gC
i = a21,iF(Ui) + a22,iG(Ui) + a23,iH(Ui),

hC
i = a31,iF(Ui) + a32,iG(Ui) + a33,iH(Ui).

The definitions of [fV
i1+ 1

2

,gV
i2+ 1

2

,hV
i3+ 1

2

]T and [fA
i1+ 1

2

,gA
i2+ 1

2

,hA
i3+ 1

2

]T are described below.

4.3.2 True viscosity

The viscous fluxes, [fV
i1+ 1

2

,gV
i2+ 1

2

,hV
i3+ 1

2

], are computed so that the resulting difference formula for

D−r1
fV
i1+ 1

2

+ D−r2
gV

i2+ 1

2

+ D−r3
hV

i3+ 1

2

is a compact 3 × 3 × 3 stencil. Consider for example the flux

associated with the energy equation in the r1 direction

fV
2 = a21F

V
2 + a22G

V
2 + a23H

V
2 ,

where, for example,

F V
2 =

3
∑

n=1

vnτ1n − q1,

τ1n = µ
(∂vn

∂x1

+
∂v1

∂xn

)

−
2

3
µ(∇ · v)δ1n,

q1 = −k̃
∂

∂x1

(

p

ρ

)

,

This term is discretized as

fV
2,i1+ 1

2

= a21,i1+ 1

2

F V
2,i1+ 1

2

+ a22,i1+ 1

2

GV
2,i1+ 1

2

+ a23,i1+ 1

2

HV
2,i1+ 1

2

,

where

amn,i1+ 1

2

=
1

2
(amn,i1+1 + amn,i),

and, for example,

F V
2,i1+ 1

2

= V1,i1+ 1

2

τ11,i1+ 1

2

+ V2,i1+ 1

2

τ12,i1+ 1

2

+ V3,i1+ 1

2

τ13,i1+ 1

2

− Q1,i1+ 1

2

,
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where

Vn,i1+ 1

2

=
1

2
(Vn,i1+1 + Vn,i),

τ11,i1+ 1

2

=
4

3
µ
(

D+x1
V1,i

)

−
2

3
µ
(

3
∑

m=2

D+xm
Vmi

)

,

τ12,i1+ 1

2

= µ
(

D+x1
V2,i + D+x2

V1,i

)

,

τ13,i1+ 1

2

= µ
(

D+x1
V3,i + D+x3

V1,i

)

,

Qi1+ 1

2

= −k̃D+x1

(

Pi

Ri

)

.

Here, Pi is the discrete pressure and Ri is the discrete density, and the difference operator D+xm
is defined

by

D+xm
Wi :=

( ∂r1

∂xm

)

i1+ 1

2

D+r1
Wi +

3
∑

n=2

( ∂rn

∂xm

)

i1+ 1

2

D+rn
Wi1+ 1

2

,

where Wi is any mesh function and
( ∂rn

∂xm

)

i1+ 1

2

=
anm,i1+ 1

2

Ji1+ 1

2

.

4.3.3 Artificial viscosity

If one is interested in solving the Euler equations (µ = 0, k̃ = 0) then it will be necessary to add artificial
viscosity to stabilize the method and to give sharp shocks without overshoots. The artificial viscosity
we use is similar to that developed by Jameson [15]. A good artificial viscosity has the property that a
shock is free from numerical oscillations and is always just a few grid points wide. Ideally the parameters
defining the artificial viscosity are independent of the the grid and independent of the particular solution.
With our current artificial viscosity the parameters must still be changed when the Mach number changes
significantly. In principle we believe we know to correct this problem, using suggestions from Professor
Kreiss.

There are two components to the artificial viscosity, a second order term that is turned on near shocks
and a fourth order term that is turned on away from shocks. For example, in the r1 direction

fA
i1+ 1

2

= f2
i1+ 1

2

+ f4
i1+ 1

2

.

The second-order artficial viscosity is

f2
i1+ 1

2

= ε2λ1,i1+ 1

2

min(1, si1+ 1

2

/w2)∆+r1
Ui ,

and the fourth-order artificial viscosity is

f4
i1+ 1

2

= ε4λ1,i1+ 1

2

max(0, 1 − si1+ 1

2

/w4)∆+r1
(∆+r1

∆−r1
Ui) .

The parameters ε2, w2, ε4, w4 are constants to be chosen. The parameter si1+ 1

2

is a switch based on the
variation of the pressure,

si1+ 1

2

= max(Si1−1, Si1 , Si1+1, Si1+2),

Si =

∣

∣

∣

∣

pi1+1 − 2pi1 + pi1−1

pi1+1 + 2pi1 + pi1−1

∣

∣

∣

∣

,
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and λ1,i1+ 1

2

is proportional to the largest eigenvalue of the convective flux in the r1 direction,

λ1,i1+ 1

2

=
{ ∣

∣

∣

3
∑

n=1

a1n,i1+ 1

2

Vn,i1+ 1

2

∣

∣

∣
+ ci1+ 1

2

(

3
∑

n=1

a2
1n,i1+ 1

2

)
1

2

} 1

∆r1

. (1)

Here, any variables evaluated at i1 + 1
2

are averaged and ci1+ 1

2

is the local speed of sound defined in terms
of the discrete pressure Pi and discrete density Ri as

c2
i1+ 1

2

=
γPi1+ 1

2

Ri1+ 1

2

.

The components of the artificial viscosity in the other directions are defined in an analogous fashion.
Choosing values for the coefficients in the artificial viscosity: The parameter w2 is chosen so that

si1+ 1

2

/w2 ≥ 1 for grid points i in the shock. This ensures that the second order term is turned on near the
shock. Similarly, if the fourth order term is to be off near the shock, we want w4 ≈ w2. The parameters
ε2 and ε4 determine the size of each term. For shocks with Mach number about 2 we have found that the
following values give a shock that extends over about 5 grid points without overshoots:

ε2 =
1

4
, w2 =

1

120
, ε4 =

1

10
, w4 =

1

100
.

These parameters were determined by trial and error by running the code on a one-dimensional shock
problem.
BETAT,BETAK,RT0: Both µ and k̃ can be made to depend on the temperature. We have currently
implemented a temperature dependence defined by

µ(T ) = µ

(

RgT

RgT0

)βT

, k(T ) = k

(

RgT

RgT0

)βk

The parameters betat = βT , betak = βk and rt0 = RgT0 can be chosen by the user to define

µi = amu

(

Pi/Ri

rt0

)

betat

, k̃i = akappa

(

Pi/Ri

rt0

)

betak

where Pi and Ri are the discrete pressure and density at grid point i. By default betat=betak=0 so
there is no dependence on the temperature.
AV2,AW2,AV4,AW4: These are the parameters in the artificial viscosity, av2 = ε2, aw2 = w2, av4 = ε4,
and aw4 = w4.
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4.4 Method CNSGOD: Reactive Euler equations with a Godunov Method

Together with Professor Don Schwendeman at RPI we have developed the capability in OverBlown for
solving the reactive Euler equations on overlapping grids in two-dimensions. Very fine grids are required
to resolve the structure of the detonation fronts that form and thus we use adaptive mesh refinement. The
governing equations for a reaction involving n-species are

ut + f(u)x + g(u)y = h(u)

with

u =













ρ
ρu
ρv
ρE
ρλ













, f =













ρu
ρu2 + p

ρuv
u(ρE + p)

ρuλ













,

g =













ρv
ρuv

ρv2 + p
v(ρE + p)

ρvλ













, h =













0
0
0
0

ρR













where E = e + 1
2
(u2 + v2) −

∑n

i λiQi and e = e(ρ, p) is the equation of state. Here λi, i = 1, 2, . . . , n
are the mass fractions and the Qi represent the heat released. The one-step reaction model is given by

F
kC−→ P, (Fuel to Product),

R(T, λ) = (1 − λ)kC ,

kC = σ exp(
1

ε
(

1

TC

−
1

T
)),

where λ is the mass fraction of product.
The equations are solved with a second-order accurate Godunov algorithm. The method itself is imple-

mented in a fortran subroutine that is called from C++. The reaction equations are solved by sub-cycling,
that is they use a smaller time step to remain stable and accurate. The error estimator is based on a combi-
nation of estimates of the spatial derivatives and an estimate of the reaction rate. The later term is important
since reaction fronts can sometimes propogate rapidly through the grid and thus it may be necessary to
refine in regions some distance from the current front. We typically use two levels of refinement factor of
4 with the AMR grids are regenerated every 4 or 8 steps depending on the size of the buffer zone.
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4.5 Method CNS : Compressible Navier-Stokes equations using a non-
conservative discretization

In this section we describe the method that solves the compressible Navier-Stokes equations written in a
nonconservative fashion.

The equations have been discretized in both 2D and 3D to second-order accuracy in space.
When the Mach number is low and there are no shocks a nonconservative discretization of the equa-

tions is probably just as good as a conservative discretization. Moreover it is easier to implement higher-
order accurate schemes in this form. Even for problems with shocks these equations give reasonable
results - provided the shocks are smoothed out over 4 or 5 grid points any problems with conservation
seem to go away.

The compressible Navier-Stokes equations for an ideal gas can be written in the the form

ρt + (v · ∇)ρ + ρ(∇ · v) = 0

vt + (v · ∇)v +
1

ρ
∇p −

µ

ρ
[∆v +

1

3
∇(∇ · v)] = 0

Tt + (v · ∇)T + (γ − 1)T∇ · v − (γ − 1)
k̃

ρ
∆T − (γ − 1)

µ

Rgρ
Φ = 0

where ρ is the density, v = [v1, v2, v3]
T is the velocity, p the pressure and T the temperature. The equation

of state for an ideal gas is
p = ρRgT

and
Φ = µ

∑

ij

(vi)xj
((vj)xi

+ (vi)xj
) + λ(∇ · v)2

with λ = −2
3
µ. Also

µ = viscosity coefficient
Rg = p/(ρT ), gas constant
γ = Cp/Cv, ratio of specific heats
k̃ = k/Rg, Coefficient of thermal conductivity over Rg

In non-dimensional units ( with ρ,v,T scaled to one) there are three nondimensional parameters, Re
(Reynolds number), M (Mach number) and Pr (Prandtl number). They are related to µ, k̃, and Rg as:

µ =
1

Re
, Rg =

1

γM2
, k̃ =

γ

γ − 1

1

Pr

1

Re

4.5.1 Discretization of the Equations

The equations are discretized in space using standard finite-difference methods on overlapping grids. As-
sociated with each component grid (numbered k = 1, 2, . . . , ng) there is a transformation, dk, that maps
the unit cube, with coordinates denoted by r = (r1, r2, r3), into physical space, x = (x1, x2, x3),

x(r) = dk(r) .

Each component grid, Gk, consists of a set of grid points,

Gk = {xi,k | i = (i1, i2, i3) nm,a,k − 2 ≤ im ≤ nm,b,k + 2 , m = 1, 2, 3} .
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One or two extra lines of fictitious points are added for convenience in discretizing to second or fourth-
order. Boundaries of the computational domain will coincide with the boundaries of the unit cubes, im =
nm,a,k or im = nm,b,k for m = 1, . . . , nd. Henceforth, the subscript k, denoting the component grid, will
normally not be written.

Let Ui = [Ri,Vi, Qi]
T denote the discrete approximations to u = [ρ,v, T ]T

Ui ≈ u(xi)

The Navier-Stokes equations are discretized with second or fourth-order accurate central differences ap-
plied to the equations written in the unit cube coordinates, as will now be outlined. Define the shift operator
in the coordinate direction m by

E+mUi =







Ui1+1,i2,i3 if m = 1
Ui1,i2+1,i3 if m = 2
Ui1,i2,i3+1 if m = 3

, (2)

and the difference operators

D+m = E+m − 1

D+m1,m2
= E+m1

E+m2
− 1 .

Let D4rm
, D4rmrn

, D4xm
and D4xmxn

denote fourth order accurate derivatives with respect to r and x. The
derivatives with respect to r are the standard fourth-order centred difference approximations. For example

∂u

∂rm

≈ D4rm
Ui :=

(−E2
+m + 8E+m − 8E−1

+m + E−2
+m)Ui

12(∆rm)

∂2u

∂r2
m

≈ D4rmrm
Ui :=

(−E2
+m + 16E+m − 30 + 16E−1

+m − E−2
+m)Ui

24(∆rm)2

where ∆rm = 1/(nm,b − nm,a). The derivatives with respect to x are defined by the chain rule.

∂u

∂xm

=
∑

n

∂rn

∂xm

∂u

∂rn

≈ D4xm
Ui :=

∑

n

∂rn

∂xm

D4rn
Ui

∂2u

∂x2
m

=
∑

n,l

∂rn

∂xm

∂rl

∂xm

∂2u

∂rnrl

+
∑

n

∂2rn

∂x2
m

∂u

∂rn

≈ D4xmxm
Ui :=

∑

n,l

∂rn

∂xm

∂rl

∂xm

D4rnrl
Ui +

∑

n

(

D4xm

∂rn

∂xm

)

D4rn
Ui

The entries in the Jacobian matrix, ∂rm/∂xn, are assumed to be known at the vertices of the grid. Second-
order accurate approximations are defined in a similar manner.

The spatial discretization of the equations can thus be written as

d

dt
Ri + (Vi · ∇4)Ri + Ri(∇4 · Vi) − νρ∆4Ri − ερ

∑

m

(D+mD−m)Ri

d

dt
Vi + (Vi · ∇4)Vi + Rg

Qi

Ri

∇4Ri + Rg∇4Qi −
µ

Ri

(∆4Vi + ...) = 0

d

dt
Qi + (Vi · ∇4)Qi + (γ − 1)Qi(∇4 · Vi) − (γ − 1)

k̃

Ri

∆4Qi − (γ − 1)
µ

RgRi

Φ = 0
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where

∇4Ui = (D4x1
Ui, D4x2

Ui, D4x3
Ui)

∇4 · Ui = D4x1
U1,i + D4x2

U2,i + D4x3
U3,i

∆4Ui = (D4x1x1
+ D4x2x2

+ D4x3x3
)Ui .

We have allowed for two types of “artificial” viscosity in the in the continuity equation for ρ, these are the
terms multiplied by νρ and ερ.

4.5.2 Computational variables

The computational variables are

u =





ρ
v

T





in the continuous case and

Ui =





Ri

Vi

Qi





in the discrete case. Thus when assigning initial conditions, for example, the first component in the fortran
array is the density and the last component is the temperature.
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4.6 Method ASF : All Speed Flow algorithm for the compressible Navier-Stokes
equations at low Mach Number

When the mach number is low we solve the Navier-Stokes equations in the following form

ρt + ∇ · (ρu) = 0

ut + (u · ∇)u +
1

ρ
∇p =

1

ρ
µ[∆u + ∇(∇ · u)]

Tt + (u · ∇)T + (γ − 1)T∇ · u =
1

ρcv

{∇ · (λ∇T ) + Φ}

=
γ − 1

ρR
{∇ · (k∇T ) + Φ} pt + (u · ∇)p + γp∇ · u = (γ − 1) {∇ · (k∇T ) + Φ}

4.7 Compressible Navier-Stokes Equations with Chemistry

The equations we solve are (in general) the compressible Navier-Stokes equations for a chemically reacting
flow. Non-reacting flow is of course a special case that can be handled with no loss in efficiency. In non-
conservative form the equations are

∂ρ

∂t
+ ∇ · (ρv) = 0 (3)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p =

1

ρ
∇ · τ (4)

=
µ

ρ
[∆u +

1

3
∇(∇ · u)] (5)

∂e

∂t
+ (v · ∇)e +

p

ρ
∇ · v = −

1

ρ
∇ · q +

1

ρ
Φ (6)

∂Yi

∂t
+ (v · ∇)Yi =

σi

ρ
+

1

ρ
∇ · (ρDi∇Yi) i = 1, 2, . . . , n (7)
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where

p = ρRuT
n

∑

i=1

Yi

m̄i

= ρRT, Ri =
Ru

m̄i

(8)

R =
n

∑

i=1

RiYi = Ru

n
∑

i=1

Yi

m̄i

=
Ru

m̄
, m̄ =

n
∑

i=1

m̄iXi (9)

e =
n

∑

i=1

(hiYi) −
p

ρ
= h −

p

ρ
=

n
∑

i=1

(hi − RiT )Yi (10)

τ = µ[∇v + (∇v)T ] + (κ −
2

3
µ)(∇ · v)I, Φ = τ : ∇v (11)

hi(T ) = ∆h0
i +

∫ T

T 0

cp,i(T )dT i = 1, 2, ..., n (12)

q = −λ∇T − ρ
n

∑

i=1

hiDi∇Yi (13)

Vi = −Di∇ln(Yi) (assumption) (14)

cp =
n

∑

i=1

cp,iYi, cv = cp − R =
n

∑

i=1

(cp,i − Ri)Yi, γ = γ(T, Yi) =
cp

cv

(15)

Depending on the flow regime (primarily Mach number) we may also want to use the temperature equation

DT

Dt
+ (γ − 1)T∇ · v =

1

ρcv

{

n
∑

i=1

(RiT − hi)σi + ∇ · (λ∇T ) +
n

∑

i=1

RiT∇ · (ρDi∇Yi) + ρ
n

∑

i=1

cp,iDi∇T · ∇Yi + Φ

}

(16)

and/or the pressure equation

Dp

Dt
+ γp∇ · v =

n
∑

i=1

(γRiT − (γ − 1)hi)σi + (γ − 1)∇ · (λ∇T ) (17)

+
n

∑

i=1

γRiT∇ · (ρDi∇Yi) + (γ − 1)ρ
n

∑

i=1

cp,iDi∇T · ∇Yi + (γ − 1)Φ (18)

See Bill’s combustion notes for derivation of these equations.

4.8 Axisymmetric Problems

Here I describe the equations that are solved for axisymmetric problems.
Let the cylindrical coordinates be (x, r, θ) where x is the axial variable, r the radial variable and θ is

the azimuthal angle about the axis r = 0. Let the velocity be u = U x̂ + V r̂ + W θ̂ where (U, V,W )
are the components of axial, radial and azimuthal velocities and (x̂, r̂, θ̂) are the three unit vectors in the
coordinate directions.
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In cylindrical coordinates we have the general relations

F = x̂F x + r̂F r + θ̂F θ

∇V = x̂Vx + r̂Vr +
θ̂

r
Vθ

n · ∇F = x̂(n · ∇F x) + r̂(n · ∇F r −
nθF θ

r
) + θ̂(n · ∇F θ +

nθF r

r
)

∇ · F = F x
x +

1

r
(rF r)r +

1

r
F θ

θ

∆V = Vxx +
1

r
(rVr)r +

1

r2
Vθθ

∆F = x̂(∆F x) + r̂(∆F r −
F r

r2
−

2

r2
F θ

θ ) + θ̂(∆F θ +
2

r2
F r

θ −
F θ

r2
)

∇× F = x̂(
1

r
(rF θ)r −

1

r
F r

θ ) + r̂(
1

r
F x

θ − F θ
x ) + θ̂(F r

x − F x
r )

The incompressible Navier-Stokes equations in cylindrical coordinates are (see Batchelor)

Ut + UUx + V Ur +
W

r
Uθ + px = ν(Uxx +

1

r
(rUr)r +

1

r2
Uθθ)

Vt + UVx + V Vr +
W

r
Vθ −

W 2

r
pr = ν(Vxx +

1

r
(rVr)r +

1

r2
Vθθ −

V

r2
−

2

r2
Wθ)

Wt + UWx + V Wr +
W

r
Wθ +

V W

r
+

1

r
pθ = ν(Wxx +

1

r
(rWr)r +

1

r2
Wθθ −

W

r2
+

2

r2
Vθ)

Ux +
1

r
(rV )r +

1

r
Wθθ = 0

For axisymmetric problems with no swirl, W = 0 and all derivatives with respect to θ are zero,

Ut + UUx + V Ur + px = ν(Uxx +
1

r
(rUr)r

Vt + UVx + V Vr + pr = ν(Vxx +
1

r
(rVr)r −

V

r2
)

Ux +
1

r
(rV )r = 0

The divergence of the advection terms is

∇ · (UUx + V Ur, UVx + V Vr) = (UUx + V Ur)x +
1

r
[r(UVx + V Vr)]r

= U 2
x + 2VxUr + V 2

r + U{(Ux)x +
1

r
[r(Vx)r]} + V {(Ur)x +

1

r
[r(Vr)]r}

= U 2
x + 2VxUr + V 2

r + U(∇ · U)x + V (∇ · U)r

and thus pressure equation becomes

pxx +
1

r
(rpr)r = U 2

x + 2VxUr + V 2
r

The boundary conditions on the axis of symmetry are

Ur(x, 0) = 0

V (x, 0) = 0 , Vrr(x, 0) = 0

Pr(x, 0) = 0
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In general all odd derivatives of U, p with respect to r will be zero at r = 0.
Note that for r small,

1

r
(rVr)r −

V

r2
= Vrr +

1

r
Vr −

V

r2

= Vrr +
1

r
(Vr(x, 0) + rVrr(x, 0) + O(r2)) −

1

r2
(V (x, 0) + rVr(x, 0) +

R2

2
Vrr(x, 0) + O(r3)

=
3

2
Vrr(x, 0) + O(r)

= O(r)

and

1

r
(rUr)r = Urr +

1

r
Ur = 2Urr + O(r)

We can use these last two results to evaluate the viscous terms on the boundary r = 0, (eliminating
the removable singularity) althought the dirichlet condition V (x, 0) = 0 obviates the need for the later
equation on the boundary.

Note that in inviscid flow the only difference between the axi-symmetric equations and the 2D equa-
tions is a change to the pressure equation (or to the incompressibility equation) with the addition of the
1
r
pr term. With viscosity there are also differences in the viscous terms.
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5 Motion of rigid bodies

The class RigidBodyMotion can be used to track the motion of a rigid body moving under the influence
of forces and torques.

A RigidBodyMotion object must be initialized with the basic information about a body such as
the mass, moments of inertia and axes of inertia, in addition to the initial position and velocities.

A rigid body moves under the influence of a force, F(t) and torque G(t). These forces and torques
should be supplied at a sequence of times, (ti,F(ti),G(ti)). The rigid body object will integrate the
equations of motion and supply the currect position and orientation.

The equations of motion for a rigid body in the standard cartesian reference frame are

dx

dt
= v

M
dv

dt
= F

dh

dt
= G

where

M : mass of the body

x : position of the centre of mass

v : velocity of the centre of mass

h : angular momentum

F : resultant force

G : resultant torque about the centre of mass

The torque G will usually be defined as

G =

∫

∂B

(r − xcm) × dF torque on the body

where the integral is over the surface of the rigid body, ∂B.
It is convenient to represent the angular momentum, h, in terms of the principle moments of inertia,

Ii, the principle axes of inertia, ei, and the angular velocities ωi about each axis ei

h =
∑

Iiωiei

ei · ej = δij

Since the principle axes of inertia remain an orthonormal basis it follows that

ėi = ω × ei (ei · ei = 1, ei · ėi = 0)

and then the equation for the angular momentum becomes

Iiω̇i = G · ei

ėi = ω × ei (ei · ei = 1, ei · ėi = 0)
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where

Ii : principle moments of inertia

ei : principle axes of inertia

ω = (ω1, ω2, ω3)angular velocities about ei

In summary we solve the set of ODEs

M
d2x

dt2
= F (19)

Iiω̇i = G · ei (20)

ėi = ω × ei (ei · ei = 1, ei · ėi = 0) (21)

We integrate the motion of the principle axes, ei(t) over time along with the position of the center of mass.
The rotation matrix that must be applied to rotate the body from it’s position at t = 0 to any time t is

simply E(t)E−1(0) where E is the matrix with columns being ei,

R(t) = E(t)E−1(0) =
[

e0(t) e1(t) e2(t)
]





eT
0 (0)

eT
1 (0)

eT
2 (0)





Thus the position, r(t), of a point r on the surface of the body will be given by the sum of the position
of the centre of mass, x(t) plus a rotation.

r(t) = x(t) + R(t)(r(0) − x(0))

Whence the velocity and acceleration of the point are

ṙ(t) = v(t) + Ṙ(r(0) − x(0))

= v(t) +
∑

i

(ω × ei)(ri(0) − xi(0))

r̈(t) = F/M + R̈(r(0) − x(0))

= F/M +
∑

i

(ω̇ × ei + ω × ėi)(ri(0) − xi(0))

= F/M +
∑

i

(ω̇ × ei + ω × (ω × ei)(ri(0) − xi(0))

= F/M +
∑

i

(ω̇ × ei + (ω · ei)ω + |ω|2ei)(ri(0) − xi(0))

5.1 Background

Reference Fundamentals of Mechanics by Synge and Griffith.
The angular momentum h of a rigid body about it’s centre of mass is

h =

∫

B

(r − xcm) × dp
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where dp is the momentum of a volume element and where the integral is over the volume occupied by
the body.

Given a rigid body we can define the moment of inertial about a line l to be

I =

∫

m(x)r(x)2dx

r = |̂l × x|

where l̂ is a unit vector in the direction of l and thus r is the distance from a point x in the body to the line
l.

We can define the principle moments of inertia and the principle axes of inertia as follows. Define

A11 =

∫

B

m(x2
2 + x2

3)dx

A22 =

∫

B

m(x2
3 + x2

1)dx

A33 =

∫

B

m(x2
1 + x2

2)dx

A13 = −

∫

B

mx3x1dx

A12 = −

∫

B

mx1x2dx

A23 = −

∫

B

mx2x3dx

The principle moments of inertia are the eigenvalues, Ii, of

Ae = Ie

while the eigenvectors, ei, are the principle axes of inertia.
Let ω = (ω1, ω2, ω3) be the angular velocities of the body about the principle axes of inertia. Let Ω

be the angular velocity of the principle axes, ei (normally Ω = ω but in symmetric problems we may not
need to rotate the some of the principle axes).

The equations of motion of the rigid body in the (rotating) reference frame attached to the principle
axes ei are

M
dv

dt
=

∂v

∂t
+ Ω × v = F

dh

dt
=

∂h

∂t
+ Ω × h = G

where

M = total mass of the body

xcm = center of mass

v = velocity of the center of mass

h =
∑

Iiωiei angular momentum

F = external force on the body

G =

∫

(r − xcm) × dF torque on the body
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Written out in components, the equations for the 6 degrees of freedom of a rigid body are

M(v̇1 − v2Ω3 + v3Ω2) = F1

M(v̇2 − v3Ω1 + v1Ω3) = F2

M(v̇3 − v1Ω2 + v2Ω1) = F3

I1ω̇1 − I2ω2Ω3 + I3ω3Ω2 = G1

I2ω̇2 − I3ω3Ω1 + I1ω1Ω3 = G2

I3ω̇3 − I1ω1Ω2 + I2ω2Ω1 = G3

These equations need to be integrated to determine the coordinates of the centre of mass, xcm(t), and the
angles of rotation θ(t) (θ̇ = ω) about the principle axes.

6 OB Parameters class

6.1 Variables in OB Parameters

int numberOfDimensions: number of spacial dimensions.

PDE pde: one of

int numberOfComponents: number of components in the equations.

real cfl, cflMin, cflOpt, cflMax: parameters to determine the time step.

int rc: if rc>0 then the density is u(all,all,all,rc).

int uc: if uc>0 then the x component of the velocity is u(all,all,all,uc).

int vc: if vc>0 then the y component of the velocity is u(all,all,all,vc).

int wc: if wc>0 then the z component of the velocity is u(all,all,all,wc).

int pc: if pc>0 then the pressure is u(all,all,all,pc).

int tc: temperature

int sc: position of first species, species m is located at sc+m

int kc, epsc: for k-epsilon model

real machNumber, reynoldsNumber, prandtlNumber: PDE parameters CNS and ASF

real mu, kThermal, Rg, gamma, avr, anu: for CNS, ASF

real pressureLevel, nuRho: for ASF

enum TurbulenceModel turbulenceModel: One of
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enum TurbulenceModel
{

noTurbulenceModel,
BaldwinLomax,
kEpsilon,
kOmega,
SpalartAllmaras,
numberOfTurbulenceModels

};

Boundary condition parameters:

IntegerArray bcInfo(0: 2,side,axis,grid): Array holding info about the pa-
rameters. The values are accessed through member functions
bcType(side,axis,grid), variableBoundaryData(side,axis,grid) and
bcIsTimeDependent(side,axis,grid)

bcInfo(0,side,axis,grid) : values from enum BoundaryConditionType, e.g. uniformInflow

bcInfo(1,side,axis,grid) : bit flag, bit 1=BC is spatially dependent, bit 2=BC is time dependent.

RealArray bcData: bcData(.,side,axis,grid) : data for the boundary condition

real inflowPressure:

RealArray bcParameters: arrays for boundary condition parameters

IntegerArray variableBoundaryData: variableBoundaryData(grid) is true if variable BC data is re-
quired.

6.2 Constructor

OB Parameters(const int & numberOfDimensions0, const PDE & pde0)

pde0: Indicated which PDE we are solving

6.3 buildErrorEstimator

int
buildErrorEstimator()

Description:

6.4 updateToMatchGrid

int
updateToMatchGrid( CompositeGrid & cg,
IntegerArray & sharedBoundaryCondition = Overture::nullIntArray())

Description: Update the parameters when the grid has changed.

sharedBoundaryCondition(side,axis,grid) : = side2+2*(axis2+3*grid2) : match to (side2,axis2,grid2)
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6.5 bcType

int
bcType(int side, int axis, int grid) const

Description: Return the boundary condition type, a value from the enum BoundaryConditionType:

enum BoundaryConditionType
{

uniformInflow,
parabolicInflow,
rampInflow,
userDefinedBoundaryData

};

side,axis,grid (input): indicates a face of a grid.

Return value: the boundary condition type for a given face of a grid.

6.6 howManyBcTypes

int
howManyBcTypes(const Index & side,

const Index & axis,
const Index & grid,
BoundaryConditionType bc) const

Description: Return the number of faces where there is a boundary condition of type ”bc”, from the
specified faces.

side,axis,grid: check these faces.

bc (input): check for this boundary condition.

Return value: number of faces where the boundary condition is ”bc”

6.7 howManyTimeDependentUserBoundaryConditions

int
thereAreTimeDependentUserBoundaryConditions(const Index & Side,

const Index & Axis,
const Index & Grid ) const

Description: Return the number of faces where there is a time dependent user boundary condition.

Side,Axis,Grid: check these faces.

Return value: number of faces where the boundary condition is ”bc”
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6.8 setBcType

int
setBcType(int side, int axis, int grid, BoundaryConditionType bc)

6.9 bcType

int
userBcType(int side, int axis, int grid) const

Description: Return the user defined boundary condition type.

side,axis,grid (input): indicates a face of a grid.

Return value: the boundary condition type for a given face of a grid.

6.10 bcVariesInSpace

int
bcVariesInSpace(int side, int axis, int grid) const

6.11 bcVariesInSpace

int
bcVariesInSpace(const Index & side = nullIndex,

const Index & axis = nullIndex,
const Index & grid = nullIndex) const

6.12 setBcVariesInSpace

int
setBcVariesInSpace(int side, int axis, int grid, bool trueOrFalse = true)

6.13 bcIsTimeDependent

int
bcIsTimeDependent(int side, int axis, int grid) const

6.14 setBcIsTimeDependent

int
setBcIsTimeDependent(int side, int axis, int grid, bool trueOrFalse = true)

6.15 setUserBoundaryConditionParameters

int
setUserBoundaryConditionParameters(int side, int axis, int grid, RealArray & values)
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6.16 getUserBoundaryConditionParameters

int
getUserBoundaryConditionParameters(int side, int axis, int grid, RealArray & values) const

values (input/output) : on input must be the correct length.

6.17 setTimeDependenceBoundaryConditionParameters

int
setTimeDependenceBoundaryConditionParameters(int side, int axis, int grid, RealArray & values)

6.18 getTimeDependenceBoundaryConditionParameters

int
getTimeDependenceBoundaryConditionParameters(int side, int axis, int grid, RealArray & values)
const

values (input/output) : on input must be the correct length.

6.19 addShowVariable

int
addShowVariable( const aString & name, int component, bool variableIsOn = TRUE)

Description: Add a show variable name to the list of possible show file variables.

name (input) : name to give the show variable

component (input) : the component number of this variable (if it is a computational variable), otherwise
a positive integer larger than any component number.

variableIsOn (input) : if true this variable will be saved in the show file. If false the variable will not be
saved by default but the user can change this.

Notes: showVariable(i) >0 if we are to save showVariableName[i], < 0 we do not save. showVariable-
Name[] names of possible variables to save in the show file, NULL terminated.

6.20 getGridIsImplicit

int
getGridIsImplicit(int grid) const

Description: Return 1 or 2 if the grid is integrated implicitity. This requires that both the time stepping
method is an implicit one and that the grid was chosen to be implicit.

Return value: 1=implicit, 2= semi-implicit
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6.21 setGridIsImplicit

int
setGridIsImplicit(int grid =-1 */, int value /* =1)

Description: Specify if this grid should be integrated implicitly when an implicit time stepping method
is used.

grid (input) : grid to set, -1=set all

value (input) : 1=implicit, 2=semi-implicit, 0 = not-implicit

6.22 useConservativeVariables

bool
useConservativeVariables() const

Description: if true we are using a solver that uses conservative variables

6.23 isAxisymmetric

bool
isAxisymmetric() const

Description: If true we are solving an axisymmetric problem on a 2D grid

6.24 isSteadyStateSolver

bool
isSteadyStateSolver() const

Description: If true we are solving a steady state problem.

6.25 setTwilightZoneFunction

int
setTwilightZoneFunction(const TwilightZoneChoice & choice,

const int & degreeSpace =2,
const int & degreeTime =1)

Description:

choice (input): OB Parameters::polynomial or OB Parameters::trigonometric
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6.26 updateShowFile

int
updateShowFile(const aString & command = nullString,

DialogData *interface =NULL)

Description: Open or close show files, set variables that appear in the show file.

command (input) : optionally supply a command to execute. Attempt to execute the command and then
return. The return value is 0 if the command was executed, 1 otherwise.

interface (input) : use this dialog. If command==”build dialog”, fill in the dialog and return.

Return value: when executing a single command, return 1 if the command was not recognised.

Here is a desciption of the menu options available for changing show file options.

open : open a new show file.

close : close any open show file.

show file variables : specify extra derived quantities, such as the divergence or vorticity, that
should be saved in the show file in addition to the standard variables.

frequency to save : By default the solution is saved in the show file as often as it is plotted accord-
ing to ’times to plot’. To save the solution less often set this integer value to be greater
than 1. A value of 2 for example will save solutions every 2nd time the solution is plot.

frequency to flush : Save this many solutions in each show file so that multiple show files will be
created (these are automatically handled by plotStuff). See section (??) for why you might do
this.

properties :

uncompressed : save the show file uncompressed. This is a more portable format that can be
read by newer versions of Overture.

compressed : save the show file compressed. This is a less portable format.
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7 Notes

Here is where Bill keeps some notes for himself. These are not meant to be comprehensible to anyone
else.

7.1 Slip wall versus symmetry wall

The slip wall BC for INS imposes ∇ · u = 0 – for comparing an extruded 3d run to a 2D run it better to
use the symmetry BC since the divergence BC may generate a non-constant w.

7.2 Moving Grids

On a non-moving grid, each component grid is defined by a mapping of the form

x = G(r)

where r denotes the coordinates on the unit-square (or unit-cube).
On a moving grid the mapping function depends on time:

x = G(r, t)

For example, a rotating square is defined by the mapping

x = G(r, t) = R(t)r

R(t) =

[

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]

On a moving grid we solve the PDE in a frame that moves with the grid. Thus if we were solving

ut + (u · ∇x)u + ∇xp = ν∆xu

then on each grid we make the change of variables from (x, t) to (r, τ) defined by

x = G(r, τ)

t = τ

u(x, t) = u(G(r, τ), τ) ≡ U(r, τ)

Whence

∂

∂xi

u(x, t) =
∂rj

∂xi

∂

∂rj

U(r, τ) +
∂τ

∂xi

∂

∂τ
U(r, τ) (with summation convention)

=
∂rj

∂xi

∂

∂rj

U(r, τ)

and
∂

∂τ
U =

∂G

∂τ

∂

∂xi

u(x, t) +
∂t

∂τ

∂

∂t
u



7 NOTES 35

implies

∂

∂t
u =

∂

∂τ
U − Ġ · ∇xu

=
∂

∂t
U − Ġi(∇xr · ∇r)U

where

Ġ ≡
∂G(r, τ)

∂τ

is the grid velocity. The incompressible Navier-Stokes equations

ut + (u · ∇)u + ∇p = ν∆u (22)

∆p +
∑

i

∇ui · ∂xi
u = 0 (23)

transform to

Uτ + [(Ui − Ġi)(∂xi
rj)∂rj

]U + (∂xi
rj)∂rj

P = ν∆̃U

∆̃P +
∑

i

∇̃Ui · ∂xi
U = 0

or with a simplified notation:

Uτ + [(U − Ġ) · ∇̃]U + ∇̃P = ν∆̃U (24)

In conservative form the equation
ρt + ∇x · (ρu) = 0

transforms in the moving coordinate system to

Rτ − (Ġ · ∇)R + ∇ · (RU) = 0

with ρ(x, t) = R(r, τ). This can be written in a conservation form (with a source term)

Rτ + ∇ · (R(U − Ġ)) + (∇ · Ġ) R = 0

*** finish this next part: Alternatively we can consider a control volume formulation on a time depen-
dent volume, V (t)

∂t

∫

V (t)

ρdx +

∫

V (t)

∇x(F)dx = 0

or
(J(t)ρ)t + ∇x(F)J(t) = 0

or

ρt + ∇x(F) +
1

J(t)
∂tJ ρ = 0
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7.2.1 Twilightzone flow

Twilightzone forcing should be thought of as being added to the equations in the non moving coordinate
system. This forcing will not change under the change of variables to the moving grid coordinates.

Even the simplest moving grid will cause the twilightzone polynomials to become higher order.
Suppose the twilight zone solution is of the form of a polynomial

u(x, t) = Xm(x)Tn(t) X degree m, T degree n

then
U(r, t) = u(G(r, τ), τ) = X(G(r, t))T (τ)

If G is a polynomial of degree p then U will be a polynomial of degree pm + n. For example if G is a
simple translation in the direction d, G(r, t) = r + td (p = 1) then

U(r, t) = X(r + td)T (t)

and so if u is a linear polynomial

u(x, t) = (1 + x + y) ∗ (1 + t)

then
U(r, t) = (1 + (r1 + td1) + (r2 + td2))(1 + t)

is a quadratic polynomial (in time).
Midpoint rule: exact for (m,n, p) = (1, 0, 1).
2nd order multi-step rule: exact for (m,n, p) = (1, 1, 1), or (m,n, p) = (2, 0, 1).

If G is a rotation then U will no-longer even be a polynomial.

7.2.2 Boundary Conditions

The boundary condition on the velocity at a wall are

U(r, t) = Ġ(r, τ) : no-slip wall

n · U = n · Ġ(r, τ) : slip wall

On a moving no-slip wall the boundary condition for the pressure equation is obtained by dotting the
normal n into the momentum equation:

∂nP = −n · Uτ + νn · ∆̃U

= −n · G̈ + νn · ∆̃U

Note that the acceleration of the wall appears on the right hand side.

7.2.3 Computing forces on bodies

The force exerted by a fluid on a small surface element immersed in the fluid is

dFi = (pni − nkτki) dS

where n = [n1, n2, n3]
T is the unit normal to the surface element and τ is the stress tensor.

τ = µ[∇v + (∇v)T ] + (κ −
2

3
µ)(∇ · v)I
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Thus the average force applied to a body with boundary ∂Ω is

F cm
i =

∫

∂Ω

pni − nkτkidS

so that the centre of mass, xcm will obey Newton’s law:

M
d2xcm

dt2
= Fcm

where M is the total mass of the body.

7.3 Solving the pressure equation

• The GMRES solver goes haywire if the right-hand side gets large values in it at unused points. One
symptom is that it appears to converge in 2 steps. Another is that it blows up later on.

• Extrapolating the pressure in time in AB2 before GMRES helps (2 times fewer iterations ?)

• For moving grids could increase number of corrector steps as this should be inexpensive and allows
a bigger time step.

7.4 Turbulence models

7.4.1 LES-SGS

If the flow is sufficiently resolved then one can perform a large-eddy-simulation using a sub-grid-scale
model. This basically boils down to using an artificial viscosity of a certain form.

7.5 RANS turbulence models

7.5.1 k − ε

We may also need to add a RANS turbulence model such as the k − ε model in which case the viscosity
coefficient ν is replaced by ν0(k, ε) and ****** these are for incompressible flow only *****

kt + (u · ∇)k − G + ε −∇ · (νk∇k) = 0
εt + (u · ∇)ε − Cε1(ε/k)G + Cε2(ε

2/k) −∇ · (νε∇ε) = 0

}

(25)

where
νT = Cµ(k2/ε) turbulent eddy viscosity
ν0 = ν + νT total viscosity
νk = αkν0 viscosity coefficient for k
νε = αεν0 viscosity coefficient for ε
G = νT

∑

ij ∂iuj(∂iuj + ∂jui) turbulence generation term
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7.5.2 k − ω

The k − ω turbulence model (for incompressible flow) is

kt + (u · ∇)k − G + β∗kω −∇ · (νk∇k) = 0
ωt + (u · ∇)ω − αω

k
G − βω2 −∇ · (νω∇ω) = 0

}

(26)

where
νT = Cµ(k2/ε) turbulent eddy viscosity
ν0 = ν + νT total viscosity
νk = αkν0 viscosity coefficient for k
νω = αεν0 viscosity coefficient for ω
G = νT

∑

ij ∂iuj(∂iuj + ∂jui) turbulence generation term

7.5.3 Corner compatibility condition

At a corner between two no-slip walls there is a compatibility condition implied by the pressure boundary
condition.

Suppose we have a square grid with a corner at the origin. Then

px(0, y) = ν∆u − ut − (uux + vuy)

py(x, 0) = ν∆v − vt − (uvx + vvy)

Since ...
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8 Convergence results

This section details the results of various convergence tests. Convergence results are run using the twilight-
zone option, also known less formally as the method of analytic solutions. In this case the equations are
forced so the the solution will be a known analytic function.

The tables show the maximum errors in the solution components. The rate shown is estimated conver-
gence rate, σ, assuming error ∝ hσ. The rate is estimated by a least squares fit to the data.
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8.1 Incompressible Navier-Stokes convergence results

The 2D trigonometric solution used as a twilight zone function is

u =
1

2
cos(πω0x) cos(πω1y) cos(ω3πt) +

1

2

v =
1

2
sin(πω0x) sin(πω1y) cos(ω3πt) +

1

2

p = cos(πω0x) cos(πω1y) cos(ω3πt) +
1

2

The 3D trigonometric solution is

u = cos(πω0x) cos(πω1y) cos(πω2z) cos(ω3πt)

v =
1

2
sin(πω0x) sin(πω1y) cos(πω2z) cos(ω3πt)

w =
1

2
sin(πω0x) sin(πω1y) sin(πω2z) cos(ω3πt)

p =
1

2
sin(πω0x) cos(πω1y) cos(πω2z) sin(ω3πt)

With have ω0 == ω1 == ω2 it follows that ∇ · u = 0. There are also algebraic polynomial solutions of
different orders.

Tables (??-??) show results from running OverBlown on various grids.
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Figure 2: Incompressible N-S, twilight zone solution for convergence test
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8.2 Compressible Navier-Stokes convergence results

grid N ρ u v w T
box5 5 6.3 × 10−2 1.1 × 10−2 2.0 × 10−2 3.0 × 10−2 2.6 × 10−3

box10 10 2.1 × 10−2 2.9 × 10−3 5.2 × 10−3 7.2 × 10−3 7.0 × 10−4

box20 20 5.7 × 10−3 7.7 × 10−4 1.3 × 10−3 1.8 × 10−3 1.8 × 10−4

rate 1.7 1.9 2.0 2.0 1.9

Table 1: Compressible Navier-Stokes, t = 1.0, box, trigonometric TZ

grid N ρ u v T
cic1 12 2.2 × 10−1 2.4 × 10−1 1.9 × 10−1 6.0 × 10−2

cic2 24 5.1 × 10−2 6.4 × 10−2 2.6 × 10−2 1.0 × 10−2

cic3 48 1.2 × 10−2 1.3 × 10−2 6.2 × 10−3 2.5 × 10−3

rate 2.1 2.1 2.5 2.3

Table 2: Compressible Navier-Stokes, t = 1.0, cic, trigonometric TZ

grid N ρ u v T
sic1 1 1.4 × 10−1 1.3 × 10−1 8.2 × 10−2 1.6 × 10−2

sic2 2 4.4 × 10−2 3.1 × 10−2 2.0 × 10−2 4.3 × 10−3

sic3 4 1.0 × 10−2 7.9 × 10−3 4.9 × 10−3 1.1 × 10−3

rate 1.9 2.0 2.0 1.9

Table 3: Compressible Navier-Stokes, t = 1.0, sic, trigonometric TZ
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grid N ρ u v T
square5 5 4.5 × 10−2 1.6 × 10−2 3.0 × 10−2 5.6 × 10−3

square10 10 1.0 × 10−2 4.1 × 10−3 7.8 × 10−3 1.4 × 10−3

square20 20 2.5 × 10−3 1.0 × 10−3 1.9 × 10−3 3.7 × 10−4

square40 40 6.2 × 10−4 2.6 × 10−4 4.8 × 10−4 9.2 × 10−5

rate 2.1 2.0 2.0 2.0

Table 4: Compressible Navier-Stokes, t = 1.0, square, trigonometric TZ
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9 A collection of some interesting examples

Here is a collection of interesting examples computed with the compressible OverBlown solver.

9.1 Mach 2 shock past a cylinder

Figure (3) shows a Mach 2 planar shock hitting a cylinder. The inviscid Euler equations are being solved
using method CNSCAD.

9.2 Mach 2 shock past a triangle

Figure (4) shows a Mach 2 planar shock hitting a triangle. The triangle has slightly rounded corners and
was defined by the SmoothedPolygon Mapping. The inviscid Euler equations are being solved using
method CNSCAD. In this case we had to increase the coefficient of the second-order artificial viscosity
to av2=.5 to avoid negative pressures when the shock passes the corners at the trailing edge. This is
probably due to the fact that the Mach number is very high near these corners after the shock has passed
(the density is low here).
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Figure 3: Mach 2 planar shock impinging on a cylinder.
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Figure 4: Mach 2 planar shock impinging on a triangle.
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9.3 Mach 2 shock past a sphere

Figure (5) shows a Mach 2 planar shock hitting a sphere.

Figure 5: Mach 2 planar shock traveling past a sphere.
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9.4 Shock travelling up a ramp

Figures (7), (8) shows a Mach 2 planar shock hitting a ramp.

Figure 6: Mach 2 planar shock traveling up a ramp, density.
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Figure 7: Mach 2 planar shock traveling up a ramp, magnified view of the region where the shock crosses
the overlapping boundary.
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