Overture Short Course

Solving PDE’s on Overlapping Grids

Bill Henshaw

Center for Applied Scientific Computing,

Lawrence Livermore National Laboratory, Livermore, CA, USA.
*

CALIFORNIA REPUBLIC

Cambridge AMR Workshop,
May, 2011.

1=

Henshaw (LLNL) Overture Short Course Cambridge 1/140

Acknowledgments.

Supported by:
ASCR Department of Energy, Office of Science, ASCR Applied
Math Program .

LDRD LLNL: Laboratory Directed Research and Development
(LDRD) program .

NSF National Science Foundation .

Contributors:
Kyle Chand (LLNL)
Jeff Banks (LLNL)
Prof. Don Schwendeman (Rensselaer Polytechnic Institute)

L

Henshaw (LLNL) Overture Short Course Cambridge 2/140

Increasing computer power is enabling simulations of

complex multi-physics applications.

Needed:

© high fidelity solutions to complex multi-physics
problems,

@ in complex moving and deforming geometry,

@ using genuinely high-order accurate and stable
methods,

© for long time integrations.

Example: time dependent LES turbulence simulations to accurately
model wind turbines require orders of magnitude more grid resolution
than current steady state RANS approximations.

L

Henshaw (LLNL) Overture Short Course Cambridge 3/140

The Overture project is developing PDE solvers for a

wide class of continuum mechanics applications.
The only open source toolkit for overlapping grids and high-order grid generation.

Overture is a toolkit for solving PDE’s on overlapping grids and includes CAD,
grid generation, numerical approximations, AMR and graphics.

The CG (Composite Grid) suite of PDE solvers (cgcns, cgins, cgmx, cgsm,
cgad, cgmp) provide algorithms for modeling gases, fluids, solids and E&M.

Overture and CG represent about 2 million lines of C++ and Fortran; available
from www.lInl.gov/CASC/Overture.

Cad fixup Global triangulation Overlapping grid Incompressible flow

1=

Henshaw (LLNL) Overture Short Course Cambridge 4 /140

Overture is used by research groups worldwide

Typical users are graduate students and University/Lab researchers.

e Blood flow and blood clot filters (Dr. Mike Singer, LLNL).

e Flapping airfoils, mircro-air vehicles (Prof. Yongsheng Lian, U. of Louisville).

e Wave-energy devices (Dr. Robert Read, Prof. Harry Bingham, Technical U. of Denmark).
e Plasma physics (Dr. Jeff Banks, Dr. Richard Berger, LLNL).

e Flapping airfoils (Dr. Joel Guerrero, U. of Genoa).

e High-order accurate subsonic/transonic aero-acoustics (Dr. Philippe Lafon, CNRS, EDF).
e Tear films and droplets (Dr. Kara Maki, IMA, and Prof. Richard Braun, U. Delaware).

e Elastic wave equation (Dr. Daniel Appeld, Caltech).

e Compressible flow/ice-formation (Graeme Leese, Prof. Nikos Nikiforakis, U. Cambridge).
e Relativistic hydrodynamics and Einstein field equations (Dr. Philip Blakely, U. Cambridge).
e Converging shock waves, shock focusing (Prof. Veronica Eliasson, USC).

e Pitching airfoils (Dr. D. Chandar, U. of Wyoming, Prof. M. Damodaran, NTU Singapore).
e Hypersonic flows for reentry vehicles, (Dr. Bjorn Sjogreen, LLNL, Dr. Helen Yee NASA).
e Acoustic lens design, shock lithotripsy (Prof. Andrew Szeri, UC Berkeley).

e High-order accurate, compact Hermite-Taylor schemes (Prof. Tom Hagstrom, SMU).

e High-order accurate aero-acoustics (Dr. Ramesh Balakrishnan, ANL).

e Incompressible flow in pumps (Dr. J.P. Potanza, Shell Oil).

‘

G
Blood flow past wire frame clot filters. M. Singer et.al.
Henshaw (LLNL) Overture Short Course Cambridge 5/140

Short Course Summary (1)

An Overview
© Main features of Overture
@ Overlapping grids.
© A one-dimensional overlapping grid problem.
© Approximating derivatives on curvilinear grids.

Using the A++/P++ Array Class
© Array operations.
@ Parallel array operations.

L

Henshaw (LLNL) Overture Short Course Cambridge 6/140

Short Course Summary (2)

Overview of the Main Overture Classes

© The Overture graphics interface: windows, menus, dialogs and
mouse buttons

© Mapping’s

© Grid’s and GridFunction’s

© Operators

© Building component grids using the native geometry capabilities

CAD fixup and modification
Fixing and modifying CAD files with mbuilder and rap.

L

Henshaw (LLNL) Overture Short Course Cambridge 71140

Short Course Summary (3)

Component Grid Generation and CAD
© Component grid generation on CAD geometries

@ mBuilder : the mapping builder
@ hype: the hyperbolic grid generator

Overlapping Grid Generation
© Ogen: the overlapping grid generator

The Primer examples:
© MappedGrid examples
@ Overlapping grid examples

L

Henshaw (LLNL) Overture Short Course Cambridge 8/140

Short Course Summary (4)

Adaptive Mesh Refinement and Overlapping Grids
© Block structured mesh refinement
@ AMR and overlapping grids
© AMR components of Overture
© AMR performance and examples

Elliptic PDE Solvers and Implicit Equation Solvers
© Oges (Overlapping Grid Equation Solver): an interface to

@ sparse direct solvers (SuperLU).
@ Krylov based iterative solvers (PETSc).

© Ogmg: (Overlapping grid multigrid solver):
@ fast solution of elliptic boundary value problems
G

Henshaw (LLNL) Overture Short Course Cambridge 9/140

Short Course Summary (5)

The CG (Composite-Grid) Suite of PDE solvers:
© cgad : advection-diffusion solver.
@ cgins : incompressible flow.
© cgens : compressible flow with adaptive mesh refinement.
© cgmx : Maxwell's equations.
© cgsm : Elastic wave equation (*new*).
© cgmp : multi-domain multi-physics problems

@ conjugate heat transfer (fluid flow and solid heat transfer).
@ fluid-structure interactions (FSI) (*under development*).

L

Henshaw (LLNL) Overture Short Course Cambridge 10/ 140

Intro Movies

© shock hitting a collection of (rigid-body) cylinders (Euler with
AMR).

@ cylinders falling in a channel (INS with MG).

L

Henshaw (LLNL) Overture Short Course Cambridge 11/ 140

A Short History of

Composite/ Chimera/ Overset/ Overlapping Grids

© Volkov, circa [1966] developed a Composite Mesh method for Laplace’s equation
on regions with piece-wise smooth boundaries separated by corners. Polar grids
are fitted around each corner to handle potential singularities.

© Starius, circa [1977] (student of H.-O. Kreiss) considered Composite Mesh
methods for elliptic and hyperbolic problems — introduces a hyperbolic grid
generator.

© Steger, circa [1980] independently conceives the idea of the overlapping grid,
subsequently named the Chimera approach after the mythical Chimera beast
having a human face, a lion’s mane and legs, a goat's body, and dragon’s tail.
NASA groups develop grid generator PEGSUS, hyperbolic grid generation and
flow solver Overflow (Steger, Benek, Suhs, Buning, Chan, Meakin, et. al.)

© B. Kreiss [1980] develops overlapping grid generator which subsequently leads
to the CMPGRD grid generator [1983] (Chesshire, Henshaw) later leading to the
Overture set of tools [1994].

L

Henshaw (LLNL) Overture Short Course Cambridge 12 /140

Aerospace applications using overlapping grids.

Nasa’'s Overflow code has been used for a wide variety of aerospace applications.

Space shuttle figures courtesy of William Chan and Reynaldo Gomez.
V-22 Osprey figures courtesy of William Chan, Andrew Wissink and Robert Meakin. ﬂg

Henshaw (LLNL) Overture Short Course Cambridge 13/140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

@ Overlapping grids can be rapidly
generated as bodies move.

@ High quality grids under large
displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

@ Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

@ Overlapping grids can be rapidly
! 6 O ! generated as bodies move.
@ High quality grids under large
L displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

@ Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

What are overlapping grids and why are they useful?

The efficiency of Cartesian grids with the accuracy of boundary fitted grids.

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

@ Cartesian grids for efficiency.

@ Smooth grids for accuracy at
boundaries (e.g. resolving
boundary layers).

Efficient for high-order methods.

Example: 3D, 4th-order Maxwell : Cartesian grids are 25x faster than curvilinear.

L

Henshaw (LLNL) Overture Short Course Cambridge 14/ 140

Overture: tools for solving PDE’s on overlapping grids

e © 6 6 ¢

high level C++ interface for rapid prototyping of PDE solvers.
built upon optimized C and fortran kernels.

library of finite-difference operators: conservative and
non-conservative, 2nd, 4th, 6th and 8th order accurate
approximations.

support for moving grids.

support for block structured adaptive mesh refinement (AMR).
extensive grid generation capabilities (Ogen).

CAD fixup tools (for CAD from IGES files).

interactive graphics and data base support (HDF).

L

Henshaw (LLNL) Overture Short Course Cambridge 15/ 140

G

CG Oges Ogmg
cgins, cgens, ... | | Linear Solvers Multigrid
Ogen. Ugen AMR
Overlapping Unstructured
Grids GridFunctions Operators
Mappings CAD fixup rap, hype Graphics
Grid Generation mbuilder
A++/P++ Oppznel PETSC Boxlib
HDF
Henshaw (LLNL) Overture Short Course Cambridge

16 /140

Ogen can be used to build 2D overlapping grids:

annuns)
A

]

1=

Henshaw (LLNL) Overture Short Course Cambridge 17 /140

Ogen can be used to build 3D overlapping grids:

Overture Short Course Cambridge 18/ 140

Ugen can generate hybrid (unstructured) grids

Overture has some support for hybrid grids.

> EREEERERERAR

0.

1=

Henshaw (LLNL) Overture Short Course Cambridge 19/ 140

Components of an Overlapping Grid

Physical space: Q = physical boundary

F5]9) 4 j

e o interpolation

© unused
1 4 ghost point | L1

1=

Henshaw (LLNL) Overture Short Course Cambridge 20/ 140

Components of an Overlapping Grid

Physical space: Q = physical boundary
a9 ¢ j
e o interpolation Mappmg X = Gz(l")
. Au??lgjc?setdpoint | L 1=
bc(2,2)
G,

Parameter space:

il

be(1,1) be(l,2) be(2,1) i
Component grid 2 1=

Henshaw (LLNL) Overture Short Course Cambridge 20/ 140

Components of an Overlapping Grid

Physical space: Q = physical boundary

oQ 4 j
Mapping: x = Gx(r)

e o interpolation
© unused M
bc(2,2)

4 4 ghost point

T —HH
~ G
N N i G,
Parameter space: > i
o
I
b0 i1=N; be(l1) be(l,2) be(2,1) s

Component grid 2

Component grid 1
Cambridge 20/ 140

Henshaw (LLNL) Overture Short Course

A one-dimensional overlapping grid example

To solve the advection-diffusion equation

Ut + aUy = VUxx, x € (0,1)
u(0,t) = golt), ux(1,t) =ga(t), (boundary conditions)
u(x,0) = ug(x), (initial conditions)

introduce grid points on the two overlapping component grids,

XY = Xa +i4x4, i=-1,0,1,...,Ni+1, AXy= (X —Xa)/N1
x® =x:+(+1)Axz, j=-1,0,1,...,Na+1, Axz= (X —X:)/N2

and approximations U" ~ u(x™, nAt), v ~ u(x® nat).

U_1 Uo U1 Uz e UN1+1
Vo1 Vo Vi - VN, VnN,t1
X'a X-c X-d X-b

L

Henshaw (LLNL) Overture Short Course Cambridge 21/140

Discretize with forward-Euler and central differences

Given the solution at time t", compute the solution at time t"*+1:

(UMt —U")/At = —aDoU!" + vD,D_U, i=1,2,...,N;
(V" —V")/At = —aDeV" +vD,D_V", j=0,2,...,N;
UMttt = g(t"), DoVt = gi ("), (boundary conditions)
0 N,

U,’\]l L=01-0 %) VT a2 —a) Vi %((1 1) V;™, (interpolation)
, By , 3 . . .
vt =(1-p3)(1 5) UGt 4+ B(2 — B) Uy 4 5(B-1) UG 11, (interpolation)

u", —u" n_o_uyn u" —un
n_ i+1 i—1 n_ i+1 i n_ i i—1
DoU 2ax 0 D+Y Ax 0 DY AX
Ufl Uo U1 Uz UN1UNL\1
Vo1 Vo Vi -+ VN,—1 VN, VN,+1

1=

Henshaw (LLNL) Overture Short Course Cambridge 22 /140

Interpolation between overlapping grids:

Yo Us U2 = My
Vo Vi Vo - Vi,
X:a X:ch:d X:b

When solving Poisson’s equation, Au = f with a scheme that is O(h?P)
the width of the interpolation formula should be

@ width=2p + 1 if the overlap distance is d = O(h).
@ width=2p if the overlap distance isd = O(1).

Thus a second-order accurate scheme will normally require 3-point
interpolation (quadratic interpolation).

Note: For a first order equation, u; + ux = 0, 2-point interpolation is
sufficient for 2nd-order accuracy when the overlap distance is O(h). 1=

Henshaw (LLNL) Overture Short Course Cambridge 23 /140

Overture supports a high-level C++ interface

But is built upon mainly Fortran kernels.

Solve u; + auy + buy = v(Uyx + Uyy)

1=

Henshaw (LLNL) Overture Short Course Cambridge 24 /140

Overture supports a high-level C++ interface

But is built upon mainly Fortran kernels.

Solve u; + auy + buy = v(Uyx + Uyy)

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"'myGrid.hdf");

1=

Henshaw (LLNL) Overture Short Course Cambridge 24 /140

Overture supports a high-level C++ interface

But is built upon mainly Fortran kernels.
Solve u; + auy + buy = v(Uyx + Uyy)

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"'myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1,

1=

Henshaw (LLNL) Overture Short Course Cambridge 24 /140

Overture supports a high-level C++ interface

But is built upon mainly Fortran kernels.
Solve u; + auy + buy = v(Uyx + Uyy)

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"'myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1,

CompositeGridOperators op(cg); // operators
u.setOperators(op);

1=

Henshaw (LLNL) Overture Short Course Cambridge 24 /140

Overture supports a high-level C++ interface

But is built upon mainly Fortran kernels.

Solve u; + auy + buy = v(Uyx + Uyy)

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"'myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1,
CompositeGridOperators op(cg); // operators
u.setOperators(op);
float t=0, dt=.005, a=1., b=1., nu=.1;
for(int step=0; step<100; step++)
{
u+=dt*(-a*u.x()-b*u.y()+nu*(u.xx()+u.yy())); // forward Euler
t+=dt;
u.interpolate();
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);
u.finishBoundaryConditions();

1=

Henshaw (LLNL) Overture Short Course Cambridge 24 /140

Spatial approximations to derivatives:

Each grid is defined by a mapping x = G(r) from the unit square
r € [0,1]¢ in d-dimensions to physical space x € RY.

Derivatives can be defined by the chain rule (with r = (r,s),
X = (X,y)). For example in two-dimensions:

Ux = rxur +SxUs
AU = (1 4 17)Urr + (SF + S7)Uss + 2(x STy Sy)Urs+
(rxx + fyy)Ur + (Sxx + Syy)Us

L

Henshaw (LLNL) Overture Short Course Cambridge 25/140

Spatial approximations to derivatives:

Approximations to the derivatives using the mapping-method simply
approximate the r derivatives in the previous. For example, fourth order
approximations are

1
Ur ~ Do (1 — éArZDHD_r)UiJ

1
Uy ~ Dor (1 — EArZDHD_r)UiJ

where Dqr, D and D_; are the central, forward and backward divided
difference operators:

Uit1j — Ui
2Ar ’

Uit — Uij

Uij — Ui_y
Ar ’ '

Ar

The inverse Jacobian derivatives ry, ry, Sy, Sy are given by the mapping.

Higher derivatives such as ry, = (x)x, Syy = (Sy)y are approximated in the
same manner as for u.

DorUij = DyrUij = D_Uij =

L

Henshaw (LLNL) Overture Short Course Cambridge 26 /140

Spatial approximations to derivatives:

Conservative or finite-volume type discretizations are based on the
self-adjoint form

1,0 0
Vou=3 (5 (QVxr-u)+ (Vs 1)),
J = det(9x/0r) (Jacobian)
where u = (u,v) and
or or
er-ufa—xu+@v,

s 0s
VxS -Uu = 8—u+@

L

Cambridge 27/ 140

Henshaw (LLNL) Overture Short Course

Some References: Theory of Numerical Methods

The stability and accuracy theory for finite difference approximations to
initial-boundary-value problems for overlapping grids is primarily founded upon the
well established theory for finite difference methods for a single grid. Stability theory is
often divided into methods based on energy estimates and methods based on mode
analysis (GKS theory). For a discussion of energy-estimates and GKS theory see, for
example,

@ Gustafsson, Kreiss and Oliger, Time Dependent Methods and Difference
Methods, Wiley, 1995.

@ Strikwerda, Finite Difference Schemes and Partial Differential Equations,
Wadsworth and Brooks/Cole, 1989.

In many cases, the analysis of a nonlinear, variable-coefficient PDE in general
geometry can be reduced to the consideration of a constant-coefficient half-plane
problem. For a discussion of well-posed problems and this reduction see, for example,

@ Kreiss and Lorenz, Initial-Boundary Value Problems and the Navier-Stokes
Equations, "Academic Press, 1989.

L

Henshaw (LLNL) Overture Short Course Cambridge 28/ 140

References: overlapping grids

For a general discussion of the overlapping grid approach as well as issues
related to the order of accuracy of interpolation see

@ G. Chesshire and W.D. Henshaw, Composite Overlapping Meshes for
the Solution of Partial Differential Equations JCP, 1990.

Early references to overlapping grids

@ G. Starius, Composite Mesh Difference Methods for Elliptic and
Boundary Value Problems, Numer. Math., 1977.

@ G. Starius, On Composite Mesh Difference Methods for Hyperbolic
Differential Equations, Numer. Math., 1980.

@ J. L. Steger and J. A. Benek, On the use of Composite Grid Schemes in
Computational Aerodynamics, Computer Methods in Applied Mechanics
and Engineering, 1987.

L

Henshaw (LLNL) Overture Short Course Cambridge 29 /140

A++/P++ Arrays...

L

Henshaw (LLNL) Overture Short Course Cambridge 30/ 140

A++/P++ : Multidimensional Arrays for C++

© Fortran90/matlab style array operations.
@ Serial and distributed parallel arrays.
© Code is compiled with A++ header files to run on serial machines.

© Code is compiled with P++ header files to run on parallel
machines.

© Arrays can be passed to Fortran subroutines (Fortran storage
order)

Documentation: See the Overture web page for the manual and quick
reference guide.

L

Henshaw (LLNL) Overture Short Course Cambridge 31/140

A++/P++ Clases

© class Index: Index I(base,count,stride) : for indexing arrays

@ class Range: Range R(base,bound) : for dimensioning (or
indexing arrays)

© class intArray, floatArray, doubleArray : multidimensional arrays
(maximum 6 dimensions) distributed across selected processors

(also referred to as intDistributedArray, floatDistributedArray,
doubleDistributedArray).

© intSerialArray, floatSerialArray, doubleSerialArray: serial arrays,
duplicated across all processors

@ class Partitioning_Type partition : for defining a parallel distribution
(set of processors, number of parallel ghost).

L

Henshaw (LLNL) Overture Short Course Cambridge 32/140

A++ : Stencil operations and scalar indexing.

#include "A++.h"

Range R(0,9); /1 define a Range R={0..9}
doubleSerialArray a(R,R), b(10,10); // declare and dimension arrays
Index 1(1,8), J(1,8); /I define two Index’'s: 1={1,2,...,8}
b=1.; /1 array assignment

// Stencil operation:
/I (Note: b(I1+1,J) is a new array that is a "view" of b).
a(l,J) = .25%(b(1+1,3) + b(l1,J+1) + b(1-1,J) + b(1,J-1));

// Stencil operation by scalar indexing:
for (int j=J.getBase(); j<=J.getBound(); j++)
for (int i=1.getBase(); i<=l.getBound(); i++)

a(i,j) = .25%(b(i+1,j) + b(i,j+1) + b(i—=1,j) + b(i,j-1));
}

1=

Henshaw (LLNL) Overture Short Course Cambridge 33/140

A++: Using the where statement.

doubleSerialArray x(10,10), u(10,10), v(10,10);
Range 1(1,8), j(1,8);

v.v.h.ere(x(1,J)>0.5)
{
u(l,Jd)=sin(2.xPixx(1,J));

v(l,J)=cos(2.%Pixx(1,J));
}

/I Equivalent operation with scalar indexing:
for (int j=J.getBase(); j<=J.getBound(); j++)
for (int i=I.getBase(); i<=Il.getBound(); i++)
if (x(i,j)>0.5)
{
u(i,j)=sin(2.xPixx(i,j));
}
if (x(i,j)>0.5)
{
v(i,j)=cos(2.«Pixx(i,j));
: t

Henshaw (LLNL) Overture Short Course Cambridge 34 /140

A++: Indirect addressing

Accessing a random set of array elements.

doubleSerialArray u(10), v(3);
intSerialArray ia(3); /1 holds indirect array indicies

ia(0)=2; ia(1)=4; ia(2)=7;
v(l) = u(ia) + 2.xu(ia+1);
/I Equivalent operation with scalar indexing:
for (int i=I.getBase(); i<=Il.getBound(); i++)

v(i) = u(ia(i)) + 2.xu(ia(i)+1);
}

1=

Henshaw (LLNL) Overture Short Course Cambridge 35/ 140

A++: Passing arrays to Fortran

A++ arrays are stored in Fortran order.

C++ code:

extern "C" { void myfortran_(int& m, int& n, real &); }

floatSerialArray u(20,10);
/1 call a Fortran routine:
myfortran_(u.getLength (0),u.getLength(1),xu.getDataPointer ())

Fortran routine:

subroutine myFortran(m,n,u)
integer myn,i,j
real u(m,n);

do i=1m
do j=1,n
u(i,j) =i + 3.xj
end do
end do

return
end N%

Henshaw (LLNL) Overture Short Course Cambridge 36 /140

A++ : Fast C-style Scalar Indexing

Can be much faster than C++ scalar indexing.

We define a C macro to access the A++ array.

#include "A++.h"

doubleSerialArray u(10,10); /1 declare and dimension arrays
Index 1(1,8), J(1,8); // define two Index’'s: 1={1,2,...,8}

real xup = u.Array_Descriptor.Array_View_Pointer2;
const int uDimO=u.getRawDataSize (0);

const int uDiml=u.getRawDataSize(1);

#define U(i0,il1,i2) up[i0O+uDimOx(il+uDimlx(i2))]

/Il Stencil operation by C-style scalar indexing:
for (int j=J.getBase(); j<=J.getBound(); j++)
for (int i=l.getBase(); i<=l.getBound(); i++)
{
U(i,j) = .25%«(U(i+1,j) + U(i,j+1) + U(i-1,j) + U(i,j-1));
}

Henshaw (LLNL) Overture Short Course Cambridge

1=

37 /140

P++ : parallel multi-dimensional arrays

© Arrays are distributed across processors using a partitioning object.
© A serial array (local array) can be accessed from each processor.
© Internal ghost-boundaries are added on local arrays.

© P++ uses Multiblock PARTI (A. Sussman, G. Agrawal, J. Saltz) for ghost
boundary updates.

© Caveat: Best results are obtained by operating on the local arrays and
explicitly calling updateGhostBoundaries to update the ghost
boundaries.

floatDistributedArray u

_ 3
P=2 [™~p=2 | p=3
floatSerialArray uLocal
P=0 | P=1
4 processors (L]

Henshaw (LLNL) Overture Short Course Cambridge 38/ 140

P++ : Sample Code

#include "A++.h"

Range P(1,5); // Range of processors to use
Partitioning_Type partition(P); // define parallel distribution
partition . SpecifylnternalGhostBoundaryWidths (1,1);

// build a distributed array:
doubleDistributedArray u(100,100,partition);

/1 access the local array:
doubleSerialArray & uLocal = u.getLocalArrayWithGhostBoundaries ();

I/l operate on local array
uLocal = cos(uLocal)+5.;

/1 call fortran with local array:
myFortranRoutine (xuLocal . getDataPointer () ,...);

/l update ghost boundaries between processors
u.updateGhostBoundaries ();

1=

Henshaw (LLNL) Overture Short Course Cambridge 39/ 140

Overture Classes

Graphics

Mappings

CAD and CAD repair/modification
Grids

GridFunctions

Operators

Manufactured solutions (aka twilight-zone
functions)

©0 006000

L

Henshaw (LLNL) Overture Short Course Cambridge 40/ 140

The Overture Graphics Interface

Built upon OpenGL and Motif

Mouse driven rotation, zoom, and picking (selection).

High-level routines for plotting grids, contours, stream-lines.
Interactive plotting by C++ calls.

User defined menus and dialogs.

Program control remains generally with the application, the GUI
event loop is entered only when input in desired.

@ OpenGL calls are restricted to the Graphics Interface classes.
Motif is not exposed, usage is restricted to a few functions.

e © ¢ 6 6 ¢

L

Henshaw (LLNL) Overture Short Course Cambridge 41/140

Overture Graphics Interface

File: hardcopy
View: clipping
Options: axes,
colour-bar

Mouse Buttons
left : pick

middle : zoom
right : pop-up
menu

shift-left : translate
shift-middle : rotate

X1 Nurbs Gurve Buiider >
File View Options | v
louse Picking
2 2 + No Operation + Join WiLine Segment
. > ¥ + Bulld Point « Move Curve Endpoint
= el Query Point. Snap To Intersection
5 4 Interpolate Curve + Split
aml b =& Clrcular Are + Edit SubCurve
pd ol gl + Hide SubCurve
apal el
- el Last Forit_| Qi Al Poiris
el #
LT (v Show Al
- reset] Show Used Hide All
a e Hide Unused Sho
_i Current Curve T SubCurves
. New Point;(x,5) [69915706-01 0
8 8 2 8
Exit.

I
Dialog

[=ax
Help
[Zpoint for interpolation 7 Bl
ff stop picking
Command: | ‘ 4
E@ﬁ @ @ @@‘ y@ {3 @H J[B s a(cam.
o ’T | & emacs@ux501Inlo | X (MMXP -Bill Hensl | T linerBuider pdt :.Z‘

command window

Overture Short Course

X main screen

int #3

Cambridge 42 /140

Features of the graphical user interface

© User defined dialog windows that can contain pulldown menus with push or
toggle buttons, option menus, text labels (for inputting strings), push buttons, and
toggle buttons.

© Multiple graphics windows and a single command window with a scrollable
sub-window for outputting text, a command line, and a scrollable list of previous
commands.

© Rotation buttons a_ IL'l"l = ... Which rotate the object on the screen about
fixed x, y, and z axes (the x axis is to the right, the y-axis is up and the z-axis is
out of the screen).

0 Translation buttons E E IEI E:I which shift the object on the screen

along a given axis.

© Push buttons for making the objects bigger: E or smaller: E and a reset

button: @ to reset the view point, and a clear button to erase all objects on the
screen.
|

Henshaw (LLNL) Overture Short Course Cambridge 43 /140

Features of the graphical user interface (cont'd)

© A push button '$'to set the rotation center.

© A rubber band zoom feature.

© Mouse driven translate, rotate and zoom

© A pop-up menu that is active on the command and graphics windows. This menu
is defined by the application (= user program).

© static pull-down menus (file, view, and help) on the graphics windows. Here,
the screen can be saved in different formats, clipping planes and viewing
characteristics can be set, annotations can be made (not fully implemented), and
some help can be found.

© static pull-down menus (file and help) on the command window. Here command
files can be read/saved, new graphics windows can be opened, the window
focus can be set, and the application can be aborted.

@ A file-selection dialog box

© The option of typing any command on the command line or reading any
command from a command file. All commands can be entered in this fashion,
including any pop-up or pull-down menu item or any of the buttons, x+r, y-r, X+,
y+, bigger , etc.

© Recording or retrieving a command sequence in a command file. (5

Henshaw (LLNL) Overture Short Course Cambridge 44 /140

Geometry, Grids and GridFunctions: Overview

© Mapping : used to define continuous transformations. Example:
the transformation from the unit square to an annulus.

@ MappedGrid: defines a grid for a Mapping; contains the grid
points, Jacobian derivatives etc.

@ {int,float,double}MappedGridFunction : holds field values on a
MappedGrid. Example: the density or temperature at each point
on the grid. Derived from an A++/P++ array.

© GridCollection : a list of MappedGrid’s. Example: the grids
forming an adaptive mesh refinement level.

@ {int,float,double}GridCollectionFunction : a list of
MappedGridFunction’s.

© CompositeGrid : a GridCollection with interpolation information
that represents an overlapping grid.

@ {int,float,double}CompositeGridFunction: holds field values on a
CompositeGrid. (L

Henshaw (LLNL) Overture Short Course Cambridge 45 /140

Overview of the Geometry Capabilities in Overture

Native Geometry capabilities
© Curves, surfaces and volumes are represented with the Mapping class

@ Many analytic representations including rectangle, annulus, cylinder and
sphere

© Spline and NURBS representations are available.

© Transfinite interpolation can be used to interpolate curves or surfaces to
form 2D-regions or 3D volumes.

© Transformations such as rotation, scaling, translation, body-of-revolution,
stretching-grid-lines, sweeping, and extruding are also represented as a
Mapping .

© Mappings can be composed: e.g. compose a annulus-mapping with a
stretch-mapping to get a new mapping for an annulus with clustered
grid-lines.

@ 3D surfaces can be intersected to form one or more curves of
intersection. (L

Henshaw (LLNL) Overture Short Course Cambridge 46 / 140

A Mapping defines a continuous transformation

Each mapping has an optimized map and inverseMap

Mapping map
I

domainDimension unit square

rangeDimension

map(r,x,xr) SquareMapping

inverseMap(x,r,rx) AnnulusMapping

boundaryConditions SphereMapping

singularities HyperbolicMapping

EllipticTransform
MatrixMapping
RevolutionMapping

etc.
C

Henshaw (LLNL) Overture Short Course Cambridge 47/ 140

Overture Mappings (Part I)

//// :
/ \\ (}
(Annulus— Airfoil ﬁ?ataﬁ r\t
N N &
~Depth

Elliptic

Henshaw (LLNL) Overture Short Course Cambridge 48/ 140

re Mappings (Part Il)

i Spline - Square, Box Stretch

TFI

1=

Henshaw (LLNL) Overture Short Course Cambridge 49 /140

Demo: Creating Mappings...

© show different types of mappings
@ composition, stretching, body of revolution...

L

Henshaw (LLNL) Overture Short Course Cambridge 50/ 140

Repairing and Modifying CAD Geometry

© Overture can read the IGES CAD file format.

© Geometry is usually defined as a B-Rep (boundary
representation) consisting of a collection of patches. Each patch is
often a trimmed NURBS (non-uniform rational b-spline).

© There are problems that may exist in the CAD representation such
as gaps or overlaps between patches and mistakes in trimming
curves.

© The Overture rap program (an outcome from the Rapsodi project)
or mbuilder can be used to fix and modify the CAD geometry.

© A global triangulation is constructed that defines a water-tight
surface.

© The CAD B-Rep and global-triangulation are used when building
structured surface grids.

L

Henshaw (LLNL) Overture Short Course Cambridge 51/140

From CAD to Mesh to Solution with Overture

1. Cad fixup

1=

Henshaw (LLNL) Overture Short Course Cambridge 52 /140

1=

Henshaw (LLNL) Overture Short Course Cambridge 52 /140

1=

Henshaw (LLNL) Overture Short Course Cambridge 52 /140

3. Overlapping grid

4. Incompressible flow. —

]
|

Henshaw (LLNL) Overture Short Course Cambridge 52 /140

Demo: CAD clean-up for the ASMO car.

The first step in building a grid for the ASMO car is to fix the CAD geometry.

rap asmoNoWheels.cmd
© clean up a CAD geometry for the asmo model car.
@ generate the topology (fix gaps and overlaps between patches).
© build a water-tight surface triangulation.

(See Overture/sampleGrids/README.)

1=

Henshaw (LLNL) Overture Short Course Cambridge 53 /140

Grids and Grid Functions

L

Henshaw (LLNL) Overture Short Course Cambridge 54 /140

A MappedGrid holds the grid points and other geometry info

0287

0175

MappedGrid

i

gridindexRange _ - -
Mapping «~— Mapping that defines the geometry

vertex <«——— grid points

vertexDerivative «— jacobian derivatives optionally computed
cellVolume geometry arrays
faceNormal

L

Henshaw (LLNL) Overture Short Course Cambridge 55/ 140

A GridCollection holds a list of MappedGrids

base grids —

refinement grids

GridCollection R
} i

numberOfGrids
operator [int g] «———— access to a MappedGrid, g=0,1,..

refinementLevel[int I] «— GridCollection for a refinement level

L

Henshaw (LLNL) Overture Short Course Cambridge 56 / 140

A MappedGridFunction holds solution values

. . derived from an A++ realArray
realMappedGridFunction which implies it inherits all A++ operators
numberOfComponents «——— scalar, vector, 2-tensor, ..
MappedGrid
MappedGridOperators .)
Grid functions can be vertex-centred,
X,Y,Z,XX,... derivatives cell-centred, face-centred etc.

MappedGrid mg(mapping);

realMappedGridFunction u(mg);
u=1.;

L

Henshaw (LLNL) Overture Short Course Cambridge 57 /140

A GridCollectionFunction is a list of MappedGridFunctions

GridCollection gc(...);
Range all;

realGridCollectionFunction u(gc,all,all,all,2);
u=1.;

for(int grid=0; grid<gc.numberOfGrids(); grid++)
u[grid]=1.;

1=

Henshaw (LLNL) Overture Short Course Cambridge 58/ 140

Overview of the Operator Classes in Overture

Operators define discrete approximations to derivatives and boundary
conditions.

© approximations for dy, dy, 0z, A, ,os A, V- (aV) .
@ orders of accuracy 2,4,6,8.

© finite difference and finite volume approximations.
© operators: explicitly evaluate derivatives.

© operators: form the sparse matrix.

© Boundary conditions: Dirichlet, Neumann, Mixed, ...

L

Henshaw (LLNL) Overture Short Course Cambridge 59 /140

Operators can be used at different levels

© CompositeGridFunctions: u.x() — all points on all grids.

© MappedGridFunctions: u.y() — all points on one grid.

© function call: deri vative(u, xOperator,...) (most efficient).
© macro for evaluation in C or Fortran codes.

L

Henshaw (LLNL) Overture Short Course Cambridge 60 /140

Operators: code examples.

SphereMapping sphere; /1 Mapping for a sphere
MappedGrid mg(sphere); /I Grid for a sphere

MappedGridOperators op(mg); // build operators
realMappedGridFunction u(mg), v(mg), coeff(9,all,all,all);

/1 compute derivatives explicitly:
v= u.x() + 5.xu.y();

/1 form the sparse matrix
coeff = op.laplacianCoefficients ();

1=

Henshaw (LLNL) Overture Short Course Cambridge 61 /140

Operators: efficient evaluation of operators.

CylinderMapping cyl; /I Mapping for a cylinder
MappedGrid mg(cyl); /I Grid for a cylinder

MappedGridOperators op(mg); /l build operators

// Grid function with 3 components
realMappedGridFunction u(mg, all , all , all ,3);
realSerialArray uLocal = u.getLocalArrayWithGhostBoundaries ();

/l eval derivatives at interior and boundary points:
Index 11,12,13;
getindex(mg. gridindexRange () ,11,12,13);

/Il Restrict Index bounds to this processor:
bool ok=ParallelUtility ::getLocalArrayBounds (u,ulLocal,I1,12,13);
if (ok)

{
/1 evaluate the x and y derivatives on this grid:
realSerialArray ux(11,12,13,3), uy(11,12,13,3);
Range N=3;
op.derivative (MappedGridOperators :: xDerivative ,uLocal ,ux,11,12,13,N);
op.derivative (MappedGridOperators :: yDerivative ,uLocal ,uy,I1,12,13 ,N);-
}

Henshaw (LLNL) Overture Short Course Cambridge 62 /140

Testing with manufactured solutions.

Known as Twilight-Zone forcing in Overture. A very useful technique!

Given a PDE boundary value problem
L(ut, ux,uy,...) =F(x,t)
one can create an exact solution, U(x, t) by choosing
F(X?t) = L(Ut? UXa Uya ce)
The Overture OGFunction class defines a variety of exact solutions and their
derivatives to support the method of analytic solutions. For example one
could define a polynomial, trigonometric polynomial, or pulse function

U, t) = (x2+2xy +y2+2z%)(1 + %t + %tz)

U(x,t) = cos(rwx) cos(nmwy) cos(rwz) cos(wsnt)
U(x,t) = agexp(—a[x — b)), b(t) =co + vt

The polynomial solution is particularly useful since this solution is often an
exact solution to the discrete equations on rectangular grids. The pulse =
function is good for AMR.

Cambridge 63 /140

Henshaw (LLNL) Overture Short Course

Grid Generation

L

Henshaw (LLNL) Overture Short Course Cambridge 64 /140

Generating Overlapping Grids with Ogen...

The basic steps to follow when creating an overlapping grid are
© create mappings that cover a domain and overlap where they
meet.
@ generate the overlapping grid (the executable named ogen calls
the grid generator Ogen).
© save the grid in a data-base file.

e u
A snapshot of the overlapping grid generator Ogen -

Henshaw (LLNL) Overture Short Course Cambridge 65 /140

Generating Overlapping Grids with Ogen...

© Ogen determines the holes and interpolation information for an
overlapping grid.

@ Input to Ogen is a set of overlapping grids, boundary conditions
and shared-boundary information.

© Options: discretization width, interpolation width are specified
according to the intended equations and order of accuracy.

© Boundaries are classified as physical boundaries, periodic or
interpolation.

© Physical boundaries are used to cut holes in overset grids.

© The overlap is usually minimized to reduce the number of
computational points.

L

Henshaw (LLNL) Overture Short Course Cambridge 66 / 140

Sample ogen command file for a square...

make a grid for a square
create mappings
rectangle
mappingName
square
lines
11 11
boundary conditions
1111
exit
exit
#
generate an overlapping grid
square
done
change parameters
ghost points
all
222222
exit
compute overlap
exit
#
save an overlapping grid
squarel0. hdf
squarel0
exit

Note 1: A blank line denotes the end of the script! L@

Overture Short Course Cambridge 67 /140

Note 2: Comments using # only work starting with v24. A “x” can also be used.

Henshaw (LLN

Using Perl commands in Overture commands files.

Scripts can be parameterized. Command line arguments can also be read.

Perl is a powerful scripting language.
When an Overture program is started, a perl interpreter is created.
As command files are read by Overture:

© Any line containing a semi-colon *;” is sent to the perl interpreter and
discarded.

@ Any line with a “$” is evaluated by perl to replace variables.

Command line arguments can be passed to a command file. Ogen example:
ogen -noplot cicArg -order=4 -interp=e -factor=3

See Overture/sampleGrids/cicArg.cmd

L

Henshaw (LLNL) Overture Short Course Cambridge 68 /140

Using Perl commands in Overture commands files.

Here is a portion of an Ogen command file showing the use of perl commands

$factor=4; # Define the grid resolution
$ds = .1/$factor; # Target grid spacing
$pi = 4.xatan2(1.,1.);

Annulus
$cx=.5; $cy=.75; # center of the annulus
$innerRad=.5; $outerRad = .75; # inner and outer radii
center: $cx $cy
inner and outer radii
$innerRad $outerRad
lines
compute the number of grid lines:
$nr=int (($outerRad—$innerRad)/$ds + 2.5);
$nTheta = int(2.x$pix($innerRad+$outerRad)*.5/$ds + 1.5);
$nTheta $nr
boundary conditions
—-1-150
mappingName
$annulusName
exit

1=

Henshaw (LLNL) Overture Short Course Cambridge 69 /140

Demo: Generating an Overlapping Grid with Ogen...

© circle-in-a-channel example by hand.

@ Build a grid for a valve, port and cylinder using the native
geometry tools. This example illustrates the building of a
body-of-revolution and the creation of a special “join” mapping
where the valve-stem intersects the port.

Henshaw (LLNL) Overture Short Course Cambridge

1=

70/140

Constructing Grids on CAD Geometry

© mBuilder and rap can be used to build grids for CAD geometries.

@ Surface grids are constructed first. Volume grids are generated
starting from the surface grids.

© Grids are usually built using the hyperbolic grid-generator hype.

© Given a starting curve on the surface, a grid is generated by
marching over the surface.

© Volume grids are constructed by marching, starting from a surface
grid.

© Grids can be smoothed with an elliptic smoother. Grid lines can
be clustered (stretched).

L

Henshaw (LLNL) Overture Short Course Cambridge 71/ 140

Demo: Constructing Grids on CAD geometries...

Building grids on the ASMO car geometry.

© mbuilder asmoBody.cmd (grid generation for the car body).

@ mbuilder asmoFrontWheel.cmd (grid generation for the front
wheel).

© mbuilder asmoBackWheel.cmd (grid generation for the back
wheel).

© ogen asmo.cmd (overlapping grid generation).

(See Overture/sampleGrids/README.)

Henshaw (LLNL) Overture Short Course Cambridge

L

72 /140

Primer...

L

Henshaw (LLNL) Overture Short Course Cambridge 73 /140

Primer Examples: Using the High-Level Interface

Overture is distributed with a collection of Primer examples that can be
used as a starting point for creating new solvers.

© MappedGrid Examples: solving problems on single MappedGrid.

@ mappedGridExample2: Solve a convection diffusion equation on a
single curvilinear grid.

@ Overlapping Grid Examples

@ example 6: Solve a convection diffusion equation on an overlapping
grid.
@ example 7: Solve an elliptic boundary value problem.

L

Henshaw (LLNL) Overture Short Course Cambridge 74] 140

mappedGridExample2: Solving u; + auy + buy = vAu.

Setup...

#include "Overture.h"
int
main(int argc, char =xargv[])

Overture :: start(argc,argv); /1
AnnulusMapping annulus;

MappedGrid mg(annulus); /1
mg. update (); 11

realMappedGridFunction u(mg);
Index 11,12,13;

getindex (mg.dimension(),11,12,13); 11
u(l1,12,13)=1.; 11
MappedGridOperators op(mg); 11
u.setOperators(op); 11

PlotStuff ps(TRUE, "mappedGridExample2"); //
PlotStuffParameters psp; 11

Henshaw (LLN

initialize Overture

MappedGrid for a square
create default variables

assign 11,12 ,13 from dimension
initial conditions

operators
associate with a grid function

create a PlotStuff object
This object is used to change plotting parameters

1=

Overture Short Course Cambridge 75/ 140

mappedGridExample2: u; + auy + buy = rAu.

Time-stepping...

real t=0, dt=.005, a=1., b=1., nu=.1;
for (int step=0; step<100; step++)

if (step \% 10 == 0)
Plotlt::contour(ps, u,psp); /1 plot contours every 10 steps

Il ssxsxs forward Euler time step sosoxsk
ut+=dt*(—axu.x () —bxu.y() + nux(u.xx()+u.yy()));

t+=dt;

/1 apply Boundary conditions : u=0

int component=0;

u.applyBoundaryCondition (component, dirichlet ,allBoundaries ,0.);
Il fix up corners, periodic update:
u.finishBoundaryConditions ();

}

Overture :: finish ();
return 0;

1=

Overture Short Course Cambridge 76/ 140

Henshaw (LLN

Example 6: Solving a PDE on an overlapping grid

Solve ut + aux + buy = v(uxx + Uyy) on an overlapping grid.

Figure: Results from example6.C, solve an advection-diffusion equation.

1=

Henshaw (LLNL) Overture Short Course Cambridge 771140

Example 6: Solving a PDE on an overlapping grid

Solve ut + aux + buy = v(uxx + Uyy) on an overlapping grid.

#include "Overture.h"
#include "Ogshow.h"
#include "CompositeGridOperators.h"

int
main(int argc, char sxargv[])
{
Overture :: start(argc,argv); // initialize Overture
aString nameOfOGFile="cic.hdf", nameOfShowFile="example6.show";

!/l create and read in a CompositeGrid
CompositeGrid cg;

getFromADataBase (cg, nameOfOGFile);
cg.update ();

Interpolant interpolant(cg); !/l Make an interpolant

Ogshow show(nameOfShowFile); !l create a show file
CompositeGridOperators operators(cg); !l operators for a CompositeGrid
!/ operators.setOrderOfAccuracy (4); /!l use this for fourth order
Range all;

realCompositeGridFunction u(cg, all ,all ,all ,1); Il create a grid function
u.setOperators(operators);

u.setName("u"); // name the grid function
u=1.; /1 initial condition

1=

Henshaw (LLN Overture Short Course Cambridge 78 /140

Example 6: Solving a PDE on an overlapping grid

continued...
real t=0, dt=.001; /
real a=1., b=1., viscosity=.1; /
char buffer[80]; /
int numberOfTimeSteps=200;

for (

{

}

int i=0; i<numberOfTimeSteps; i++) /

if (
{

i %40 == 0)

show. startFrame ();

/
/

=

/

!l save solution every 40 steps

initialize time and time step
initialize parameters
buffer for sprintf

take some time steps

/l start a new frame

show.saveComment(0, sPrintF (buffer ,"Here_is_solution %i",i));

show.saveComment(1,sPrintF (buffer
show. saveSolution(u);

}

Il *xx take a time step with Euler’'s method s

" t=%e " 1));

u+=dt*(—axu.x() — bxu.y() + viscosityx(u.xx() + u.yy()));

t+=dt;
u.interpolate ();

// apply a dirichlet BC on all boundaries:

/1 interpolate

u.applyBoundaryCondition (0,BCTypes:: dirichlet ,BCTypes:: allBoundaries ,0.);

// for 4th order:

/1 u.applyBoundaryCondition (0,BCTypes:: extrapolate ,BCTypes:: allBoundaries ,0.);

u.finishBoundaryConditions ();

Overture :: finish ();
return O;

Henshaw (LLN

Overture Short Course

Cambridge

1=

79 /140

Example 7: Solve an elliptic boundary value problem

Solves Au + uyx = f with Dirichlet BC’s on an overlapping grid.

#include "Overture.h"
#include "CompositeGridOperators.h"
#include "Oges.h"

int main(int argc, char =*argv[])
{
Overture :: start(argc,argv); // initialize Overture
// create and read in a CompositeGrid
aString nameOfOGFile="cic.hdf";
CompositeGrid cg;
getFromADataBase (cg, nameOfOGFile);
cg.update ();

/!l make a grid function to hold the coefficients

Range all;

int stencilSize=int (pow(3,cg.numberOfDimensions())+1.5);
realCompositeGridFunction coeff(cg, stencilSize ,all ,all, all);
coeff.setlsACoefficientMatrix (TRUE, stencilSize);

realCompositeGridFunction u(cg),f(cg); Il create grid functions:

CompositeGridOperators op(cg); /1 create some differential operators
op.setStencilSize (stencilSize);
coeff.setOperators(op);

1=

Henshaw (LLN / 140

Overture Short Course Cambridge

Example 7: Solve an elliptic boundary value problem

continued...
coeff=op.laplacianCoefficients()+op.xCoefficients (); /1 here is the operator
I/ fill in the coefficients for the boundary conditions

coeff.applyBoundaryConditionCoefficients (0,0, dirichlet, allBoundaries);
coeff.applyBoundaryConditionCoefficients (0,0, extrapolate ,allBoundaries);
coeff.finishBoundaryConditions ();

Oges solver(cg); /I create a solver
solver.setCoefficientArray (coeff); /1 supply coefficients

!/ assign the rhs: u=0 on the boundary
Index 11,12,13, 1b1l,Ib2,1b3;
for (int grid=0; grid<cg.numberOfComponentGrids (); grid++){
MappedGrid & mg = cg[grid];
getindex (mg.indexRange () ,11,12,13);
flgrid](11,12,13)=1.;
for (int side=Start; side<=End; side++)
for (int axis=axisl; axis<cg.numberOfDimensions(); axis++){
if (mg.boundaryCondition ()(side,axis) > 0){
getBoundarylndex (mg. gridindexRange () , side , axis ,1b1,1b2,1b3);
flgrid](Ibl,1b2,1b3)=0.;
}
}
}

solver.solve(u,f); /1 solve the equations
u.display ("Here_is_the_solution");
Overture :: finish ();

return (0);

} 2

Henshaw (LLN

Overture Short Course Cambridge 81/140

Demo: Primer examples...

© Solve a PDE on a mappedGrid:
@ mappedGridExample2

© Solve a PDE on an overlapping grid:
@ example6

© Deforming grid example:
@ deform -numSteps=50

L

Henshaw (LLNL) Overture Short Course Cambridge 82 /140

Other primer examples:

© example9.C : read and write data to a DataBase file.

© movel.C : moving grid example.

@ lins.C : solve the steady linearized Navier-Stokes equations.
© callingFortran.C : how to call Fortran from C++.

© pwave.C : a parallel wave equation solver.

© gridPrint.C : read an Overture grid file (hdf) and output to a text
file.

@ gridGenExample.C: build an overlapping grid in a program.
@ gridQuery.C : read an Oveture grid and display data.

L

Henshaw (LLNL) Overture Short Course Cambridge 83 /140

AMR...

L

Overture Short Course Cambridge 84 /140

Block Structured Adaptive Mesh Refinement

© Initially developed by Berger and Oliger (JCP 1984)
@ Extensions to the Euler equations by Berger and Colella (JCP 1989)

© AMR and overlapping grids considered by Brislawn, Brown, Chesshire
and Saltzman (1995), and Boden and Toro (1997)

© AMR in Overture has contributions from Brown, Philip and Quinlan.

Some Structured AMR frameworks

© AMRCLAW (LeVeque and Berger)

© Amrita (Quirk)

© AMROC (Deiterding, ORNL).

© Boxlib (Bell et.al., LBNL)

© Chombo (Colella et.al., LBNL)

© GrACE (Parashar)

@ PARAMESH (NASA Goddard Space Flight Center)

© SAMRAI (Hornung et.al. LLNL) (L]

Henshaw (LLNL) Overture Short Course Cambridge 85/ 140

AMR regridding algorithm (Berger-Rigoutsos)

box is split into two

/\
/1 I\
4 N
ole ele CIE
elele|e elele eleje|e
elele elele el
ee ee ele T
ole|e eole|e ele|e /
olelple oee eolelo|o
ol / o 5 /
p4 A\ Ll
/ \ \ JJ
tagged cells initial box process is repeated

(1) tag cells where refinement is needed

(2) create a box to enclose tagged cells

(3) split box along longest direction (histogram of tagged cells)

(4) fit new boxes to each split box and repeat the steps as needed. -

Henshaw (LLNL) Overture Short Course Cambridge 86 /140

AMR on overlapping grids

Features of Overture’s AMR:

© AMR grids are generated in the unit square coordinates of each
component grid.

@ efficient handling of refinement grids on curvilinear grids.
© parallel (although more work regired to improve parallel scaling).

© updating interpolation points between refinement grids from
different base grids.

@ retaining the efficiency of Cartesian grids.

© saving and reading solutions and grids from a data base file in an
efficient manner (e.g. for post-processing and restarts).

@ interactive graphics.

L

Henshaw (LLNL) Overture Short Course Cambridge 87 /140

I O B B B B w mwwmmm
| S S N S S — — T

Overlapping Grids and AMR

Component grid 1, /\/!F*
base grid 1 =T s !
Refinement grids =T] f
interpolate from — ____———
refinements of a). T
different base grid). 9
ol
Component grid 2,)Q b
base grid 2 T~ é
T4
[grea.
G

Henshaw (LLNL) Overture Short Course Cambridge 88/ 140

The basic AMR time stepping algorithm

PDEsol ver (G, tiinal)
/1 G (input): current grid.
{
t:=0; n:=0;
ul := applylnitial Condition(G);
whi | e t < tinal
if(n nod Nregrid == 0)
/'l regrid every npgid St eps
e := estimateError(g,u);
G* :=regrid(g,e);
u’ := interpol ateToNewGid(ul',G,G%);
G :=G* ul:=uf;
At : = conputeTi meStep(g,u);
uft = timeStep(g,uM,At);
t:=t+At; n:=n+1,;
i nterpol ate(g,ul');
appl yBoundar yCondi ti ons(gG,u},t);
} C

Henshaw (LLNL) Overture Short Course Cambridge 89/ 140

AMR components of Overture

class Regrid
@ generation of aligned AMR grids using the Berger-Rigoutsos algorithm.
@ generation of rotated AMR grids using the Berger algorithm.

@ Boxlib is used for domain calculus (e.g. intersecting two boxes).

class ErrorEstimator
@ defines standard error estimators based on first and second differences.
@ smoothing of the error and propagation across overlapping grid
boundaries.
class Interpolate
@ fine to coarse and coarse to fine interpolation of patches.
@ supports any refinement ratio (1,2,3,4,...) and any order of accuracy.
G

Henshaw (LLNL) Overture Short Course Cambridge 90/ 140

AMR components of Overture

class InterpolateRefinements

@ high level function to interpolate the solution from one AMR overlapping
grid to another AMR overlapping grid.

@ update all AMR ghost points and hidden coarse grid points on an AMR
overlapping grid.

Ogen

@ the overlapping grid generator knows how to update interpolation points
on AMR grids.

Elliptic Solvers

@ Oges can be used to solve for the solution on the entire AMR hierarchy.
Oges is an interface to sparse solvers such as PETSc.

L

Henshaw (LLNL) Overture Short Course Cambridge 91/ 140

amrh.C: a simple Overture AMR code

Found in Overture/primer/amrh.C

© A small code demonstrating the use of AMR with Overture.
@ Solves the advection diffusion equation.
© Runge-Kutta time-stepping

© uses the method of analytic solutions for testing accuracy.

Example uses of Overture AMR functions from amrh.C:

CompositeGrid cg,cgNew;
realCompositeGridFunction u, error ,uNew;

ErrorEstimator errorEstimator;
errorEstimator.computeAndSmoothErrorFunction(u, error); // compute error estimate

Regrid regrid;

regrid.regrid (cg,cgNew, error, errorThreshold); /1 generate new AMR grid
Ogen ogen;
ogen.updateRefinement (cgNew); // compute AMR overlapping interp. pts.

uNew. updateToMatchGrid (cgNew);
InterpolateRefinements interp;
interp.interpolateRefinements(u,uNew); // interpolate refinement grids LLg

Henshaw (LLNL) Overture Short Course Cambridge 92 /140

Example amrh computation

Cet00

. Au=1.00e-02, anu=0.00e+00 u , Au=1,00e-02, anu

u =500e-01, dt=3.

0 120
00

oo o
oo v
o0

oes 428
4

oz

orss a7
oo o
a2 ~aout

Traveling pulse analytic solution

Overture Short Course Cambridge

amrh demo

© Propagation of a pulse through an overlapping grid. In this
example the exact solution is a polynomial (twilightzone flow) but
the error and AMR grids are based on a propagating pulse. The
computed errors should be “zero” since the scheme should be
exact for polynomials of degree 2.
@ ogen -noplot sisArg.cmd -interp=e -factor=2
@ amrh -cmd=amrhtz -g=sise2.order2.hdf -xc=-.4 -yc=-.4 -tf=1. -I=2
-r=2 -go=halt
© amrh -cmd=amrhtz -g=sise2.order2.hdf -xc=-.4 -yc=-.4 -tf=1. -I=3
-r=2 -go=halt

L

Henshaw (LLNL) Overture Short Course Cambridge 94 /140

Detonation in an Expanding Channel

An example AMR computation using cgcns.

1=

Henshaw (LLNL) Overture Short Course Cambridge 95/ 140

Temperature, t = 3 1.25 Temperature, t =5 1.25

I contact ——
25

Radical fractiony,t =3 _ 1.0

I 0.0 I 0.0

Product fraction \,t = 3_ 1.0 Product fraction \,t =5_ 1.0

I 0.0 LLg

Henshaw (LLNL) Overture Short Course Cambridge 96 / 140

1.5

Temperature, t = 10 |

i
I

Il
| 4/

detonation reform

Temperature, t = 14

leading shock

!

Mach stem

0.0

Product fraction A\, t = 10

u
I 0.0 I 0.0 LL%

Henshaw (LLNL) Overture Short Course Cambridge 97/ 140

Figure: Closeup of the density near the Mach stem. The boundaries of the
refinement grids are shown.

1=

Henshaw (LLNL) Overture Short Course Cambridge 98 /140

AMR (serial) performance on two problems:

Quarter plane Expanding channel
time steps 12,418 21,030

grids (min,ave,max) (2,57,353) (5,274,588)
points (min,ave,max) | (2.0€5,9.2e5,1.9e6) || (1.2€5,6.4€5,1.3€6)
s/step % s/step %
compute Au/; | 13.85 92.7 11.50 82.4
boundary conditions 12 .8 .14 1.0
interpolation (overlapping) .09 .6 .45 3.2
AMR regrid/interpolation .54 3.6 1.62 11.6
other .34 2.3 .25 1.8
total | 14.94 100 13.96 100

Table: CPU time (in seconds) per step for various parts of the code and their
percentage of the total CPU time per step.

From

e WDH, DWS, An Adaptive Numerical Scheme for High-Speed Reactive Flow on
Overlapping Grids, J. Comput. Phys., 2003. (L

Henshaw (LLNL) Overture Short Course Cambridge 99/ 140

Detonation initiation in

pressure

m

overlapping grid

Im‘ Im

Notes: cgcns, reactive-Euler: one refinement level, factor 4, 4930 time steps, 48
processors, from 5 to 682 grids, 100M pts (max) (eff. resolution 400 M). (L

Henshaw (LLNL) Overture Short Course Cambridge 100/ 140

Estimating Convergence Rates

Define the volume-weighted discrete L,-norm of a grid function U; as

IUillp = <W

Assume the discrete solution U™ at grid spacing hy, satisfies

1/p
) s dV| = 'Z):' drydrydrs.
i

U™ —u(x",t) = C"hp,
The difference between resolution h, and hy, is
U™ = RV lp = Clhm — hal,
where R} is a fine to coarse restriction operator.

Result: Given three solutions we can estimate the convergence rate u
and the error. T

Henshaw (LLNL) Overture Short Course Cambridge 101/140

Detonation in a T-Pipe
t=2.0 t=2.8
hm er ey er ey
1/120 | 4.0e—3 | 3.0e—2 | 3.8e—2 | 2.6e—-1
1/160 | 2.2e—3 | 1.6e—2 | 2.4e—-2 | 1.9e-1
1/240 | 9.8e—4 | 7.1e-3 | 1.2e—2 | 1.2e-1
rate, u 2.04 2.07 1.65 1.09

convergence rates patt =2.0andt = 2.8.

Henshaw (LLNL)

Overture Short Course

Cambridge

Estimating Convergence Rates

Estimated L; and L, errors in the density, 8{” and 55“, respectively, and

e WDH, DWS, Parallel Computation of Three-Dimensional Flows using Overlapping
Grids with Adaptive Mesh Refinement, J. Comput. Phys., 2008.

L

102 /140

PDE Solvers...

L

Henshaw (LLNL) Overture Short Course Cambridge 103 /140

An Overview of Overture based PDE Solvers

© Oges: equation solver for implicit systems.

© Ogmg: fast multigrid solver for scalar elliptic equations.
© cgad : advection-diffusion solver.

© cgins : incompressible flow.

© cgcns : compressible flow with adaptive mesh refinement.
© cgmx : Maxwell’'s equations.

@ cgsm : Elastic wave equation (*new*).
© cgmp : multi-domain multi-physics problems.

@ conjugate heat transfer (fluid flow and solid heat transfer).
@ fluid-structure interactions (FSI) (*under development*).

L

Henshaw (LLNL) Overture Short Course Cambridge 104 /140

Oges: Overlapping Grid Equation Solver

The Oges class can be used to solve the systems of sparse equations
that result from discretising boundary value problems (elliptic
problems, implicit time-stepping) on overlapping grids.

Oges is an interface to various solvers packages:

© sparse direct solvers (e.g. Yale, SuperLU)
@ sparse iterative solvers (SLAP, PETSc)
© multigrid solver (Ogmg)

L

Henshaw (LLNL) Overture Short Course Cambridge 105/ 140

Primer example7 shows the use of Oges

Here the sparse matrix for the operator coeff= A + 04 is formed.

realCompositeGridFunction coeff(cg, stencilSize ,all ,all ,all);

CompositeGridOperators op(cg); /1 create some differential operators
coeff=op.laplacianCoefficients ()+op.xCoefficients (); /1 here is the operator
Oges solver(cg); Il create an Oges solver
solver.setCoefficientArray (coeff); /1 supply coefficients

solver.solve(u,f);

1=

Overture Short Course Cambridge 106/ 140

Ogmg is a multigrid solver for overlapping grids.

Currently being extended to 4th-order accuracy and parallel.

Relative CPU time

Ogmg is many times faster than Krylov methods.

. sove

] Ogmg = sewp
bICG-stab
| Lo
i

@ matrix-free; optimized for Cartesian grids. g
H
@ automatic coarse grid generation. fa
@ adaptive smoothing o
o variable sub-smooths per component grid. | [—
o interpolation-boundary smoothing (IBS). I B SCo00
e
@ Galerkin coarse grid operators (operator jor
averaging).
@ centered numerical boundary conditions for
Dirichlet and Neumann problems. W C

3 4 5
muligrid cycle

WDH., On Multigrid For Overlapping Grids, SIAM J. Sci. Comput. 26, no. 5, (2005) 1547-1572.

L

Henshaw (LLNL) Overture Short Course Cambridge 107 / 140

Ogmg is a multigrid solver for overlapping grids.

Currently being extended to 4th-order accuracy and parallel.

Relative CPU time
150 T T T
| | Il solve
i| 3 setup

biCG-stab
ILY©

ILUG)

Relative CPU

biCG-stab

[7| IRRRREUR——— lL,U(S) J
Ogng
0 : (5
1 2 3 4

Henshaw (LLNL) Overture Short Course Cambridge 107 / 140

Ogmg is a multigrid solver for overlapping grids.

Currently being extended to 4th-order accuracy and parallel.

Multigrid Convergence

10 T T T T :
—=— Gnd: multiSphere3. 03/06/26
BC: DDDDDD+IHIDI+IDI+....
3 : : Second-order accurate.
107 PR e 15753 5.4e+06 points. 4 levels. H
; H CR=0.046, ECR=0.55, F[2,1]
] > :
-2 ' g J $ [
% 10 _.
o : A ; ;
E
g
= 10‘4_ .. _
©
£
10‘6_ i
-8 i i i i i >
b 1 2 3 4 5 6 g L@
multigrid cycle

Henshaw (LLNL) Overture Short Course Cambridge 107 / 140

Automatic coarse grid generation is a key feature.

1=

Henshaw (LLNL) Overture Short Course Cambridge 108 /140

Accuracy and convergence of the new fourth-order

accurate parallel version of Ogmg.

Sphere in a Box, Errors versus h

Sphere in a Box, Order 4, V[2,1]
10 i 10° ! :
~£3-Dirichlet -©-no IBS
-©-Neumann —£-IBS
_ 2
10 10
CR=0.246, ECR=0.74
s = 10°
2 . 4 El
510 | 3
E g
g g0
S 5l 5
310 i E
= Slope4 g 107 CR=0.058, ECR=0.61
0 : 107
107 — 107]
10 10 0 2 4 6 8 10
h multigrid cycle

@ Initial results indictate that the fourth order multigrid solver will be
orders of magnitude faster than competing solvers.

1=

Henshaw (LLNL) Overture Short Course Cambridge 109 /140

Cgins: incompressible Navier-Stokes solver.

@ efficient split-step scheme.

\}ﬁ . @ spatial approximations: 2nd-order and 4th-order
/, — accurate.

@ @ time-stepping methods: explicit, semi-implicit
' (time accurate), pseudo steady-state (efficient
line solver), full implicit.

@ New: approximate factored scheme with
high-order compact approximations.

@ support for moving rigid-bodies.
@ heat transfer (Boussinesq approximation).

e WDH., A Fourth-Order Accurate Method for the Incompressible Navier-Stokes
Equations on Overlapping Grids, J. Comput. Phys, 113, no. 1, (1994) 13-25.

e WDH, N.A. Petersson, A Split-Step Scheme for the Incompressible Navier-Stokes
Equations, in Numerical Simulation of Incompressible Flows, 2003. (L]

Henshaw (LLNL) Overture Short Course Cambridge 110/ 140

Cgins solves the velocity-pressure form of the

Navier-Stokes equations.

Incompressible Navier-Stokes equations: velocity-divergence form:

ut+ (u-Vju+Vp—rvAu —f =0, t>0, xeQ
V-u=0 t>0 xeQ

Cgins solves the velocity pressure form:

Ut + (u-V)u+Vp —vAu —f =0, t>0, xeQ
Ap—Vu:Vu-—-V-f=0, t>0 xeQ

The split-step scheme decouples the solution of the velocity and
pressure to avoid solving a large coupled system of equations.

L

Henshaw (LLNL) Overture Short Course Cambridge 111/140

The high-order accurate split-step scheme relies on

careful treatment of the boundary conditions.

Split-step schemes are more efficient than coupled schemes but many
split-step schemes are only first-order accurate.

U+ (u-V)u+Vp—vAu—f=0, t>0 xeQ
Ap—-Vu:Vu—-aV. -u—-V-f=0, t>0, xeQ

1=

Henshaw (LLNL) Overture Short Course Cambridge 112 /140

The high-order accurate split-step scheme relies on

careful treatment of the boundary conditions.

Split-step schemes are more efficient than coupled schemes but many
split-step schemes are only first-order accurate.

U+ (u-V)u+Vp—vAu—f=0, t>0 xeQ
Ap—-Vu:Vu—-aV. -u—-V-f=0, t>0, xeQ

1=

Henshaw (LLNL) Overture Short Course Cambridge 112 /140

The high-order accurate split-step scheme relies on

careful treatment of the boundary conditions.

Split-step schemes are more efficient than coupled schemes but many
split-step schemes are only first-order accurate.

X e
x e

U+ (u-V)u+Vp —rvAu —f =0, t >0,
Ap—-Vu:Vu—-aV. -u—-V-f=0, t >0,

Divergence damping term: o'V - u is important.

Henshaw (LLNL) Overture Short Course Cambridge

1=

112 /140

The high-order accurate split-step scheme relies on

careful treatment of the boundary conditions.

Split-step schemes are more efficient than coupled schemes but many
split-step schemes are only first-order accurate.

U+ (u-V)u+Vp—vAu—f=0, t>0 xeQ
Ap—-Vu:Vu—-aV. -u—-V-f=0, t>0, xeQ

Divergence damping term: o'V - u is important.

Wall boundary conditions:

u = 0, V-u=0, (pressure BC) x € 99,

Henshaw (LLNL) Overture Short Course Cambridge

1=

112 /140

The high-order accurate split-step scheme relies on

careful treatment of the boundary conditions.

Split-step schemes are more efficient than coupled schemes but many
split-step schemes are only first-order accurate.

U+ (u-V)u+Vp—vAu—f=0, t>0 xeQ
Ap—-Vu:Vu—-aV. -u—-V-f=0, t>0, xeQ

Divergence damping term: o'V - u is important.

Wall boundary conditions:
u = 0, V-u=0, (pressure BC) x € 99,
with numerical boundary condition:
ph = —-n-(vVxVxu).

Use V x V x u instead of Au for implicit time-stepping.

L

Henshaw (LLNL) Overture Short Course Cambridge 112 /140

Incompressible flow computations with Cgins

il =L
Flow past 2d buildings

Cool air entering a room (temperature) CgWind LES computation L@

Henshaw (LLNL) Overture Short Course Cambridge 113/140

Flow past a blood-clot filter using cgins

Overlapping grid for the filter Spherical clot trapped in the filter 2

167

. . = 139

Trap-ease wire filter 1.,
P‘L 0.83

0.56

195 — —

1.68

|
223 . 197
Spherical clot trapped near the front |

Z 140 123
113 . - " 099

s N os6 - - .

| i 058

— 0.31 [— = Y r— :
0.03 0.01

M.A. Singer, WDH, S.L. Wang, Computational Modeling of Blood Flow in the Trapease Inferior
Vena Cava Filter, Journal of Vascular and Interventional Radiology, 20, 2009.

Henshaw (LLNL) Overture Short Course Cambridge 114 /140

tcilcVorticity.mpg high Re flow past two cylinders
joukowskyPitchPlunge.mpg pitching plunging airfoil
drops-speed.mpg 5 cylinders falling in a channel
dropStick.mpg fluttering plate (light body).
heatedRoom.mpg cool air flowing into a room.
sibDeform.mpg 3d deforming sphere

L

Henshaw (LLNL) Overture Short Course Cambridge 115/140

© Flow past a cylinder.

@ ogen -noplot cilcArg -interp=e -factor=1
@ cqgins cylinder -g=cilcel.order2.hdf -tf=100. -tp=1.
-show="cyinder.show"

@ Two falling cylinders.

@ ogen -noplot twoDropArg -interp=i -factor=2
@ cgins twoDrop -g=twoDropi2.order2.hdf -nu=.02 -tf=7. -tp=.1

© Heated cylinder in a square.

@ ogen noplot cicArg -interp=e -factor=4
@ cgins heatedCyl -g=cice4.order2 -nu=.01 -tf=10. -tp=1. -ts=implicit
-solver=yale -psolver=yale

L

Henshaw (LLNL) Overture Short Course Cambridge 116 /140

Cgcns: compressible N-S and reactive-Euler.

@ reactive and non-reactive
Euler equations, Don
Schwendeman (RPI).

@ compressible Navier-Stokes.

@ multi-fluid formulation, Jeff
Banks (LLNL).

@ adaptive mesh refinement and
moving grids.

e WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using
Overlapping Grids with Adaptive Mesh Refinement, J. Comp. Phys. 227 (2008).

e WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed
Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).

e WDH., DWS, An adaptive numerical scheme for high-speed reactive flow on overlapping grids,
J. Comp. Phys. 191 (2003).

L

Henshaw (LLNL) Overture Short Course Cambridge 117 /140

Cgcns supports adaptive mesh refinement

Henshaw (LLNL) Overture Short Course Cambridge 118/140

Moving overlapping grids and AMR

A shock hitting a collection of cylinders (density).

adaptive mesh refinement

moving grids’
G

Henshaw (LLNL) Overture Short Course Cambridge 119/140

Cgcns Movies - High-speed Compressible Flow

randomCylSchlieren.mpg : shock hitting multiple cylinders

randomCylIGrids.mpg : AMR grids for shock hitting multiple cylinders

movingPlate78-8big.mpg : very high speed plate hitting many
particles.

detCell-L3-Rho.mpg : cellular detonation

detTube.mpg : 3D perturbed detonation in a tube.

L

Henshaw (LLNL) Overture Short Course Cambridge 120 /140

Demo: Cgcns - High-speed Compressible Flow

© Shock hitting a cylinder (with AMR).

@ ogen noplot cicArg -interp=e -factor=2
@ cgcns cicShockg.cmd -g=cice2.order2.hdf -1=2 -r=2 -tf=1. -tp=.1
-xStep="x=-1.5"

@ Shock hitting a moving cyinder (with and without AMR).

@ cgcns cicShockMove -g=cice2.order2
@ cgcns cicShockMove -g=cice2.order2 -amr=1

L

Henshaw (LLNL) Overture Short Course Cambridge 121/140

Cgmx: electromagnetics solver.

@ a time-domain finite difference scheme.
@ fourth-order accurate, 2D, 3D.

Efficient time-stepping with the
modified-equation approach

High-order accurate symmetric difference
approximations.

High-order-accurate centered boundary and
interface conditions.

e WDH., A High-Order Accurate Parallel Solver for Maxwell's Equations on
Overlapping Grids, SIAM J. Scientific Computing, 28, no. 5, (2006).

1=

Henshaw (LLNL) Overture Short Course Cambridge 122 /140

Maxwell’s equations are solved in second-order form

Maxwell’s equations:
2 . .
e OFE = AE+V(VIne -E) + Vinp x (V X E) — o]

e OPH = AH+V(Ving -H) + Vine x (VXH)—l—GVX(lj)

€

L

Henshaw (LLNL) Overture Short Course Cambridge 123/140

Maxwell’s equations are solved in second-order form

Maxwell’s equations:
2 .
e,u@tE_AE—i—V(Vlne -E)—i—VInux (VXE)—,LL&]
euatzH:AH—i—V(Vlnu -H>—|—Vlne>< (VXH)+6VX(1j)

€

Advantages of the second-order form:
@ No need for a staggered grid since the operator A is elliptic.
@ One can solve for E alone.

L

Henshaw (LLNL) Overture Short Course Cambridge 123/140

Modified Equation time stepping

Taylor series in time:

u(t + At) — 2u(t) + u(t — At At?
() At(z) () = Uy + Eutm -+ O(At4)

L

Henshaw (LLNL) Overture Short Course Cambridge 124 /140

Modified Equation time stepping

Taylor series in time:

u(t + At) — 2u(t) + u(t — At At?
() At(z) () = Uy + Eutm -+ O(At4)

For the wave equation
Uy = Au

L

Henshaw (LLNL) Overture Short Course Cambridge 124 /140

Modified Equation time stepping

Taylor series in time:

u(t + At) — 2u(t) + u(t — At) At?

At2 = Uy + Eutm -+ O(At4)

For the wave equation
Uy = Au
a fourth-order scheme in space and time is

Uin+1 o 2Uin + Uin_l t2

A
= AgpUM + =—(A?),,U"
Atz 4h | + 12 ()2h |

L

Henshaw (LLNL) Overture Short Course Cambridge 124 /140

Modified Equation time stepping

Taylor series in time:

u(t + At) — 2u(t) + u(t — At At?
() At(z) () = Uy + Eutm -+ O(At4)

For the wave equation
Uy = Au

a fourth-order scheme in space and time is

Uin+1 o 2Uin + Uin_l AtZ
= AgpUM 4 S (A2%)U
Atz 4hYj + 12 ()2h i

This scheme is very efficient (especially on Cartesian grids) and allows
a large (cfl=1) time step.

L

Henshaw (LLNL) Overture Short Course Cambridge 124 /140

Scattering of a plane wave by a dielectric cylinder

Grid closeup e

material interface

ci=2

grid | €%l | [€¥]lcc | [I€7]loo Oe
G1 14e—-1 | 29e-1 | 3.0e-1 | 6.7e-2
Go 1.0e—-2 | 2.1e-2 | 2.2e—-2 | 45e-3
Ga 6.8e—4 | 1.4e—-3 | 1.4e—-3 | 2.9e—-4

rate o 3.86 3.87 3.88 3.92

Known solution as a Mie series. Maximum errors att = 1. (L]

Henshaw (LLNL) Overture Short Course Cambridge 125/140

Scattering by a 3d material interface

Ex Intensity Intensity

ﬂ

I,
L r—

@ Uses newly developed 4th-order accurate 3D material interface
approximations.

@ Scattering of a plane wave by an interface with a bump, glass-to-air.
@ 1 billion grid points, 32 nodes (8 processors per node) of a Linux cluster.
G

Henshaw (LLNL) Overture Short Course Cambridge 126 /140

Cgmx Movies - Electromagnetic Wave Propagation

dieCyl16Ey.mpg Maxwell, dielectric cylinder (inside c=2)

dieCyl16Eps4Ey.mpg Maxwell, dielectric cylinder (inside c=.5)

afmOneky38.mp Maxwell, light travelling from glass to a vacuum
ilc2d.mpg Maxwell: wake fields in a 2D accelerator

Henshaw (LLNL) Overture Short Course Cambridge

L

127 /140

Demo: Cgmx - Electromagnetic Wave Propagation

© Diffraction by a dielectic cylinder.

@ ogen noplot io -order=4 -interp=e -factor=4

@ cgmx dielectricCyl -g=innerOutere4.order4 -kx=2 -eps1=.25
-eps2=1. -go=halt -dissOrder=4 -tp=.01 -tf=10

© cgmx dielectricCyl -g=innerOutere4.order4 -kx=2 -epsl1=1.
-eps2=.25 -go=halt -dissOrder=4 -tp=.01 -tf=10

Henshaw (LLNL) Overture Short Course Cambridge

L

128 /140

Cgsm: A solver for the elastic wave equation.

Available with Overture.v24

@ for general 2D/3D overlapping grids, with dynamic AMR.

@ Scheme SOS: finite difference scheme for the second-order-system.
@ Scheme FOS: Godunov scheme for the first-order-system.

@ efficient structured grid algorithms, optimized for Cartesian grids.

@ stable traction BC's for the difficult case of A/ > 1.

eigenmode of a solid sphere p-wave shock (AMR) 3D plate with holes

e D. Appeld, J.W. Banks , WDH, D.W. Schwendeman, Numerical Methods for Solid Mechanics on
Overlapping Grids: Linear Elasticity, LLNL-JRNL-422223, submitted. LLg

Henshaw (LLNL) Overture Short Course Cambridge 129/140

Cgsm: Vibrational mode of a solid elastic sphere.
Exact solution derived by Lamb, 1882.

SOS FOS
Grid g0 hj el(‘j) r e&j) r e\(,j) r eg) r
Q) 1/10 13e — 1 51e — 2 1.2e — 1 2.60 — 1
gl 120 | 40e—2 | 32 | 12e—2 | 42 | 30e—2 | 40 | 51e—2 | 51
g 140 | 100e—3 | 40 | 24e—3 | 51 | 71e—3 | 42 | 86e—3 | 6.0
© 180 | 24e-3 | 41 | 52e—4 | 46 | 17e—3 | 41 | 20e—3 | 43
rate 193 222 2.0 2.37

Maximum errors and estimated convergence rates.

1=

Henshaw (LLNL) Overture Short Course Cambridge 130/ 140

Diffraction of a p-wave “shock” by a circular cavity.
With Adaptive Mesh Refinement.

L

Henshaw (LLNL) Overture Short Course Cambridge 131/140

Cgsm Movies - Elastic waves

plate3dWithHoles.mpg deforming 3D plate with holes.
deformingSphere.mpg deforming elastic sphere

1=

Henshaw (LLNL) Overture Short Course Cambridge 132 /140

Demo: Cgsm - Elastic waves

© Deforming solid disk. (-pv=c : SOS, -pv=g : FOS).

@ ogen noplot sicArg -factor=3 -order=2 -interp=e

@ cgsm pulse -g=sice3.order2.hdf -pv=c -diss=1. -tp=.01 -tf=10.
-x0=0. -y0=0.

© cgsm pulse -g=sice3.order2.hdf -pv=g -diss=0. -tp=.01 -tf=10.
-x0=0. -y0=0.

@ Eigenmode of a 3D elastic solid sphere.

@ ogen noplot sphere -interp=e -order=2 -factor=2
@ cgsm sphereEigen -g=spheree2.order2 -diss=0.5 -tp=.05 -vClass=2
-nMode=2 -mMode=1 -go=halt -dsf=.05

L

Henshaw (LLNL) Overture Short Course Cambridge 133/140

Cgmp: a multi-domain multi-physics solver.

Cgmp:
© couples multiple CG solvers (cgens, cgins, cgad, cgsm) into a
single simulation.

@ atightly-coupled partitioned approach for time-stepping (not a
monolitic solver).

Examples:
© Conjugate heat transfer (CHT): fluid flow (cgins) and heat transfer
in solids (cgad).
@ Fluid structure interactions (FSI): fluid flow (cgcns) and solid
defomation (cgsm) [under development].

L

Henshaw (LLNL) Overture Short Course Cambridge 134 /140

Cgmp for conjugate heat transfer.

Coupling incompressible flow to heat conduction in solids.

@ overlapping grids for each fluid or solid domain,

@ a partitioned solution algorithm (separate physics
solvers in each sub-domain),

@ (cgins) incompressible Navier-Stokes equations
(with Boussinesq approximation) for fluid domains,

@ (cgad) heat equation for solid domains,
@ a key issue is interface coupling.

e WDH., K. K. Chand, A Composite Grid Solver for Conjugate Heat Transfer in
Fluid-Structure Systems, J. Comput. Phys, 2009.

L

Henshaw (LLNL) Overture Short Course Cambridge 135/140

The multi-domain composite grid approach for CHT

Each fluid or solid sub-domain is covered by an overlapping grid.
Fluid sub-domains : cgins. Solid sub-domains: cgad.
Coupled problem: cgmp. T

Henshaw (LLNL) Overture Short Course Cambridge 136 /140

Demo: Cgmp - Conjugate Heat Transfer

© Four hot cylinders in a square.

ogen noplot diskArray -factor=1 -interp=e -nCylx=2 -nCyly=2
cgmp io.cmd -g="diskArray2x2yel.order2.hdf" -nu=.05 -kappa=.01
-tp=.05 -solver=yale

L

Henshaw (LLNL) Overture Short Course Cambridge 137 /140

Deforming composite grids (DCG) for FSI

An efficient approach for FSI retaining high quality grids for large displacements.

Goal: coupled simulations of compressible/incompressible fluids and deforming solids.

A mixed Eulerian-Lagrangian approach:
@ Fluids: general moving coordinate system with overlapping grids.

@ Solids : fixed reference frame with overlapping-grids (later: unstructured-grids,
or beam/plate models).

@ Boundary fitted deforming grids for fluid-solid interfaces.
Strengths of the approach:
@ maintains high quality grids for large deformations/displacements.
@ efficient structured grid methods (AMR) optimized for Cartesian grids.

«©
&

C
Mach 2 shock in a gas hitting two elastic cylinders.

Henshaw (LLNL) Overture Short Course Cambridge 138/140

Initial focus: coupling high speed compressible flow to

linear elasticity.

© interface approximations based on a fluid-solid Riemann problem are stable for
all impedance ratios (e.g. the difficult case of light solids).

9 second-order accuracy demonstrated for problems with smooth solutions (elastic
piston problem, deforming diffuser).

© stable schemes for problem with shocks (e.g. superseismic shock).

e J.W. Banks, W.D. Henshaw, D.W. Schwendeman, Deforming Composite Grids for Solving Fluid
Structure Problems, in preparation.

e J. W. Banks and B. Sjogreen, A Normal Mode Stability Analysis of Numerical Interface
Conditions for Fluid/Structure Interaction, Commun. Comput. Phys., 2011.

Superseismic shock, grids and solution L@

Henshaw (LLNL) Overture Short Course Cambridge 139/140

Cgmp Movies - Fluid Structure Interactions

cavityDeform.mpg : converging shock in an elastic cavity
shockMultiDisk.mpg : shock hitting two elastic cylinders

1=

Henshaw (LLNL) Overture Short Course Cambridge 140/ 140

	Introduction
	Software

	Overture Overview
	Overlapping Grids
	Interpolation
	Spatial approximations

	References
	A++/P++ Arrays
	Overture Classes
	Graphics
	Geometry, Grids and GridFunctions
	CAD and CAD repair
	Operators

	Grid Generation
	Overture Primer Examples
	AMR
	PDE Solvers
	CG Solvers
	Cgins: Incompressible Navier-Stokes Solver.
	Cgcns: Compressible Navier-Stokes Solver.
	Cgmx: Time-Domain Maxwell Equation Solver
	Cgsm: Elastic Wave Equation Solver.
	Cgmp: Multi-domain Multi-physics Solver

