
Ogen: An Overlapping Grid Generator for Overture

William D. Henshaw
Department of Mathematical Sciences,
Rensselaer Polytechnic Institute,
Troy, NY, USA, 12180. May 18, 2015

Abstract:
We describe how to generate overlapping grids for use with Overture using the ogen program. The user must first
generate Mappings to describe the geometry (a set of overlapping grids whose union covers the domain). The
overlapping grid then is constructed using the Ogen grid generator. This latter step consists of determining how the
different component grids interpolate from each other, and in removing grid points from holes in the domain, and
removing unnecessary grid points in regions of excess overlap. This document includes a description of commands,
presents a series of command files for generating various overlapping grids and describes the overlapping grid
algorithm. The ogen program can also be used to build unstructured hybrid grids where the overlap is replaced by
an unstructured grid.

1

Contents

1 Introduction 4

2 Commands 4
2.1 Commands for ogen . 4
2.2 Commands when creating Mappings . 5

3 Things you should know to make an overlapping grid 7
3.1 Boundary conditions . 7
3.2 Share flag . 8
3.3 Turning off the cutting of holes . 8
3.4 Turning off interpolation between grids . 8
3.5 Implicit versus explicit interpolation . 8

4 Examples 9
4.1 Square . 9
4.2 Stretched Annulus . 10
4.3 Cylinder in a channel . 11
4.4 Cylinder in a channel, cell-centered version . 12
4.5 Cylinder in a channel, fourth-order version . 13
4.6 Inlet-outlet . 14
4.7 Valve . 17
4.8 NACA airfoil . 19
4.9 Hybrid grid for the inlet-outlet . 21
4.10 Stretched cube . 21
4.11 Sphere in a box . 22
4.12 Sphere in a tube . 24
4.13 Intersecting pipes . 26
4.14 Body Of Revolution . 28
4.15 3D valve . 30
4.16 3D wing in a box . 32
4.17 3D wing with Joukowsky cross-sections . 32
4.18 Three-dimensional flat-plate wing . 33
4.19 Lofted box . 33
4.20 Lofted Joukowsky Wing . 34
4.21 Lofted Wigley Ship Hull . 34
4.22 Wind farm . 36
4.23 Adding new grids to an existing overlapping grid. 37
4.24 Incrementally adding grids to an overlapping grid. 38
4.25 Other sample command files and grids . 39

5 Best practices when constructing an overlapping grid 47

6 Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-block grid 48
6.1 Automatic mixed-boundary interpolation . 48
6.2 Manual specification of mixed-boundary interpolation points . 48
6.3 Spitting a grid for interpolation of a grid to itself . 49

7 Explicit hole cutting 51

8 Manual Hole Cutting and Phantom Hole Cutting 52

9 Trouble Shooting 53
9.1 Failure of explicit interpolation . 53
9.2 Tips . 55

10 Adding user defined Mapping’s 56

2

11 Importing and exporting grids to different file formats 58

12 Overlapping Grid Generator: Ogen 59
12.1 Command descriptions . 59

12.1.1 Interactive updateOverlap . 59
12.1.2 Non-interactive updateOverlap . 59
12.1.3 Moving Grid updateOverlap . 59

12.2 Algorithm . 61
12.3 Hole cutting algorithm . 61
12.4 Finding exterior points by ray tracing . 62
12.5 Adjusting grid points for the boundary mismatch problem . 64
12.6 Refinement Grids . 66
12.7 Improved Quality Interpolation . 67

12.7.1 Note: . 68

13 Treatment of nearby boundaries and the boundaryDiscretisationWidth 70

14 Adaptive Mesh Refinement 72
14.1 The algorithm for updating refinement meshes added to an overlapping grid. 72
14.2 Example: Circle in a Channel . 74
14.3 Example: Valve . 77

15 Grid Generation Timings 80

3

1 Introduction

The ogen program can be used to interactively generate overlapping grids.
The basic steps to follow when creating an overlapping grid are

• create mappings that cover a domain and overlap where they meet.

• generate the overlapping grid (ogen calls the grid generator Ogen).

• save the grid in a data-base file.

The ogen program is found in the Overture/bin directory. Just type ogen to get started. You can also type
‘ogen noplot’ in which case ogen will run without graphics. This is useful if you just want to execute a command
file to regenerate a grid – running without graphics is faster. If you have a command file, example.cmd, then you
can type ‘ogen example.cmd’ or ‘ogen example’ (a .cmd will automatically be added) to run the commands in
the file. To run without graphics type ‘ogen noplot example’.

Once you have made a grid and saved it in a data-base file (named myGrid.hdf, for example) you can look at it
using the command Overture/bin/plotStuff myGrid.hdf (or just Overture/bin/plotStuff myGrid).

Figure 21 shows a snap-shot of ogen running.

Figure 1: A snapshot of ogen

Other documents of interest that are available through the Overture home page are

• Mapping class documentation : mapping.tex, [4]. Many of the mappings that are used to create an overlapping
grid are documented here.

• Interactive plotting : PlotStuff.tex, [5].

2 Commands

2.1 Commands for ogen

The commands in the initial ogen menu are

create mappings : create mappings to represent the geometry. See section (2.2).

generate an overlapping grid : once mappings have been created an overlapping grid can be generated with this
option. This will call the Ogen grid generator. See section (12.1) for a list of the commands available with the
grid generator.

4

make an overlapping grid : this calls the old Cgsh grid generator, the original Overture grid generator.

save and overlapping grid : Save an overlapping grid in a data base file.

2.2 Commands when creating Mappings

The basic commands available from the create mappings menu option are (this list will in general be out of date
so you are advised to run ogen to see the currently available options). Most of these commands simply create a new
Mapping and call the update function for that Mapping. Descriptions of the Mapping’s referred to here can be
found in the mapping documentation [4].

help : output minimal help.

1D Mappings :

line : Build a line in 1D. This can be used for a 1D overlapping grid. Reference LineMapping.

stretching function : Reference StretchMapping.

spline (1D) : Reference SplineMapping.

2D Mappings :

Airfoil : Build a two-dimensional airfoil from various choices including the NACA 4 digit series airfoils.
Reference AirfoilMapping.

Annulus : Reference AnnulusMapping.

Circle or ellipse : Reference CircleMapping.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read
from a plot3d file. Reference DataPointMapping.

line (2D) : Reference LineMapping.

nurbs (curve) : build a NURBS (a type of spline) curve or surface from control points or by interpolating
data points. Reference NurbsMapping.

rectangle : Reference SquareMapping.

SmoothedPolygon : Build a grid or curve with a boundary that is a polygon with smoothed out corners.
Reference SmoothedPolygonMapping.

spline : Reference SplineMapping.

tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch).
Reference TFIMapping.

3D Mappings :

Box : Reference BoxMapping.

Cylinder : Reference CylinderMapping.

Circle or ellipse (3D) : Reference CircleMapping.

CrossSection : Reference CrossSectionMapping.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read
from a plot3d file. Reference DataPointMapping.

line (3D) : Reference LineMapping.

nurbs (surface) :build a NURBS (a type of spline) curve or surface from control points or by interpolating
data points. Reference NurbsMapping.

plane or rhombus : Reference PlaneMapping.

Sphere : Reference SphereMapping.

spline (3D) : Reference SplineMapping.

tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch).
Reference TFIMapping.

5

transform :

body of revolution : create a body of revolution from a two-dimensional Mapping. Reference Revolution-

Mapping.

elliptic : generate an elliptic grid on an existing grid in order to redistribute grid points. Reference Elliptic-
Transform.

fillet : Build a fillet surface to join two intersecting surfaces. Reference FilletMapping.

hyperbolic : Reference HyperbolicMapping.

hyperbolic surface : Reference HyperbolicSurfaceMapping.

intersection : Determine the intersection curve between two intersecting surfaces. Reference Intersection-

Mapping.

mapping from normals : Generate a new Mapping by extending normals from a curve or a surface. Refer-
ence NormalMapping.

reparameterize : reparameterize an existing Mapping by

1. restricting the domain space to a sub-rectangle (this would be used to create an refinement patch on
an adaptuve grid)

2. remove a polar singularity by creating a new patch with an orthographic transform.

Reference ReparameterizationTransform, OrthographicTransform and RestrictionMapping.

rotate/scale/shift : transform an existing Mapping. Reference MatrixMapping.

stretch coordinates : stretch (cluster) the grid points in the coordinate directions. Reference Stretch-

Transform and StretchMapping.

change :

change a mapping : Make changes to an existing Mapping.

copy a mapping : Make a copy of an existing Mapping.

delete a mapping : delete an existing Mapping.

data base :

open a data-base : open an Overture data-base file (new or old).

get from the data-base : read Mapping’s from the data-base.

put to the data-base : save a Mapping in the data-base.

close the data-base : close the data-base.

save plot3d file : write a plot3d file.

read from file :

read plot3d file : read a plot3d formatted file and extract the grids. Each grid becomes a DataPointMapping.

read iges file : *experimental* read an IGES (Initial Graphics Exchange Specification) file such as created
by pro/ENGINEER and build NURBS and trimmed NURBS found in the file.

read overlapping grid file : read an existing overlapping grid data base file and extract all the Mapping’s
from it. These Mappings can then be changed.

view mappings : view the currently defined Mappings.

check mapping : check a Mapping to see that it is defined properly. This is normally only done when one defines
a new Mapping.

exit this menu :

6

G1

G2

G1

interpolation

ghost
unused

G2

Figure 2: Left: an overlapping grid consisting of two structured curvilinear component grids, x = G1(r) and
x = G2(r). Middle and right: component grids for the square and annular grids in the unit square parameter space
r. Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to
apply boundary conditions.

3 Things you should know to make an overlapping grid

Here are some things that you will need to know when building overlapping grids. The examples that follow will
demonstrate all of these ideas.

Figure 2 illustrates a simple two-dimensional overlapping grid. The computational domain is covered with two
component grids x = G1(r) and x = G2(r).

3.1 Boundary conditions

Each side of each component grid must be given a boundary condition value. These boundary conditions are essential
since they indicate whether a boundary is a physical boundary (a value greater than 0), an interpolation boundary
(a value equal to zero) or a side that is has a periodic boundary condition (a value less than zero). The boundary
condition values are stored in an array as

boundaryCondition(side, axis) =


> 0 physical boundary

= 0 interpolation boundary

< 0 periodic boundary

boundaryCondition(0, 0) = left

boundaryCondition(1, 0) = right

boundaryCondition(0, 1) = bottom

boundaryCondition(1, 1) = top

boundaryCondition(0, 2) = front (3D)

boundaryCondition(1, 2) = back (3D)

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid. Note that each grid
is a mapping from the unit square or unit cube to a physical domain – the terms left, right, bottom, top, front and
back refer to the sides of the unit square or cube. When you enter the boundary condition values (when changing
them in a mapping) you should enter them in the order: left, right, bottom, top, front, back.

The grid generator uses physical boundaries to cut holes in other grids that happen to cross that physical
boundary. See, for example, the “cylinder in a channel example” where the rectangular grid has a hole cut out of
it. Interpolation boundaries are non-physical boundaries where the grid generator will attempt to interpolate the
points from other component grids. A periodic boundary can be either be a branch cut (as on an annulus) or it can
indicate a periodic domain (as with a square where the right edge of the square is to be identified with the left edge).

7

3.2 Share flag

The share flag is used to indicate when two different component grids share a common boundary (see the “inlet
outlet” example, section (4.6). The grid generator uses the share flag so that a boundary of one component grid will
not accidently cut a hole in another grid when the two grids are actually part of the same boundary. This could
happen since, due to inaccuracies in representing each grid, it may seem that the boundary on one grid lies inside or
outside the other grid (even though they are meant to be the same boundary curve).

The share flag is saved in an array that is the same shape as the boundary condition array

share(side, axis) > 0 a code that should be the same on all shared boundaries.

share(0, 0) = left

share(1, 0) = right

share(0, 1) = bottom

share(1, 1) = top

share(0, 2) = front (3D)

share(1, 2) = back (3D)

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid.
Thus the share flags on all grid faces that belong to the same boundary should be given the same share value.

This could be accomplished by setting all share values to 1 say, although this is slightly dangerous as the grid
generator could make a mistake. It is better to use a different positive integer for each different boundary.

3.3 Turning off the cutting of holes

By default, the overlapping grid generator will use any physical boundary (a side of a grid with a positive
boundaryCondition to try and cut holes in any other grid that lies near the physical boundary. Thus in the
“cylinder in a channel example” section (4.3) the inner boundary of the annulus cuts a hole in the rectangular grid.
Sometimes, as in the “inlet outlet” example, section (4.6), one does not want this to happen. In this case it is
necessary to explicitly specify which grids are allowed to cut holes in which other grids. This can be done through
in the change parameters option with the prevent hole cutting option, see section the “inlet outlet” example,
(4.6).

3.4 Turning off interpolation between grids

By default all grids can interpolate from all other grids. This default can be changed and you may specify which
grids may interpolate from which other grids. This option can be used, for example, to build grids for two disjoint
domains that match along a boundary as shown in figure (30).

3.5 Implicit versus explicit interpolation

There are two types of interpolation, explicit and implicit. Explicit interpolation means that a point that is
interpolated will only use values on other grids that are not interpolation points themselves. This means that will
the default 3 point interpolation the amount of overlap must be at least 1.5 grid cells wide. With explicit interpolation
the interpolation equations can be solved explicitly (and this faster).

With implicit interpolation the points used in the interpolation stencil may themselves be interpolation points.
This means that will the default 3 point interpolation the amount of overlap must be at least .5 grid cells wide.
Thus implicit interpolation is more likely to give a valid grid since it requires less overlap. With implicit
interpolation the interpolation equations are a coupled system that must be solved. This is a bit slower but the
Overture interpolation function handles this automatically.

8

4 Examples

In this section we describe a number of command files that can be used to create various overlapping grids. During
an interactive session a command file can be saved, see the option ‘log commands to file’ in the file pull-down
menu. By default the command file ogen.cmd is automatically saved. The command file will record all the commands
that are issued. The command file can be later read in, using ‘read command file’ in the file pull-down menu,
and the commands will be executed. You can also type ‘ogen example.cmd’ to run the command file named
example.cmd with graphics or ‘ogen noplot example.cmd’ to run without graphics.

The command file can be edited and changed. Once a complicated grid has been created it is usually easiest to
make minor changes by editing the command file. The pause command can be added to the command file which will
cause the program to pause at that point and wait for an interactive response – one can then can either continue

or break.

4.1 Square

Here is a command file to create a square. (file Overture/sampleGrids/square5.cmd) We first make a mapping
for the square and assign various parameters such as the number of grid points and the boundary conditions. Any
positive number for the boundary condition indicates a physical boundary. Next the overlapping grid generator
is called (make an overlapping grid) to make an overlapping grid (which is trivial in this case). Finally the
overlapping grid is saved in a data-base file. The data-base file is an HDF formatted file. HDF is the the Hierarchical
Data Format (HDF) from the National Centre for Super-Computing Applications (NCSA). You can look at the data
base file created here by typing plotStuff square5.hdf (or just plotStuff square5) where plotStuff is found
in Overture/bin.

1 # make a simple square

2 create mappings

3 rectangle

4 mappingName

5 square

6 lines

7 6 6

8 boundary conditions

9 1 1 1 1

10 exit

11 exit

12 #

13 generate an overlapping grid

14 square

15 done

16 change parameters

17 ghost points

18 all

19 2 2 2 2 2 2

20 exit

21 compute overlap

22 exit

23 #

24 save an overlapping grid

25 square5.hdf

26 square5

27 exit

An “overlapping grid” that is just a square

9

4.2 Stretched Annulus

FAQ : What the heck is going on with the stretching function?! (F. Olsson-Hector)

Answer: Here is a command file to create an annulus with stretching. (file
Overture/sampleGrids/stretchedAnnulus.cmd) Grid lines can be stretched in the coordinate directions
(i.e. in the unit-square coordinates). When grid lines are stretched, as in the example below, the graphics screen
will show one of the following

• The mapping to be stretched (annulus)

• The unit square to be stretched.

• The one dimensional stretching function.

The stretching functions are described in the documentation on Mapping’s [4].

1 #

2 # Create an annulus and stretch the grid lines

3 #

4 create mappings

5 # create an Annulus

6 Annulus

7 lines

8 41 11

9 exit

10 # stretch the grid lines

11 stretch coordinates

12 transform which mapping?

13 Annulus

14 stretch

15 specify stretching along axis=0

16 # choose a layer stretching a*tanh(b*(r-c))

17 layers

18 1

19 # give a,b,c in above formula

20 1. 10. .5

21 exit

22 specify stretching along axis=1

23 layers

24 1

25 1. 5. 0.

26 exit

27 exit

28 exit

29 exit this menu

30 #

31 # make an overlapping grid

32 #

33 generate an overlapping grid

34 stretched-Annulus

35 done

36 compute overlap

37 exit

38 #

39 # save as an hdf file

40 #

41 save an overlapping grid

42 stretchedAnnulus.hdf

43 grid

44 exit

An annulus with stretching

For the pundits: The stretched annulus is a StretchTransform Mapping which is a composition of the
StretchedSquare Mapping and the Annulus Mapping. The StretchedSquare uses the Stretch Mapping where
the actual one dimensional stretching functions are defined.

10

4.3 Cylinder in a channel

Here is a command file to create a cylinder in a channel. (file Overture/sampleGrids/cic.cmd) In this case we
make two mappings, one a background grid and one an annulus. The boundary conditions on the annulus are set so
that the outer boundary is an interpolation boundary (=0) while the boundary conditions on the branch cut are −1
to indicate a periodic boundary. We show two overlapping grids, one made with implicit interpolation (default) and
one made with explicit interpolation. The latter has a bigger region of overlap.

1 #

2 # circle in a channel

3 #

4 create mappings

5 #

6 rectangle

7 set corners

8 -2. 2. -2. 2.

9 lines

10 32 32

11 boundary conditions

12 1 1 1 1

13 mappingName

14 square

15 exit

16 #

17 Annulus

18 lines

19 33 7

20 # centre

21 # 0. 1.

22 boundary conditions

23 -1 -1 1 0

24 exit

25 #

26 exit

27 generate an overlapping grid

28 square

29 Annulus

30 done

31 #

32 change parameters

33 # choose implicit or explicit interpolation

34 # interpolation type

35 # implicit for all grids

36 ghost points

37 all

38 2 2 2 2 2 2

39 exit

40 # display intermediate results

41 compute overlap

42 # display computed geometry

43 exit

44 #

45 # save an overlapping grid

46 save a grid (compressed)

47 cic.hdf

48 cic

49 exit

50

An overlapping grid for a cylinder in a channel with implicit
interpolation

An overlapping grid for a cylinder in a channel with explicit
interpolation

11

4.4 Cylinder in a channel, cell-centered version

Here we repeat the last example but create a cell-centered grid. In a cell-centered grid the cell-centres of one grid are
interpolated from the cell-centres of another grid. For this reason the cell-centred grid requires slighly more overlap
between the component grids.

Note: Most of the solvers in Overture use vertex-centered grids instead of cell centered grids. This is true even
with the finite volume solvers in which case the grid vertex represents the center of the computational cell.

1 #

2 # circle in a channel, cell centered grid

3 #

4 create mappings

5 #

6 rectangle

7 set corners

8 -2. 2. -2. 2.

9 lines

10 32 32

11 boundary conditions

12 1 1 1 1

13 mappingName

14 square

15 exit

16 #

17 Annulus

18 lines

19 33 7

20 boundary conditions

21 -1 -1 1 0

22 exit

23 #

24 exit

25 generate an overlapping grid

26 square

27 Annulus

28 done

29 change parameters

30 # make the grid cell-centered

31 cell centering

32 cell centered for all grids

33 exit

34 compute overlap

35 exit

36 #

37 save an overlapping grid

38 cicCC.hdf

39 cicCC

40 exit

41

An overlapping grid for a cylinder in a channel, cell-centered case.

12

4.5 Cylinder in a channel, fourth-order version

Here we repeat the last example but create a grid appropriate for a fourth-order discretization. We need to increase
the discretization width to 5 and the interpolation width to 5. This can either be done explicitly or the option
“order of accuracy” can be used. Notice that two lines of interpolation points are generated as required by the
wider stencil.

1 #

2 # circle in a channel, for fourth order accuracy. This

3 # can be used with primer/wave

4 #

5 # -- the next few lines are for parallel:

6 $dw=5; $iw=5; $interp="e";

7 # parallel ghost lines: for ogen we need at least:

8 # .5*(iw -1) : implicit interpolation

9 # .5*(iw+dw-2) : explicit interpolation

10 $parallelGhost=($iw-1)/2;

11 if($interp eq "e"){ $parallelGhost=($iw+$dw-2)/2; }

12 if($parallelGhost<1){ $parallelGhost=1; }

13 minimum number of distributed ghost lines

14 $parallelGhost

15 create mappings

16 #

17 rectangle

18 set corners

19 -2. 2. -2. 2.

20 lines

21 129 129

22 boundary conditions

23 1 1 1 1

24 mappingName

25 square

26 exit

27 #

28 Annulus

29 lines

30 161 9

31 outer radius

32 .75

33 boundary conditions

34 -1 -1 1 0

35 exit

36 #

37 exit

38 generate an overlapping grid

39 square

40 Annulus

41 done

42 change parameters

43 # choose implicit or explicit interpolation

44 interpolation type

45 # implicit for all grids

46 explicit for all grids

47 ghost points

48 all

49 2 2 2 2

50 order of accuracy

51 fourth order

52 # we could also do the following:

53 # discretization width

54 # all

55 # 5 5

56 # interpolation width

57 # all

58 # all

59 # 5 5

60 exit

61 compute overlap

62 exit

63 #

64 save an overlapping grid

65 cic.4.hdf

66 cic4

67 exit

An overlapping grid for a cylinder in a channel, fourth-order case.

13

4.6 Inlet-outlet

In this example we demonstrate

share flags: to specify that two component grids have sides that belong to the same physical boundary curve. This
prevents one physical boundary from accidently cutting a hole on a grid that shares the same boundary.

no hole cutting: turn off hole cutting to prevent physical boundaries from cutting holes in some other grids.

view mappings: the mappings can be plotted with boundaries coloured by the boundary condition values or
coloured by the share flag values. This allows one to check that the values have been set properly.

This grid is remarkably similar to a grid created by Anders Petersson.
Here is a command file to create the grid for the inlet-outlet example. (file

Overture/sampleGrids/inletOutlet.cmd).

1 #

2 # create a grid to demonstrate various features

3 #

4 create mappings

5 # make a back ground grid

6 rectangle

7 set corners

8 0 2. 0 1.

9 lines

10 61 31

11 mappingName

12 backGroundGrid

13 share

14 1 2 3 4

15 exit

16 # make an annulus

17 Annulus

18 centre for annulus

19 1. .5

20 inner radius

21 .2

22 outer radius

23 .4

24 lines

25 41 9

26 mappingName

27 annulus

28 boundary conditions

29 -1 -1 1 0

30 exit

31 # the inlet (on the right) will consist of two

32 # smoothed polygons

33 SmoothedPolygon

34 mappingName

35 inlet-top

36 vertices

37 3

38 2. .85

39 2. .65

40 2.25 .65

41 n-dist

42 fixed normal distance

43 -.175 .2

44 sharpness

45 10.

46 10.

47 10.

48 t-stretch

49 0. 10.

50 1. 10.

51 0. 10.

52 lines

53 25 11

54 boundary conditions

55 0 1 1 0

56 # One boundary here should match one boundary of

57 # the backGroundGrid, while another boundary

58 # should match a boundary on the inlet-bottom.

59 # Set share flag to match corresponding share values

60 share

61 0 5 2 0

62 exit

63 #

64 SmoothedPolygon

65 mappingName

66 inlet-bottom

67 vertices

68 3

69 2. .15

70 2. .35

71 2.25 .35

72 lines

73 25 11

74 n-dist

75 fixed normal distance

76 .175 .2

77 sharpness

78 10.

79 10.

80 10.

81 t-stretch

82 0. 10.

83 1. 10.

84 0. 10.

85 boundary conditions

86 0 1 1 0

87 # One boundary here should match one boundary

88 # of the backGroundGrid, while another boundary

89 # should match a bounbdary on the inlet-bottom.

90 # Set share flag to match corresponding share values

91 share

92 0 5 2 0

93 exit

94 # here is an outlet grid made in the poor man’s way

95 rectangle

96 set corners

97 -.35 .05 .3 .7

98 lines

99 15 15

100 mappingName

101 outlet

102 boundary conditions

103 1 0 1 1

104 exit

105 # now look at the mappings

106 view mappings

107 backGroundGrid

108 annulus

14

109 inlet-top

110 inlet-bottom

111 outlet

112 #

113 # The grid is plotted with boundaries coloured

114 # by the boundary condition number. Here we

115 # should check that all interpolation boundaries

116 # are 0 (blue), all physical boundaries are positive

117 # and periodic boundaries are black

118 # pause

119 #

120 # now we plot the boundaries by share value

121 # The sides that correspond to the same boundary

122 # should be the same colour

123 colour boundaries by share value

124 # pause

125 erase and exit

126 exit

127 generate an overlapping grid

128 # put the nonconforming grid first to be a lower

129 # priority than the back-ground

130 outlet

131 backGroundGrid

132 annulus

133 inlet-top

134 inlet-bottom

135 done

136 change parameters

137 prevent hole cutting

138 backGroundGrid

139 all

140 outlet

141 all

142 done

143 ghost points

144 all

145 2 2 2 2 2 2

146 exit

147 # display intermediate

148 # set debug parameter

149 # 31

150 compute overlap

151 exit

152 #

153 save an overlapping grid

154 inletOutlet.hdf

155 inletOutlet

156 exit

157

Figure 3: Inlet-outlet mappings plotted from the “view mappings” menu, showing boundary condition values. Phys-
ical boundaries have a positive value (1=green), interpolation boundaries have a value of zero (0=blue) and periodic
boundaries have a negative value (shown in black).

The cell-centred version may be created with Overture/sampleGrids/inletOutlet.cmd.

15

Figure 4: Inlet-outlet mappings plotted from the “view mappings” menu, showing shared side values. Grids that
share the same physical boundary should have the same value of the share flag. For example, the two inlet grids on
the right share boundaries with the back-ground grid (value 2=red). The inlet grids also share boundaries with each
other (value 5)

Figure 5: Inlet-outlet overlapping grid. To create this grid we had to prevent the background grid from cutting holes
in the two inlet grids (on the right) and the outlet grid on the left. The outlet grid was also prevented from cutting
holes in the background grid.

16

4.7 Valve

Here is a command file to create a grid around a two-dimensional valve (file Overture/sampleGrids/valve.cmd).

1 #

2 # Create an overlapping grid for a 2D valve

3 #

4 # time to make: old:27s (ultra) new: 4.4s

5 # .34 (tux50)

6 # .27 tux50

7 # .12 tux231

8 # .063 tux291

9 # .047 (ansel)

10 # .033 (cg6)

11 #

12 create mappings

13 #

14 # First make a back-ground grid

15 #

16 rectangle

17 mappingName

18 backGround

19 set corners

20 0 1. 0 1.

21 lines

22 # 41 41

23 # 51 51

24 49 49

25 share

26 1 2 3 4

27 exit

28 #

29 # Now make the valve

30 #

31 SmoothedPolygon

32 mappingName

33 valve

34 vertices

35 # .4 .4 .65 .65 ok

36 # .45 .45 .7 .7 ok

37 # .47 .47 .72 .72 ok

38 # .475 .475 .725 .725 no

39 # .47 .47 .72 .72 last used, ok

40 4

41 0.47 0.

42 0.47 .75

43 0.72 .5

44 0.72 0.

45 n-dist

46 fixed normal distance

47 # .1

48 .05

49 lines

50 # 65 9

51 # 75 9

52 73 9

53 boundary conditions

54 1 1 1 0

55 share

56 3 3 0 0

57 sharpness

58 15

59 15

60 15

61 15

62 t-stretch

63 1. 0.

64 1. 6.

65 1. 4.

66 1. 0.

67 n-stretch

68 1. 4. 0.

69 exit

70 #

71 # Here is the part of the boundary that

72 # the valve closes against

73 #

74 SmoothedPolygon

75 mappingName

76 stopper

77 vertices

78 4

79 1. .5

80 0.75 .5

81 0.5 .75

82 0.5 1.

83 n-dist

84 fixed normal distance

85 # .1

86 .05

87 lines

88 # 61 9

89 # 61 9

90 65 9

91 t-stretch

92 1. 0.

93 1. 5.

94 1. 5.

95 1. 0.

96 n-stretch

97 1. 4. 0.

98 boundary conditions

99 1 1 1 0

100 share

101 2 4 0 0

102 exit

103 exit

104 #

105 # Make the overlapping grid

106 #

107 generate an overlapping grid

108 backGround

109 stopper

110 valve

111 done

112 change parameters

113 ghost points

114 all

115 2 2 2 2 2 2

116 exit

117 # debug

118 # 7

119 # display intermediate results

120 compute overlap

121 # pause

122 exit

123 #

124 # save an overlapping grid

125 save a grid (compressed)

126 valve.hdf

127 valve

128 exit

129

The resulting grid is shown in figure 6. The cell centered version may be created with

17

Figure 6: An overlapping grid for a valve

Overture/sampleGrids/valveCC.cmd.

18

4.8 NACA airfoil

Here is a command file to create a grid around a two-dimensional NACA0012 airfoil (file Overture/sampleGrids-

/naca0012.cmd). The airfoil curve is created first with the AirfoilMapping (see the Mapping documentation for an
explanation of NACA 4 digit airfoils). This curve is blended with an ellipse (using transfinite interpolation) to make
an initial grid. The transfinite interpolation mapping then then smoothed using elliptic grid generation to form the
airfoil grid.

1 #

2 # Make a grid around a NACA0012 airfoil

3 #

4 create mappings

5 #

6 # First make a back-ground grid

7 #

8 rectangle

9 mappingName

10 backGround

11 set corners

12 -1.5 2.5 -1.5 1.5

13 lines

14 41 33 41 31

15 exit

16 # make the NACA0012 airfoil (curve)

17 Airfoil

18 airfoil type

19 naca

20 exit

21 # make an ellipse as an outer boundary

22 Circle or ellipse

23 specify centre

24 .5 .0

25 specify axes of the ellipse

26 1.5 1.

27 exit

28 # blend the airfoil to the ellipse to make a grid

29 tfi

30 choose bottom curve

31 airfoil

32 choose top curve

33 circle

34 boundary conditions

35 -1 -1 1 0

36 lines

37 73 17

38 mappingName

39 airfoil-tfi

40 # pause

41 exit

42 #

43 elliptic

44 #project onto original mapping (toggle)

45 transform which mapping?

46 airfoil-tfi

47 elliptic smoothing

48 # slow start to avoid porblems at trailing edge

49 number of multigrid levels

50 3

51 maximum number of iterations

52 15

53 red black

54 smoother relaxation coefficient

55 .1

56 generate grid

57 # now reset parameters for better convergence

58 maximum number of iterations

59 30

60 smoother relaxation coefficient

61 .8

62 generate grid

63 exit

64 mappingName

65 airfoil-grid

66 # pause

67 exit

68 exit

69 #

70 # make an overlapping grid

71 #

72 generate an overlapping grid

73 backGround

74 airfoil-grid

75 done

76 change parameters

77 ghost points

78 all

79 2 2 2 2 2 2

80 exit

81 compute overlap

82 exit

83 #

84 save an overlapping grid

85 naca0012.hdf

86 naca

87 exit

88
89

The resulting grid is shown in figure 7.

19

Figure 7: An overlapping grid for a NACA0012 airfoil

20

4.9 Hybrid grid for the inlet-outlet

The command file to create a hybrid for an inlet-outlet geometry is Overture/sampleGrids/inletOutlet.hyb.cmd.

Figure 8: A hybrid grid for an inlet-outlet geometry.

4.10 Stretched cube

Here is a command file to create a simple box in 3D with stretched grid lines. (file Overture/sampleGrids/-

stretchedCube.cmd)
1 #

2 # Create a 3D cube with stretched grid lines

3 #

4 create mappings

5 Box

6 exit

7 stretch coordinates

8 stretch

9 # choose a layer stretching a*tanh(b*(r-c))

10 # along axis 0

11 specify stretching along axis=0 (x1)

12 layers

13 1

14 # give a,b,c in above formula

15 1. 10. .5

16 exit

17 # choose a stretching function with 2

18 # layers along axis1

19 specify stretching along axis=1 (x2)

20 layers

21 2

22 # give a,b,c for layer 1

23 1. 10. 0.

24 # give a,b,c for layer 2

25 1. 10. 1.

26 exit

27 exit

28 exit

29 exit this menu

30 generate an overlapping grid

31 stretched-box

32 done

33 compute overlap

34 exit

35 save an overlapping grid

36 stretchedCube.hdf

37 stretchedCube

38 exit

An overlapping grid for a stretched cube.

21

4.11 Sphere in a box

Here is a command file to create a sphere in a box. The sphere is covered with two orthographic patches, one for the
north-pole and one for the south-pole. (file Overture/sampleGrids/sib.cmd)

1 #

2 # command file to create a sphere in a box

3 #

4 # time to make: 594s new: 3.5

5 # cpu=2s (ov15 sun-ultra optimized)

6 # =.37 (tux50)

7 create mappings

8 # first make a sphere

9 Sphere

10 exit

11 #

12 # now make a mapping for the north pole

13 #

14 reparameterize

15 orthographic

16 specify sa,sb

17 2.5 2.5

18 exit

19 lines

20 15 15 5

21 boundary conditions

22 0 0 0 0 1 0

23 share

24 0 0 0 0 1 0

25 mappingName

26 north-pole

27 exit

28 #

29 # now make a mapping for the south pole

30 #

31 reparameterize

32 orthographic

33 choose north or south pole

34 -1

35 specify sa,sb

36 2.5 2.5

37 exit

38 lines

39 15 15 5

40 boundary conditions

41 0 0 0 0 1 0

42 share

43 0 0 0 0 1 0

44 mappingName

45 south-pole

46 exit

47 #

48 # Here is the box

49 #

50 Box

51 set corners

52 -2 2 -2 2 -2 2

53 lines

54 21 21 21

55 mappingName

56 box

57 exit

58 exit

59 #

60 generate an overlapping grid

61 box

62 north-pole

63 south-pole

64 done

65 change parameters

66 # interpolation type

67 # explicit for all grids

68 ghost points

69 all

70 2 2 2 2 2 2

71 exit

72 # set debug parameter

73 # 15

74 compute overlap

75 #

76 exit

77 save an overlapping grid

78 sib.hdf

79 sib

80 exit

The resulting grid is shown in figure 9. The cell-centered version can be made with
Overture/sampleGrids/sibCC.cmd.

22

Figure 9: An overlapping grid for a sphere in a box. The sphere is covered with two patches.

Figure 10: An overlapping grid for a sphere in a box. The interpolation points are also shown.

23

4.12 Sphere in a tube

Here is a command file to create a sphere in a cylindrical tube. The sphere is covered with two orthographic
patches, one for the north-pole and one for the south-pole. The sphere is contained in a tube that is rep-
resented as a cylinderical annulus together with a rectangular box that forms the core of the cylinder. (file
Overture/sampleGrids/sphereInATube.cmd)

1 #

2 # command file to create a sphere in cylindrical tube

3 #

4 #

5 create mappings

6 # first make a sphere

7 Sphere

8 exit

9 #

10 # now make a mapping for the north pole

11 #

12 reparameterize

13 orthographic

14 specify sa,sb

15 2.5 2.5

16 exit

17 lines

18 15 15 5

19 boundary conditions

20 0 0 0 0 1 0

21 share

22 0 0 0 0 1 0

23 mappingName

24 north-pole

25 exit

26 #

27 # now make a mapping for the south pole

28 #

29 reparameterize

30 orthographic

31 choose north or south pole

32 -1

33 specify sa,sb

34 2.5 2.5

35 exit

36 lines

37 15 15 5

38 boundary conditions

39 0 0 0 0 1 0

40 share

41 0 0 0 0 1 0

42 mappingName

43 south-pole

44 exit

45 #

46 # Here is the cylinder

47 #

48 # main cylinder

49 Cylinder

50 mappingName

51 cylinder

52 # orient the cylinder so y-axis is axial direction

53 orientation

54 2 0 1

55 bounds on the radial variable

56 .3 .8

57 bounds on the axial variable

58 -1. 1.

59 lines

60 55 21 9

61 boundary conditions

62 -1 -1 2 3 0 4

63 share

64 0 0 2 3 0 0

65 exit

66 # core of the main cylinder

67 Box

68 mappingName

69 cylinderCore

70 specify corners

71 -.5 -1. -.5 .5 1. .5

72 lines

73 19 21 19

74 boundary conditions

75 0 0 2 3 0 0

76 share

77 0 0 2 3 0 0

78 exit

79 # pause

80 #

81 exit

82 generate an overlapping grid

83 cylinderCore

84 cylinder

85 north-pole

86 south-pole

87 done

88 change parameters

89 ghost points

90 all

91 2 2 2 2 2 2

92 exit

93 # display intermediate

94 compute overlap

95 # continue

96 # pause

97 exit

98 save an overlapping grid

99 sphereInATube.hdf

100 sit

101 exit

The resulting grid is shown in figure 11.

24

Figure 11: An overlapping grid for a sphere in a cylindrical tube

25

4.13 Intersecting pipes

Here is a command file to create a grid for two intersecting pipes. Each pipe is made from a cylindrical annulus with
a rectangular grid for the core. The pipes intersect using the poor man’s intersection method with non-conforming
grids. (A more refined intersection would use a fillet). The key point here is that the boundaries must not cut holes
and so this feature is turned off. (file Overture/sampleGrids/pipes.cmd)

1 #

2 # Make an overlapping grid for two intersecting pipes

3 # cpu=2s (ov15 sun-ultra optimized)

4 #

5 create mappings

6 # Here is the main pipe

7 Cylinder

8 orientation

9 1 2 0

10 bounds on the radial variable

11 .25 .5

12 bounds on the axial variable

13 -1.5 1.

14 mappingName

15 mainPipe

16 lines

17 25 21 7

18 boundary conditions

19 -1 -1 1 1 0 2

20 share

21 0 0 1 2 0 0

22 exit

23 # Here is the core of the main pipe

24 # note: there is trouble if corner of the core just

25 # sticks outside the main pipe -- hole cutter

26 # misses. (happens with core half width= .3). OK if the

27 # core is bigger or smaller

28 Box

29 specify corners

30 -1.5 -.25 -.25 1. .25 .25

31 lines

32 21 9 9

33 boundary conditions

34 1 1 0 0 0 0

35 mappingName

36 mainCore

37 share

38 1 2 0 0 0 0

39 exit

40 # Here is the branch pipe

41 Cylinder

42 orientation

43 2 0 1

44 bounds on the radial variable

45 .2 .4

46 bounds on the axial variable

47 .25 1.25

48 lines

49 23 11 7 21 11 7

50 boundary conditions

51 -1 -1 0 1 0 2

52 share

53 0 0 0 3 0 0

54 mappingName

55 branchPipe

56 exit

57 # Here is the core of the branch pipe

58 Box

59 specify corners

60 -.25 .25 -.25 .25 1.25 .25

61 lines

62 9 15 9

63 boundary conditions

64 0 0 0 1 0 0

65 share

66 0 0 0 3 0 0

67 mappingName

68 branchCore

69 exit

70 exit

71 generate an overlapping grid

72 branchCore

73 branchPipe

74 mainCore

75 mainPipe

76 done

77 change parameters

78 prevent hole cutting

79 all

80 all

81 done

82 allow hole cutting

83 branchPipe

84 branchCore

85 mainPipe

86 mainCore

87 done

88 ghost points

89 all

90 2 2 2 2 2 2

91 exit

92 # pause

93 compute overlap

94 exit

95 save an overlapping grid

96 pipes.hdf

97 pipes

98 exit

The resulting grid is shown in figure 12.

26

Figure 12: An overlapping grid for two intersecting pipes

27

4.14 Body Of Revolution

Here is a command file to create a grid for a body of revolution. The body of revolution is created by re-
volving a two-dimensional grid about a given line. The two dimensional grid in this case is created with the
SmoothedPolygon Mapping. The body of revolution has a spherical polar singularity at both ends. We generate
a new Mapping to cover each singularity. We reparameterize the ends using an orthographic transformation. (file
Overture/sampleGrids/revolve.cmd)

1 #

2 # Create a cylindrical body of revolution

3 # from a Smoothed Polygon

4 # cpu=48s (ov15 sun-ultra optimized)

5 create mappings

6 SmoothedPolygon

7 vertices

8 7

9 -1. 0.

10 -1. .25

11 -.8 .5

12 0. .5

13 .8 .5

14 1. .25

15 1. 0.

16 n-dist

17 fixed normal distance

18 .1

19 n-dist

20 fixed normal distance

21 .4

22 corners

23 specify positions of corners

24 -1. 0.

25 1. 0

26 -1.4 0.

27 1.4 0

28 t-stretch

29 0 5

30 .15 10

31 .15 10

32 0 10

33 .15 10

34 .15 10

35 0 10

36 exit

37 # making a body of revolution

38 # pause

39 body of revolution

40 tangent of line to revolve about

41 1. 0 0

42 mappingName

43 cylinder

44 lines

45 55 25 7

46 boundary conditions

47 0 0 -1 -1 1 0

48 share

49 0 0 0 0 1 0

50 exit

51 # patch on the front singularity

52 reparameterize

53 mappingName

54 front

55 lines

56 15 15 5

57 orthographic

58 specify sa,sb

59 .5 .5

60 exit

61 boundary conditions

62 0 0 0 0 1 0

63 share

64 0 0 0 0 1 0

65 exit

66 # patch on back singularity

67 reparameterize

68 mappingName

69 back

70 lines

71 15 15 7

72 orthographic

73 choose north or south pole

74 -1

75 specify sa,sb

76 .5 .5

77 exit

78 boundary conditions

79 0 0 0 0 1 0

80 share

81 0 0 0 0 1 0

82 exit

83 #

84 # Here is the box

85 #

86 Box

87 specify corners

88 -2 -1 -1 2 1 1

89 lines

90 61 31 31

91 mappingName

92 box

93 exit

94 # pause

95 exit

96 generate an overlapping grid

97 box

98 cylinder

99 front

100 back

101 done

102 compute overlap

103 exit

104 #

105 save an overlapping grid

106 revolve.hdf

107 revolve

108 exit

The resulting grid is shown in figure 13.

28

Figure 13: An overlapping grid for a body of revolution. The body is generated by revolving a two-dimensional
smoothed-polygon mapping. Orthographic patches are used to cover the singularities at the ends of the body.

29

4.15 3D valve

Here is a command file to create a grid for a three dimensional valve. The cross-section of this geometry is similar
to the two-dimensional valve shown earlier. (file Overture/sampleGrids/valve3d.cmd)

1 #

2 # Make a 3d valve

3 #

4 # cpu=78s (ov15 sun-ultra optimized)

5 create mappings

6 # main cylinder

7 Cylinder

8 mappingName

9 outerCylinder

10 # orient the cylinder so y-axis is axial direction

11 orientation

12 2 0 1

13 bounds on the radial variable

14 .4 1.

15 bounds on the axial variable

16 -.1 .5

17 lines

18 55 11 9

19 boundary conditions

20 -1 -1 0 3 0 2

21 share

22 0 0 0 1 0 2

23 exit

24 # core of the main cylinder

25 Box

26 mappingName

27 cylinderCore

28 set corners

29 -.5 .5 0. .5 -.5 .5

30 lines

31 19 17 19

32 boundary conditions

33 0 0 1 2 0 0

34 share

35 0 0 3 1 0 0

36 exit

37 # valve stem

38 Cylinder

39 mappingName

40 valveStem

41 # orient the cylinder so y-axis uis axial direction

42 orientation

43 2 0 1

44 bounds on the radial variable

45 .2 .6

46 bounds on the axial variable

47 -.5 -.2

48 lines

49 41 9 9

50 boundary conditions

51 -1 -1 3 2 2 0

52 share

53 0 0 4 3 0 0

54 exit

55 # Make a 2d cross-section of the valve

56 SmoothedPolygon

57 mappingName

58 valveCrossSection

59 vertices

60 4

61 .4 0.

62 .85 0.

63 .65 -.2

64 .4 -.2

65 n-dist

66 fixed normal distance

67 .15

68 lines

69 65 17

70 sharpness

71 30

72 30

73 30

74 30

75 boundary conditions

76 0 0 1 0

77 exit

78 # Make the valve as a body of revolution

79 body of revolution

80 mappingName

81 valve

82 choose a point on the line to revolve about

83 0. 1. 0.

84 lines

85 41 11 35

86 boundary conditions

87 0 0 2 0 -1 -1

88 share

89 0 0 3 0 0 0

90 exit

91 # 2D cross section for the stopper

92 SmoothedPolygon

93 mappingName

94 stopperCrossSection

95 vertices

96 4

97 .65 -.5

98 .65 -.3

99 .85 -.1

100 1. -.1

101 n-dist

102 fixed normal distance

103 .15

104 exit

105 # stopper

106 body of revolution

107 mappingName

108 stopper

109 choose a point on the line to revolve about

110 0. 1. 0.

111 boundary conditions

112 1 1 2 0 -1 -1

113 share

114 4 2 0 0 0 0

115 lines

116 35 11 41

117 exit

118 view mappings

119 outerCylinder

120 cylinderCore

121 valveStem

122 valve

123 stopper

124 exit

125 exit

126 #

127 generate an overlapping grid

128 cylinderCore

129 outerCylinder

130 stopper

131 valve

132 valveStem

30

133 done

134 change parameters

135 ghost points

136 all

137 2 2 2 2 2 2

138 exit

139 # pause

140 compute overlap

141 exit

142 save an overlapping grid

143 valve3d.hdf

144 valve3d

145 exit

146
147

The resulting grid is shown in figure 14.

Figure 14: An overlapping grid for a three-dimensional valve.

31

4.16 3D wing in a box

The command file Overture/sampleGrids/wing3d.cmd shows how to build a grid for a three-dimensional wing in a
box. The wing is defined as a set of cross-section curves (ellipses in this case) that are used with the CrossSection-
Mapping. The CrossSectionMapping has an option to close off the start and/or end of the surface by transitioning
the cross-sections so they converge to a point. The orthographic transform is used to create cap grids on the tips of
the wing. These grids work best when the cross-sections near the tips are nearly ellipses. Otherwise the cap grids
may have poor quality cells. In the latter case one could use the hyperbolic grid generator to construct a better
quality grid for the cap (see Section 4.17).

Figure 15: An overlapping grid for a three-dimensional wing in a box.

4.17 3D wing with Joukowsky cross-sections

The command file Overture/sampleGrids/wingj.cmd shows another way to build a grid for a three-dimensional
wing. The wing surface is defined as a Nurbs with the points on the cross sections generated directly in the command
file using perl.
Notes:

1. The wing surface is defined by Joukowsky cross-sections.

2. The tip is rounded with the cross-sections changing into an ellipse and converging to a point.

3. The main wing grid is generated by removing the region near the singular tip.

4. A hyperbolic grid is grown over the tip region. We cannot use the original wing surface for growing this tip
grid since the surface is not connected across the singular point (and the hyperbolic grid generator would get
confused). Therefore we split the wing surface in the region of the tip into two separate surfaces and then
construct a CompositeSurface and global triangulation for these two patches. We can then grow the tip grid
on this CompositeSurface.

Figure 16: An overlapping grid for a three-dimensional wing with Joukowsky cross-sections and a rounded tip.

32

4.18 Three-dimensional flat-plate wing

The command file Overture/sampleGrids/flatPlateWingGrid.cmd shows how to build a grid for a three-
dimensional flat-plate wing in a box. The wing is defined as a set of cross-section curves (defined from a Smoothed-
Polygon) that are used with the CrossSectionMapping. The CrossSectionMapping has an option to close off the start
and/or end of the surface by transitioning the cross-sections so they converge to a point. The orthographic transform
is used to create intermediate cap grids on the tips of the wing. Since these cap grids have poor quaility cells, the
hyperbolic grid generator is used to define new grids over the tips. The hyperbolic surface grids are generated on
the orthographic patches (which still accurately define the surface).

Figure 17: An overlapping grid for a three-dimensional flat-plate wing in a box.

4.19 Lofted box

The command file Overture/sampleGrids/loftedBox.cmd constructs a grid for the region exterior to a box (cube)
with slightly rounded corners. The LoftedSurface Mapping is used to define the surface. See the mapping documen-
tation for further details on the LoftedSurface Mapping.

Figure 18: An overlapping grid for the region exterior to a box constructed with the LoftedSurface Mapping.

33

4.20 Lofted Joukowsky Wing

The command file Overture/sampleGrids/loftedJoukowskyFlatTip.cmd constructs a grid for a wing with cross-
sections defined as Joukoswky airfoils and a flat tip. The surface was defined by the LoftedSurface Mapping [4]. The
LoftedSurface Mapping was used to add a twist to the wing and also to add flattened tip.

Figure 19: An overlapping grid for a wing with a Joukoswky airfoil and a flat tip constructed with the LoftedSurface
Mapping.

4.21 Lofted Wigley Ship Hull

The command file Overture/sampleGrids/loftedShipHullGrid.cmd constructs a grid for a Wigley ship hull as
shown in Figure 20. The surface is defined by the LoftedSurface Mapping, see the description in [4].

The basic steps to construct the grid for the Wigley hull are

1. Build the lofted surface for the ship hull.

2. Create an orthographic patch on the bow (and stern) to remove the spherical polar coordinate singularity (see
Figure 20).

3. Build a hyperbolic surface grid on the orthographic patch (to construct a better quality surface grid), (see
Figure 20).

4. Build hyperbolic volume grids.

5. Stretch grid lines to cluster points near the surface.

34

Figure 20: An overlapping grid for a Wigley ship hull (top left). Also shown are a zoom near the bow (top-right), the
orthographic patch on the (up-down symmetric) bow surface (bottom left) and the hyperbolic grid on the bottom
half of the orthographic patch for the bow (bottom right).

35

4.22 Wind farm

The Ogen command file windFarm.cmd can be used to create a grid for a wind farm with a collection of wind
turbines and terrain. Each wind turbine consists of a tower and three blades. This example makes good use of
the perl scripting capability for command files. The terrain is defined within the command file using the perl
math evaluation functionality. The towers are connected to the terrain using separate grids constructed with the
JoinMapping which computes the intersection of the tower with the terrain. This example uses explicit hole cutters
(see section 7) to cut holes in the grid for the terrain where it lies inside the towers (the default Ogen hole cutting
algorithm has difficulty eliminating some of these points since they are part of a physical boundary).

Figure 21: Grid for a wind farm.

36

4.23 Adding new grids to an existing overlapping grid.

This example shows how to start from an existing overlapping grid and add new grids. In this example we begin
by building Mappings for two new grids. From the “generate an overlapping grid” menu we read in an existing
overlapping grid and then specify the additional mappings. Ogen uses an optimized algorithm to compute the new
overlapping grid. If for some reason this algorithm fails you can always choose “reset grid” followed by “compute
overlap” to rebuild the grid from scratch.

1 #

2 # add mappings to an existing overlapping grid

3 #

4 create mappings

5 #

6 annulus

7 centre

8 1. 1.

9 boundary conditions

10 -1 -1 1 0

11 mappingName

12 annulus2

13 exit

14 #

15 rectangle

16 boundary conditions

17 0 0 0 0

18 set corners

19 -1.5 -.5 -1.5 -.5

20 mappingName

21 refine

22 exit

23 #

24 exit this menu

25 generate an overlapping grid

26 read in an old grid

27 cic

28 annulus2

29 refine

30

The resulting grid is shown in figure 22.

Figure 22: Ogen can be used to incrementally add new grids to an existing overlapping grid. Left: The initial
overlapping grid. Right: overlapping grid after adding two new component grids

37

4.24 Incrementally adding grids to an overlapping grid.

New with version 18 This example shows how to incrementally add new grids to an overlapping grid. As new
grids are added the overlapping grid can be re-computed to make sure that a valid grid exists. This can be a useful
approach for building a large complicated grid since any problems will be isolated to the component grid that may
have caused an invalid grid to result.

The resulting grids at various stages are shown in figure 23.

Figure 23: Ogen can be used to incrementally add new grids.

38

4.25 Other sample command files and grids

The Overture/sampleGrids directory contains a number of other command files for creating grids. We list these
here with a brief explanation.

cilc.cmd : Two dimensional cylinder in a long box. Used for computing the flow around a cylinder.

ellipsoid.cmd : Create a grid for a three-dimensional ellipsoid in a box. See also ellipsoidCC.cmd for the cell-
centered version.

singularSphere.cmd : Build a grid for a sphere in a box where the singularities on the sphere are not removed. A
PDE solver must know how to deal with this special type of grid.

tse.cmd : Build a grid for a model two-stroke engine.

mastSail2d.cmd : Make a grid for a sail attached to a mast.

building3.cmd : Three dimensional grids for some buildings.

Figure 24: A fillet grid is used to join two cylinders, filletTwoCyl.cmd.

39

Figure 25: A JoinMapping is used to join two cylinders, joinTwoCyl.cmd. To create the deformed cylinder the
JoinMapping first computes the curves of intersection between two intersecting cylinders. Four TFIMappings are
then generated to represent each face of the deformed cylinder and finally another TFIMapping is used to blend
these four surface TFIMappings.

Figure 26: An overlapping grid for a submarine created with sub.cmd. The submarine hull is defined as a body
of revolution from a spline curve. The sail and fins are created initially with the CrossSectionMapping. The
JoinMapping is used to join these appendages to the submarine body.

40

Figure 27: An overlapping grid for valve, port and cylinder created with valvePort.cmd. The JoinMapping is used
to create the grid that joins the valve-stem to the port surface.

41

Figure 28: A mast is attached to a sail. The inner boundary curves are defined from splines under tension while the
component grids are generated with hyperbolic grid generation mastSail2d.cmd

.

42

Figure 29: The DepthMapping (see bottom figure) is used to give a vertical dimension to mappings defined in the
plane, depth.cmd. In this case a separate TFI mapping, top left, defines the vertical height function Both an annulus
and a square (top right) are given a depth.

43

Figure 30: Grids for two disjoint regions that match along a circle, innerOuter.cmd

44

Figure 31: Grid for a 3d triangular sail. The SweepMapping is used to generate a grid around the edge of the sail,
triSail.cmd

Figure 32: CAD surface (left) and a volume mesh (right) generated with Overture Mappings and Ogen.

45

Figure 33: Grid for the core of a rocket, showing the fuel-grain star-pattern. Rocket shape was created with the
cross-section mapping and curves defined by the RocketMapping class. Thanks to Nathan Crane for building this
grid.

Figure 34: Grid for some buildings built with building3.cmd

46

5 Best practices when constructing an overlapping grid

The generation of a good grid is often the most important step towards obtaining accurate and efficient answers to
partial differential equations (PDEs). The best grid for a given problem can depend very much on the form of the
solution to the particular PDE in question; however there are some best practices that are generally recommended.
Here are some guidelines for building grids.

1. build a smooth grid; this is the golden rule of grid generation.

2. choose the grid spacings so the the solution is smoothly represented on the grid. For example, if the solution
has a boundary layer then stretch the grid lines next to the boundary.

3. choose the grid spacings on different component grids so that they nearly match where grids meet. If you have
a very fine grid next to a coarse grid then you are just wasting grid points on the fine grid since the solution
must be represented on the coarser of the two grids.

4. avoid small cells where they are not needed – small cells often mean small time-steps for time-dependent PDEs.

Here are some ways to check the quality of a grid.

1. Use the Overture/tests/tcm3.C program to solve Poisson’s equation on the grid using twilight-zone functions
so that the errors can be computed and plotted. This is often a good check of any grid, independent of the
final PDE that you wish to solve.

2. Solve the PDE you are interested in, for a problem where the solution is known, and compute the errors. It is
best if the the known solution is similar to solution to that you are interested in.

3. If you don’t have a known solution then use a sequence of grids of increasing resolutions to compute solutions
and use Richardson extrapolation to estimate the errors. Examples of this procedure can be found in [6, 1, 2].
The comp program in Overture/bin can be used to read these solutions from show files and estimate and plot
the errors.

47

6 Mixed physical-interpolation boundaries, making a c-grid, h-grid or
block-block grid

To make a ’c-grid’ as in figure (35) or an ’h-grid’ as in figure (36) or the two block grid of figure (37), one should
use the ’mixed boundary’ option from the change parameters menu. A mixed boundary is a physical boundary
where parts of the boundary can interpolate from another (or the same) grid. Actually it is either the boundary
points or the ghost points on parts of the boundary that interpolate from another grid. When solving a PDE
boundary value problem, the boundary points adjacent to ghost points that interpolate will be ’interior points’
where the PDE should be applied, rather than the boundary condition. A mixed boundary on a MappedGrid g will
have g.boundaryCondition(side,axis) > 0 and g.boundaryFlag(side,axis)==MappedGrid::mixedPhysical-

InterpolationBoundary.
There are two ways to determine which points on a mixed boundary should be interpolated

1. Automatic: With this option the program will attempt to find all the valid interpolation points. For the
automatic determination of the mixed boundary interpolation points you can specify the tolerance for matching
in two possible ways:

r matching tolerance : boundaries match if points are this close in unit square space.

x matching tolerance : boundaries match if points are this close in x space

The boundaries will be deemd to match if either one of the above two matching conditions holds.

2. Manual: with this option one must explicitly specify a set of points on the boundary that should be interpolated
from another grid. One also indicates whether to interpolate boundary points or ghost points. If there are
multiple disjoint regions to interpolate, each one should be specified separately. Even when points are specified
in this manual case the program will still check to see if the points can be interpolated in a valid manner (and
only interpolate those valid ones) using the r matching tolerance described above.

6.1 Automatic mixed-boundary interpolation

It is recommended when making a c-grid or an h-grid to have the matching parts of the boundaries actually overlap
by an amount greater than or equal to zero (as shown in the examples).

The c-grid was generated with the command file Overture/sampleGrids/cgrid.cmd. A c-grid has a special
topology where parts of the boundary of the c-grid actually become interior points with a periodic like boundary
condition. This is implemented in Ogen by the ’mixed boundary’ option. Along the c-grid ’branch cut’, ghost point
values interpolate from the opposite side of the c-grid.

Note that the c-grid boundary was made with a spline that wiggles a little bit along the branch cut. To ensure
that the branch cut would be properly found, the lower part of the cut was raised by a small amount so that it would
overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance
to take care of this problem, but it is more robust to use this trick of overlapping the branch cut a little bit. A
matching tolerance was actually specified here, to be safe, but a message printed from ogen indicated that it was
not needed. The h-grid was generated with the command file Overture/sampleGrids/hgrid.cmd. An h-grid
has a special topology where parts of the boundary of the h-grid actually become interior points that match up to
a second grid. This is implemented in Ogen by the ’mixed boundary’ option. Along the h-grid ’branch cut’, ghost
point values interpolate from the other grid.

Note that the h-grid boundaries were made with splines that wiggle a little bit along the branch cuts (matching
portions). To ensure that the branch cuts would be properly found, the lower part of the cut was raised by a small
amount so that it would overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a
matching tolerance to take care of this problem, but it is more robust to use this trick of overlapping the branch cut
a little bit. A matching tolerance was actually specified here, to be safe, but a message printed from ogen indicated
that it was not needed.

The grid in figure (37) was generated with the command file Overture/sampleGrids/twoBlock.cmd.

6.2 Manual specification of mixed-boundary interpolation points

The command file cgrid.manual.cmd found in the Overture/sampleGrids directory shows how to manually create
a c-grid by specifying which points should be interpolated. Note that we specify how points on the bottom of the
c-grid branch cut interpolate from the top (along the ghost points) and how points on the top boundary interpolate
from the bottom.

48

Figure 35: An overlapping grid using a c-grid makes use of the ’mixed boundary’ option. A mixed-boundary is a
boundary that is sometimes a physical boundary of the domain and sometimes an interpolation boundary.

Figure 36: An overlapping grid using an h-grid makes use of the ’mixed boundary’ option.

Figure 37: An overlapping grid for two blocks makes use of the ’mixed boundary’ option.

6.3 Spitting a grid for interpolation of a grid to itself

When mixed boundary interpolation points are to be interpolated from the same grid (as in the case of a c-grid) ogen
will actually temporarily split the grid into two pieces and determine how points on one piece interpolate from the
other. This is necessary to prevent points from interpolating from themselves. By default, for a mixed boundary on
(side,axis) the grid is split at the halfway point along “(axis+1) mod numberOfDimensions”. If this is not correct
you should explicity specify where to split the grid using the specify split for self interpolation option. In

49

this case you specify the axis that should be split and the index position of the split.

50

7 Explicit hole cutting

Note: This option is new with v25.
Ogen’s automatic hole cutting algorithm (sometimes called implicit hole cutting) can sometimes fail when a

physical boundary on one grid is altered by another grid (see the examples below). In this case it may be necessary
to explicitly cut some holes. This can be done by using additional Mapping’s as hole cutters. Any grid points that
lie inside these hole-cutting Mappings will be removed.

Figure 38 shows results from the Ogen script halfAnnulusRefined.cmd in which an explicit hole cutter is needed
for a half-annulus in a rectangle with a refinement grid. With no explicit hole cutter, an island of points remains
inside the half-annulus where the back-ground grid and refinement grid can interpolate from one another (in some
cases, e.g. for coarser grids, the default algorithm may be able to recover from this situation). An annulus mapping
that fits inside the cavity of the half-annulus is used as an explicit hole cutter. The hole cutting annulus has a radius
that is slightly less than that of the half-annulus so that it does not cut holes in the half-annulus.

explicit hole cutting mapping

Figure 38: Explicit hole cutting is used for a half-annulus in a rectangle with a refinement grid. Left: default hole
cutting algorithm fails since the background grid and refinement grid can interpolate from one another inside the
half-annulus cavity. Middle: An annulus mapping is used to explicitly cut holes in the cavity. Right: final grid.

Figure 39 shows results from the Ogen script cylInBoxRefinedGrid.cmd in which an explicit hole cutter is needed
for a cylinder in a box with a refinement grid. With no explicit hole cutter, an island of points remains inside the
cylinder where the back-ground grid and refinement grid can interpolate from one another. A new cylinder mapping
that fits inside the cavity of the existing cylinder is used as an explicit hole cutter.

explicit hole cutting mapping

Figure 39: Explicit hole cutting is used for a cylinder in a box with a refinement grid. Left: default hole cutting
algorithm fails since the background grid and refinement grid can interpolate from one another inside the cylinder
cavity. Middle: A cylinder mapping is used to explicitly cut holes in the central cavity. Right: final grid.

51

8 Manual Hole Cutting and Phantom Hole Cutting

Ogen’s hole cutting algorithm can make mistakes in some difficult cases such as when there are thin bodies. There
is a manual hole cutting option that can be used in these difficult cases. Recall that when ogen cuts a hole with
the boundary of grid g0 it marks points on grid g1 that lie near the boundary of g0. Points on g1 are marked as
interpolation or as hole points depending on whether they are inside or outside grid g0. The hole cutting algorithm
can make a mistake if there is a grid g2 that is very close to the boundary of g0 but which should not be cut. Normally
one can fix this problem by choosing the option prevent hole cutting of g0 in g2 ; however there are some cases when
one must allow g0 to cut some holes in a different portion of g2.

There are two steps to perform manual hole cutting:

1. Specify phantom hole cutting for grid g0 onto grid g1. In this case only interpolation points on g1 will be marked
near the boundary of g0; no hole points will be marked. These interpolation points should completely surround
the hole region.

2. Manually cut a small hole in grid g1 using the manual hole cutting option. The hole points that are specified
must lie within the region of g1 that should be removed. These hole points will act as a seed and will be swept
out to fill the entire hole region. If the manually placed hole points are put in the wrong location then the hole
points may expand throughout much of the grid, resulting in an invalid overlapping grid.

The command files cicManualHoleCut.cmd and sibManualHoleCut.cmd in the Overture/sampleGrids directory
show examples of manually cutting holes.

52

9 Trouble Shooting

In this section we give some hints on what to do when you are unable to build a grid.
When there is not enough overlap between the grids or you have made a mistake in specifying the boundary

conditions or share flag values etc. the grid generator will fail to build a grid. When the algorithm fails the grid
will be plotted and the offending points will be plotted with black marks. In addition information is printed to the
screen and to a log file, ogen.log that may be helpful in tracking down what went wrong.

9.1 Failure of explicit interpolation

As an example, in figures (40) and (41) we show the result of trying to use explicit interpolation with the
two-dimensional valve grid. The algorithm fails to interpolate some points. These points are plotted with black
marks.

Figure 40: An example showing the failure of the overlapping grid algorithm when there is insufficient overlap. We
have tried to use explicit interpolation for the two-dimensional valve. The algorithm fails and plots the offending
points with black marks.

When the algorithm fails there is information written to the file ogen.log. In this case the file contains information
on each point that failed, as for example:

ERROR: unable to interpolate a point on grid=backGround, (i1,i2,i3)=(26,35,0), x=(5.200e-01, 7.000e-01, 0.000e+00)

Try to interpolate from grid=stopper, r=(6.66e-01,5.96e-01,0.00e+00)

mask =[1][1][1][-1][1][1][-1][-1][-1] : 0=hole, -1=interp., 1=discret.

...point is inside but explicit interpolation failed because stencil has an interpolation point in it.

Try to interpolate from grid=valve, r=(4.27e-01,4.84e-01,0.00e+00)

mask =[1][1][1][1][1][1][1][1][-1] : 0=hole, -1=interp., 1=discret.

...point is inside but explicit interpolation failed because stencil has an interpolation point in it.

53

Figure 41: A magnification of the failed grid shows that the points marked in black cannot be interpolated in an
explicit manner using a 3× 3 interpolation stencil.

This information indicates that a point could not be interpolated from either of two possible grids since the 9-
point interpolation stencil (indicated by the 9 values of mask) contains some points that are themselves interpolation
points (mask=-1). The values of r indicate the unit square coordinates in the grid we are trying to interpolate from.

Possible solutions to this problem are to use implicit interpolation or to increase the number of grid points on
the grids or to decrease the interpolation width.

54

9.2 Tips

Here are some tips for fixing a grid that fails:

check the log file: Check the ogen log file, ogen.log for informational messages that may help you understand
what went wrong.

display intermediate results: Turn on the option ‘display intermediate results’ in the ogen menu before
choosing the option ‘compute overlap’. This will plot the grid at intermediate stages in the overlapping grid
algorithm.

check the mappings: It is possible that the one of the Mapping’s you have created has an error in it. There
is a function available to check the properties of a Mapping. The Mapping can be checked either when you
create the Mappings (use the ‘check mapping’ option) or from the grid generation menu. The checkMapping
function will report any errors it finds. For example it will check the derivatives of the mapping by using finite
differences. There is probably no reason to be concerned if the relative errors in the derivatives are small, less
than 10−2 say.

Use implicit interpolation: As mentioned in section (3.5) implicit (default) interpolation requires less overlap
than explicit interpolation. If you are using explicit interpolation you could turn on implicit interpolation.

check boundary conditions: Use the view mappings option under create mappings to view all the mappings.
Check that all physical boundaries are shown as a positive value, that interpolation boundaries have a zero
value and that periodic boundaries are black.

check for sufficient overlap: Use the view mappings option under create mappings to view the mappings and
check that the mappings appear to overlap sufficiently. If there is not sufficient overlap then increase the
number of grid points.

check the share flag: use the view mappings option under create mappings and plot the boundaries by their
share flag value. Make sure that different grids that share the same boundary have the same share flag value
(see section (3.2) for a description of share flags).

shared side tolerance: even if your share flags are correct, the grid generator has a relative tolerance that it uses
to allow for discrepancies between the boundary representations of two grids. This tolerance measures the
distance in grid cells that the boundaries can differ by and still be assumed to be the same boundary. If
your boundaries do not match closely then you may need to increase this value with the shared boundary

tolerance option that is available from the change parameters menu.

turn off hole cutting: As described in section (3.3), by default physical boundaries will cut holes in other nearby
grids. You may need to disable the hole cutting as shown in the “inlet outlet” example, section (4.6).

55

10 Adding user defined Mapping’s

Advanced users of Overture may want to write their own Mapping class, see the Mapping class documentation for
how to do this. If you want to add a new type of Mapping to ogen then you should copy and change the driver
program ogenDriver.C (found in Overture/in) and add in your new Mapping. Compile and load this program to
make your own version of ogen.

The next listing shows ogenDriver.C. If the preprocessor macro ADD USER MAPPINGS is defined (for example, by
adding the compile flag -DADD USER MAPPINGS then a user defined AirfoilMapping will be added.

1 //===

2 // Here is the driver program for ‘ogen’ - the overlapping grid generator

3 //

4 // Usage: type

5 // ogen

6 // to run with graphics, or type

7 // ogen noplot

8 // to run without graphics, or

9 // ogen file.cmd

10 // to run ogen with graphics and read in a command file, or

11 // ogen noplot file.cmd

12 // to run ogen without graphics and read in a command file.

13 //

14 // By default user commands will be saved in the file "ogen.cmd"

15 //

16 // You can add to the driver any nonstandard Mapping’s that you want to use.

17 // See the example below where (if the macro ADD_USERMAPPINGS is defined) an AirfoilMapping

18 // is created and added to a list. The list is then passed to ogen. The Mapping

19 // can be subsequently changed within ogen, if required.

20 //

21 // Thus, for example, your compile line should look something like:

22 // CC -DADD_USERMAPPINGS ogenDriver.C

23 //

24 //===

25
26 #include "Overture.h"

27 #include "MappingInformation.h"

28 #include "PlotStuff.h"

29
30 // Here are some user defined mappings

31 #ifdef ADD_USER_MAPPINGS

32 #include "AirfoilMapping.h"

33 int addToMappingList(Mapping & map);

34 #endif

35
36 int ogen(MappingInformation & mappingInfo, GenericGraphicsInterface & ps, const aString & commandFileName, CompositeGrid *cgp=0);

37
38 int

39 main(int argc, char *argv[])

40 {

41 Overture::start(argc,argv);

42 // Index::setBoundsCheck(off);

43
44 Overture::printMemoryUsage("ogenDriver: after Overture::start");

45
46 int numberOfParallelGhost=2;

47
48 aString commandFileName="";

49 if(argc > 1)

50 { // look at arguments for "noplot" or some other name

51 aString line;

52 int len=0;

53 for(int i=1; i<argc; i++)

54 {

55 line=argv[i];

56 if(line=="-noplot" || line=="-nopause" || line=="-abortOnEnd" || line=="-nodirect" ||

57 line=="-readCollective" || line=="-writeCollective" || line=="-multipleFileIO" ||

58 line=="noplot" || line=="nopause" || line=="abortOnEnd" || line=="nodirect") // old way

59 {

60 continue; // these commands are processed by getGraphicsInterface below

61 }

56

62 else if((len=line.matches("-numberOfParallelGhost=")))

63 {

64 sScanF(line(len,line.length()-1),"%i",&numberOfParallelGhost);

65 printF("ogenDriver: will use %i parallel ghost points.\n",numberOfParallelGhost);

66 }

67 else if((len=line.matches("-numParallelGhost=")))

68 {

69 sScanF(line(len,line.length()-1),"%i",&numberOfParallelGhost);

70 printF("ogenDriver: will use %i parallel ghost points.\n",numberOfParallelGhost);

71 }

72 else if(commandFileName=="")

73 commandFileName=line;

74 }

75 }

76 else

77 {

78 printF("Usage: ‘ogen [-noplot][-nopause][-abortOnEnd][-numParallelGhost=<val>][file.cmd]’ \n"

79 " -noplot: run without graphics \n"

80 " -nopause: do not pause \n"

81 " -abortOnEnd: abort if command file ends \n"

82 " file.cmd: read this command file \n");

83
84 }

85
86 // --- create user defined mappings ----

87 MappingInformation mappingInfo;

88 #ifdef ADD_USER_MAPPINGS

89 AirfoilMapping airfoil;

90 mappingInfo.mappingList.addElement(airfoil);

91 // Do this so we can read the airfoil mapping from a data-base file

92 addToMappingList(airfoil);

93 #endif

94
95
96 // Graphics interface:

97 // Note: options "noplot", "nopause" and "abortOnEnd" are handled in the next call:

98 // NOTE: this next call is important to get the command line arguments passed to the cmd file:

99 GenericGraphicsInterface & ps = *Overture::getGraphicsInterface("ogen: Overlapping Grid Generator",false,argc,argv);

100
101 // By default start saving the command file called "ogen.cmd"

102 aString logFile="ogen.cmd";

103 ps.saveCommandFile(logFile);

104 printF("User commands are being saved in the file ‘%s’\n",(const char*)logFile);

105 fflush(0);

106
107 #ifdef USE_PPP

108 // Set the default number of parallel ghost lines. This can be changed in the ogen menu.

109 // On Parallel machines always add at least this many ghost lines on local arrays

110 MappedGrid::setMinimumNumberOfDistributedGhostLines(numberOfParallelGhost);

111 #endif

112
113 Overture::printMemoryUsage("ogenDriver (2)");

114
115 Overture::turnOnMemoryChecking(true);

116
117 Overture::printMemoryUsage("ogenDriver (3)");

118
119 // create more mappings and/or make an overlapping grid

120 ogen(mappingInfo,ps,commandFileName);

121
122 Overture::finish();

123 return 0;

124 }

125
126
127
128

57

11 Importing and exporting grids to different file formats

There are a number of ways to import a grid generated from some other program for use in Overture.

• From the create mappings menu, read from a file menu you can import various file formats such as plot3d (for
structure grids), IGES (for CAD), stl, ingrid and ply (for unstructured surfaces).

• From the DataPointMapping menu you can read a plot3d file or input grid points directly.

• From the NurbsMapping menu you can input grid points in various formats. The NurbsMapping has the
advantage over the DataPointMapping in that a high-order Nurbs can be generated (the DataPointMapping is
restricted to a piece-wise cubic representation).

• From the UnstructedMapping menu you can import unstructured grids in various formats (e.g., stl, avs).

After importing a grid you will generally need to edit the mapping that was generated (e.g. a DataPointMapping)
and change the boundary conditions and share flags etc. You can also change the number of grid lines. Use the
change a mapping option from the create mappings menu to edit an existing Mapping.

The plotStuff program can also be used to view a plot3d solution file (“q-file”).
There are a few ways to take an grid generated with Overture and convert it to another format. Note that the

HDF file generated by Overture is a data-base file with no fixed format. One must use an Overture program to read
or write the data in the file. For example, the grid points are not even stored in the file for analytic mappings such
as a box, sphere or annulus.

• The program Overture/primer/gridPrint.C reads an HDF file generated by Ogen and shows how to access the
information (grid points, mask, interpolation info) and write out the results using fprintf. One can change this
program to output results to another file format.

• An overlapping grid generated by ogen can be saved in plot3d format from the main menu of ogen (this option
is broken in v23).

• The program Overture/examples/readShowFile.C shows how to read a show file (holding solutions and grids).
This program could be altered to output solutions to a different format for viewing with another graphics
program.

• When viewing solutions with plotStuff there is a file output option that allows one to output solutions to text
files.

58

12 Overlapping Grid Generator: Ogen

The overlapping grid generation algorithm determines how the different component grids communicate with each
other. The algorithm must also determine those parts of component grids that are removed from the computation
because that part of the grid either lies underneath another grid of higher priority or else that part of the grid lies
outside the domain.

12.1 Command descriptions

12.1.1 Interactive updateOverlap

int
updateOverlap(CompositeGrid & cg, MappingInformation & mapInfo)

Description: Use this function to interactively create a composite grid.

mapInfo (input) : a MappingInformation object that contains a list of Mappings that can be used to make the
composite grid. NOTE: If mapInfo.graphXInterface==NULL then it will be assumed that mapInfo is to be
ignored and that the input CompositeGrid cg will already have a set of grids in it to use.

Here is a description of some of the commands that are available from the updateOverlap function of Ogen.
This function is called when you choose “generate overlapping grid” from the ogen program.

compute overlap : this will compute the overlapping grid. As the grid is generated various information
messages are printed out. Some of these messages may only make sense to the joker who wrote this code.

change parameters : make changes to parameters. See the next section for details.

display intermediate results : this will toggle a debugging mode. When this mode is on, and you choose
compute overlap to generate the grid, then the overlapping grid will be plotted at various stages in its
algorithm. The algorithm is described in section (12.2). The program will pause at the end of each stage
of the algorithm and allow you to either continue or to change the plot as described next. Experienced
users will be able to see when something goes wrong and hopefully detect the cause.

change the plot : this will cause the grid to be re-plotted. You will be in the grid plotter menu and you
can make changes to the style of the plot (toggle grids on and off, plot interpolation points etc.). These
changes will be retained when you exit back to the grid generator.

12.1.2 Non-interactive updateOverlap

int
updateOverlap(CompositeGrid & cg)

Description: Build a composite grid non-interactively using the component grids found in cg. This function might
be called if one or more grids have changed.

Return value: 0=success, otherwise the number of errors encountered.

12.1.3 Moving Grid updateOverlap

int
updateOverlap(CompositeGrid & cg,

CompositeGrid & cgOld,
const LogicalArray & hasMoved,
const MovingGridOption & option =useOptimalAlgorithm)

Description: Determine an overlapping grid when one or more grids has moved. NOTE: If the number of grid
points changes then you should use the useFullAlgorithm option.

cg (input) : grid to update

cgOld (input) : for grids that have not moved, share data with this CompositeGrid.

hasMoved (input): specify which grids have moved with hasMoved(grid)=TRUE

59

option (input) : An option from one of:

enum MovingGridOption

{

useOptimalAlgorithm=0,

minimizeOverlap=1,

useFullAlgorithm

};

The useOptimalAlgorithm may result in the overlap increasing as the grid is moved.

Return value: 0=success, otherwise the number of errors encountered.

60

hangeParametersInclude.tex

12.2 Algorithm

The algorithm used by Ogen is based upon the original CMPGRD algorithm[3] with some major changes to improve
robustness. The basic improvement is that the new algorithm initially removes all grid points that lie inside “holes”
in the grids. Once the holes have been cut the program can determine explicitly whether there is enough overlap to
generate an overlapping grid and if there is not enough overlap the offending points can be shown.

The algorithm for computing the overlapping grid communication is perhaps most easily understood by reading
the following description and also referring to the series of examples that follow.

Here are the basic steps in brief:

interpolate boundaries: First try to interpolate points on physical boundaries from points on physical boundaries
of other grids.

Boundary points that interpolate from the interior of other grids are marked either as being an
interiorBoundaryPoint and an interpolationPoint (using a bitwise ‘or’ in the mask).

mark hole boundaries: For each physical boundary find points on other grids that are near to and inside or outside
of the boundary. After this step the holes in the grid will be bounded by a boundary of holes points next to a
boundary of interpolation points.

remove exterior points: Mark all remaining hole points. These points can be easily swept out since the hole
cutting algorithm ensures that all holes are bounded by interpolation points.

classify (improper) interpolation boundary: The points on the stairstep boundaries and interpolation bound-
aries are collected into a list. We first try to interpolate these points from other grids using improper interpo-
lation. A point is said to interpolate in an improper way from a grid if it simply lies within the grid. Since
all the points in the list lie within in the domain they must interpolate from some other grid or else there is
something wrong. See the section on trouble-shooting for examples when this step fails.

classify proper interpolation boundary: We now take the list of (improperly) interpolated points and sort them
into one of the following categories:

proper interpolation: A point of a grid interapolates in a proper way from a second grid if the appropriate
stencil of points exists on the second grid and consists of the correct types of points for the implicit or
explicit interpolation.

discretization point: An interpolation point on a physical boundary may be used as a dicretization point.

At the successful completion of this step we should have a valid overlapping grid. There should be no fatal
errors in performing the final steps.

interpolate discretization points: To reduce the amount of overlap we attempt to interpolate discretization
points from grids of higher priority.

remove redundant interpolation points: Any interpolation points that are not needed are removed from the
computation. Interpolation points that are needed but that can just as well be used as discretization points
are turned into discretization points.

12.3 Hole cutting algorithm

After checking for interpolation points on boundaries, the next step in the overlapping grid algorithm is to cut holes.
This is the most critical step in the algorithm. Each side of a grid that represents a physical boundary is used to cut
holes in other grids that overlay the boundary.

Each face on grid g representing a physical boundary is used to cut holes in other grids. We also mark points that
can interpolate from grid g. The goal is to build a barrier of hole points next to interpolation points that partitions
the grid into two regions – one region that is inside the domain and one region that is outside the domain.

• We check for points, xg on the face of grid g that can interpolate from from another grid g2. These points i2
on g2 are potential hole points.

61

• A potential hole point is not cut if it can interpolate from grid g, in this case the point is marked as an
interpolation point.

• A potential hole point is NOT cut if the distance to the cutting surface is greater than 2∆x2 where ∆x is a
measure of the cell size on g2 (currently the length of the diagonal of the cell i2). Thus in general there will be
a layer of 1-3 points cut near the cutting surface.

• A potential hole point is NOT cut if the point i2 already can interpolate from another grid g3 AND the grid g3

shares the same boundary with grid g. This condition applies to a thin body and prevents points from being
cut that are actually inside the domain on the opposite side of the thin body.

This section needs to be completed...

1. Invert the points xg on grid g2 given coordinates rg2 .

2. Compute the holeMask mask array which indicates whether a point on the cutting face is inside of outside g2

Compute the holeMask:

holeMask(i1,i2,i3) = 0 : point is outside and not invertible

= 1 : point is inside

= 2 : point is outside but invertible

| |

| grid2 |

holeMask | |

--0---0---2---2---1---1---1---1---1---1---2---2---2---0---0---- cutting curve, grid

| |

| |

| |

| |

| |

3. The idea now is to mark all points on g2 that are near the cutting face.

12.4 Finding exterior points by ray tracing

*** Ray tracing is NO longer performed to remove holes points*** but it is used to generate embedded boundary
grids (a future feature).

Exterior points are found by counting the number of times that a semi-infinite ray, starting from a point x and
extending in the y-direction to +∞, crosses the boundaries of the region. If the ray crosses the boundaries an even
number of times then it is outside the domain.

If a ray crosses the region where two grids overlap then there will appear to be two points of crossing. We must
eliminate one of these points of crossing or else we will obtain an incorrect result.

The ray casting algorithm will determine the intersection of the ray with the boundary surfaces represented as a
triangulation of the discrete points.

We keep a list of the positions of intersection, xi, as well as the grid and grid point location of the intersection.
Ideally we would only need to check whether two points of intersection from two different grids are close, ‖xi−xj‖ < ε.
It is not very easy, however, to determine an appropriate value for ε. If the ray crosses the boundary in a nearly normal
direction then the distance d = ‖xi − xj‖ will be of order the discrepency between the two discrete representations
of the surface which can be estimated by ??

If, however, the ray crosses the boundary in a nearly tangential direction then the distance d could be as large as
the grid spacing in the tangential direction.

There are further complications since the body may represent a very thin surface (such as a wing) and there may
be points of intersection that are close together in physical space but actually on opposite sides of the thing body.

Thus to perform a robust check we do the following

1. Check that two intersecting points belong to two different grids, g1 6= g2.

62

2. Check that the boundaries on the two grids are shared sides (meaning they belong to the same surface as
specified in the grid generation by setting the share flag).

3. Check that the grid cells that contain the points of intersection have some vertices that are interpolation points
(so that we know we are in a region of overlap) ???

4. check that the normals to the boundary at the points of intersection point in the same basic direction, n1·n2 > 0.

5. check that the distance d = ‖xi − xj‖ between the points satsifies

α = |(x2 − x1) · n|/||(x2 − x1)|| 0 ≤ α ≤ 1

dn ≡ normal discrepency

dt ≡ tangential discrepency

d ≤ αdn + (1− α)dt

x1

x2

Figure 42: The points of intersection of a ray with a surface covered by two overlapping grids. If the ray is nearly
tangent to the surface then the two points of intersection may not be very close together.

63

12.5 Adjusting grid points for the boundary mismatch problem

When the sides of two grids overlap on a boundary then there can be a problem interpolating one grid from the other
if the grids do not match well enough. This problem is especially likely if the grids are formed by interpolating data
points and the grid spacing is highly stretched in the normal direction.

Figure (??) shows two grids that share a boundary. If we suppose that the mapping for the grid is defined by
linear interpolation between the grid points then it is clear that points on the boundary of grid A appear to be well
outside or well inside the boundary of grid B, when actually the boundaries are meant to be the same.

This boundary mis-match causes two problems. The first problem, encountered by the grid generator, is that
those boundary points (or even interior points for highly strteched grids) that appear to be outside the grid should
actually be allowed to interpolate. The hole cutting algorithm will mark these points as being unusable and outside
the grid. The second problem occurs in PDE solvers. Even if we allow the points to interpolate, the interpolation
will not be very accurate and the solution can look bad.

To fix both these problems we adjust the points on grid A so that the boundary points of grid A are shifted to
lie exactly on the boundary of grid B. Other points on grid A are also shifted, but the amount of the shift decreases
the further we are from the boundary. If the grid is highly stretched then the relative amount we shift the points,
compared to the local grid spacing, decreases as we move away from the boundary. For example if the spacing near
the boundary is 10−3 compared to the spacing away from the boundary layer then the amount we shift interior points
will be on the order of 10−3, a very small relative change. Note that this shift is only done when we are
determining the location of A grid points in the parameter space of grid B (for interpolation). The
actual grid points are not changed in the CompositeGrid created by the grid generator. Also note that points on grid
A may be shifted one amount when interpolating from grid B, but could be shifted another amount if interpolating
from a third grid C.

Referring to figure (43) the point x0 is shifted to the point x1 on the boundary. The point x2 is also shifted, but
by a smaller amount, that depends on the distance from the boundary relative to the vector w

x̃2 ← x2 + (x1 − x0)[1− (x2 − x0) ·w
‖w‖2

]

≡ x2 + (x1 − x0)[1− (x2 − x0) ·w
‖w‖2

]

≡ S(x1)x2

The opposite-boundary vector w is chosen to extend from the boundary to the grid points as some distance from
the boundary. We use the grid line that is at least 1/3 of the distance (in index space) to the opposite side, but
at least 10 lines (unless there are fewer than 10 lines). The vector should be far enough away so that points in the
boundary layer are shifted to be inside the other grid, but close enough so that w is nearly parallel to the normal to
the boundary.

The shift operator S will project the boundary points of grid A onto the boundary of grid B.
A complication occurs if the more than one side of grid A shares sides with the same grid B, as shown in figure

(43). In this case we must determine shifts in multiple directions so that after these shifts the boundary points
on grid A are shifted to lie on the boundary of grid B. We cannot simply apply the above algorithm for each side
independently.

To fix this problem we sequentially apply the shift operations more than once in order to ensure that the grids
points are projected onto all the shared boundaries. Let S0, S1 and S2 denote the shift mappings in each coordinate
direction. In two dimensions, the operator

x̃2 ← S1S0x

will not work properly since after the application of S1 the points on boundary 0 can be shifted off the boundary.
However the operator

x̃2 ← S0S1S0x

would work since the final S0 operator will not change the points on boundary 1 (since the corner points of grid A
have been projected to the corner points of grid B after the two steps S1S0x).

Rather than applying S0 twice it is more efficient to define new operators to perform the projection in only two
steps:

x̃2 ← S̃1S̃0x

64

We can do this

S̃0 = S0(x1 + y)

y = S0(x1)x1

S̃1 = S1

In three-dimensions if we have three adjacent shared faces then

x̃2 ← S̃2S̃1S̃0x

S̃0 = S0S2S1S0

S̃1 = S1

S̃1 = S2

Figure 43: An overlapping grid testing the mismatch problem, created with mismatch.cmd. The refinement grid is
artifically translated so that the two boundaries it shares with the base grid do not match. The figure on the right
is a magnification of the lower left corner, before the overlap algorithm was applied.

65

12.6 Refinement Grids

Refinement grids can be added to a GridCollection or to a CompositeGrid. The component grids that exist in
the original CompositeGridare known as base grids. These grids represent refinement level 0. Refinement grids
are added on a particular base grid and belong to a particular level. Normally the refinement levels are properly
nested so that all grids on refinement level l are contained in the grids on refinement level l − 1.

A given refinement grid will have only one parent grid on refinement level 0, i.e. it will belong to only one base
grid. A refinement grid on level l may have more than one parent grid on level l − 1.

Normally a refinement grid will interpolate its ghost values from other refinement grids on the same level or from
its parent grids. Points on the parent grid that lie underneath the refinement will interpolate from the refinement
(also known as the child grid).

If refinement grids lie in a region where two base grids overlap, it is necessary to determine how the refinements
interpolate from the grids they overlap that belong to a different base grid.

The updateRefinements function determines how refinement grids interpolate from other grids that they overlap.
This function does not determine how a refinement grid interpolates from the grid it has refined.

If a refinement...

66

12.7 Improved Quality Interpolation

This is new* Version 16 or higher.
Normally one wants to avoid having a fine grid interpolate from a coarse grid or vice versa. Often this can be

accomplished through the normal specification of a priority for each grid. Sometimes, however, using a single priority
per grid is not sufficient.

Figure 44: The lower annulus (the highest priority grid) has points that interpolate from the fine boundary layer
grid of the upper annulus. This interpolation will be inaccurate if the solution varies rapidly in the boundary layer,
and the lower annulus will be unable to represent the boundary layer solution accurately. This problem cannot be
fixed by simply changing the priorities of the grids.

Figure (44) shows a grid where the highest priority grid (the bottom annulus) interpolates from the fine boundary
layer grid of the top annulus. By turning on the flag to improve the quality of interpolation the grid shown in figure
(45) results.

We use a simple measure of the quality of the interpolation to be the relative size of the grid cells on the two
grids involved.

quality of interpolation =
cell size of the interpolation point

cell size of the interpolee point

The quality is bad (i.e. large) if the interpolee grid cells are smaller. This simple measure seems adequate for our
purposes of preventing coarse grid points on higher priority grids from interpolating from lower priority grids.

The algorithm for removing poor quality points is

1. Follow the standard algorithm until all points have been interpolated but redundant points have not yet been
removed.

2. Try to interpolate all points on the finest grid that can interpolate from a lower priority grid. (This is not done
in the standard case).

3. Attempt to remove poor quality points from the boundary of the interpolation point region where a point
interpolates from a lower priority grid. A point is removed if it is not needed for discretization and the quality
measure is greater than a specified value (normally around 2). If a point is removed then also check the new
boundary points that are now exposed.

67

Figure 45: With the ‘improved quality’ option turned on, the lower annulus no longer interpolates from the fine
boundary layer of the upper annulus.

4. After points have been removed we need to go back and update any other interpolation points that can no-longer
interpolate (since they required some of the points that were deleted).

The algorithm is supposed to be guaranteed to give a valid grid provided a grid could be made without the improve-
ment steps.

12.7.1 Note:

There is a more sophisticated way to measure the quality of interpolation. ***This measure is not used currently**.
One way to measure the quality of the interpolation is defined as follows. We would like the cell at an interpolation

point on grid A to be approximately the same size, shape and orientation as the cells on the interpolee grid B. The
vector

dA
i =

∂xA

∂ri
∆rAi

measures the grid cell spacing and orientation of the side of the cell along the axis ri of grid A. This vector corresponds
to a vector in the parameter space of grid B given by

rBi =

[
∂rB

∂x

]
dA
i

The length in grid cells of this vector rBi is approximately∥∥∥∥∥∥∥


1
∆rB1

0 0

0 1
∆rB2

0

0 0 1
∆rB3

 rBi

∥∥∥∥∥∥∥
where we have scaled each element by the appropriate grid spacing. This length should be near 1 for good quality
(since the original vector dA

i has a length of one grid cell).

68

Thus to measure the quality of all sides on the original cell we can compute

p =

∥∥∥∥∥∥∥


1
∆rB1

0 0

0 1
∆rB2

0

0 0 1
∆rB3

[∂rB

∂x

] [
∂xA

∂r

]∆rA1 0 0
0 ∆rA2 0
0 0 ∆rA3


∥∥∥∥∥∥∥

The interpolation will be defined to be of high quality if this norm is near 1. In particular we use the quality measure

q =
1

2
(p+

1

p
)

where we prefer points with a smaller value for q.

69

13 Treatment of nearby boundaries and the boundaryDiscretisation-
Width

** new with version 18**
Figure (46) shows the grid generated in the case when two boundaries are very near to one another. The

boundaryDiscretisationWidth parameter, which is by default 3, indicates that any boundary point that is a
discretisation point should have two interior neighbouring points so that a one-sided 3-point scheme could be applied
on the boundary. To ensure this condition is satisfied extra points are allowed that normally would not be valid.
The interpolation points that are outside the domain are “interpolated” from the nearest point on the boundary
by pretending that the interpolation point has been moved to the boundary. This will only be first order accurate
interpolation.

70

Figure 46: When two boundaries are nearby to one another the overlapping grid algorithm ensures that enough
interior grid-points remain next to the boundary points to allow the boundary point to be discretised. While not
very accurate this approach at least allows a grid to be built.

71

14 Adaptive Mesh Refinement

When refinement grids are added to an overlapping grid and a refinement grid overlaps an interpolation boundary,
the Ogen function updateRefinement should be called. This function will cut holes in the refinement grids and
determine how to interpolate points on the hole-boundary.

The order of preference for the interpolation of a point on the hole-boundary of a refinement grid is to

1. interpolate from another refinement at the same level and different base grid

2. interpolate from another refinement at a lower level and different base grid

3. interpolate from a refinement grid on the same base grid (this case should only be used as a backup and should
normally not be needed).

14.1 The algorithm for updating refinement meshes added to an overlapping grid.

There are two main steps in the algorithm for adding refinement meshes to an overlapping grid.

1. Build a mask array for each refinement grid that indicates where holes are and which points should be inter-
polated.

2. For each interpolation point on the hole boundary, find which grid to interpolate from.

To be efficient, these steps are performed with a different procedure than the normal overlapping grid algorithm.
The mask array is built entirely by looking at the mask array from the base grids. The interpolation points are
determined by looking at the interpolation points on the base grids in order to determine the likely interpolee grids.

72

Refinement grids

Figure 47: When refinement grids are added to an overlapping grid, the updateRefinement function should be called
in order to compute a valid grid.

73

14.2 Example: Circle in a Channel

These figures show the circle in a channel grid at various stages in the overlap algorithm.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will
generate a barrier of hole points and interpolation points that bounds the entire hole region.

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been
marked.

74

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

Grid after marking all (proper) interpolation. We have attempted to interpolate discretization points on each grid
from grids of higher priority.

75

Finished grid after removing excess interpolation points.

76

14.3 Example: Valve

These figures show the grid for a valve at various stages in the overlap algorithm.

Grid after interpolation on boundaries.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will
generate a barrier of hole points and interpolation points that bounds the entire hole region.

77

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been
marked.

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

78

Grid after marking all (proper) interpolation.

Finished grid after removing excess interpolation points.

79

15 Grid Generation Timings

Grid D Ng Grid Pts Interp Pts CPU (s) cpu/pt cpu/interp
(106) (103)

downTown 2D 126 .25 14. 80.2 5.6e-3
shapes5 2D 4 3.4 13. 45.3 3.4e-3
cic7 2D 2 4.3 4.7 7.0 1.5e-3
tcilc6 2D 3 13.2 7.8 31.6 4.0e-3
sub 3D 18 .20 24. 29.7 1.3e-3
multiBuildings 3D 20 1.3 94. 84.7 .90e-3
twoStrokeEngine4 3D 8 1.6 89. 22.7 .25e-3
cabTender 3D 28 1.9 180. 62.5 .34e-3
multiSphere3 3D 15 4.6 310. 88.2 .28e-3
sib4.bbmg 3D 3 8.3 100. 50.1 .48e-3

Table 1: CPU times for computing a variety of Overlapping grids with Ogen. Computations performed on a 2.2Ghtz
Zeon with 2Gbytes of memory.

80

References

[1] D. Appelö, J. W. Banks, W. D. Henshaw, and D. W. Schwendeman, Numerical methods for solid
mechanics on overlapping grids: Linear elasticity, J. Comput. Phys., 231 (2012), pp. 6012–6050. publications/
AppeloBanksHenshawSchwendemanSmog2012.pdf.

[2] J. W. Banks, W. D. Henshaw, and D. W. Schwendeman, Deforming composite grids for
solving fluid structure problems, J. Comput. Phys., 231 (2012), pp. 3518–3547. publications/

BanksHenshawSchwendemanDeformingCompositeGrids.pdf.

[3] G. S. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial differential
equations, J. Comput. Phys., 90 (1990), pp. 1–64. publications/cgns1990.pdf.

[4] W. D. Henshaw, Mappings for Overture, a description of the Mapping class and documentation for many useful
Mappings, Research Report UCRL-MA-132239, Lawrence Livermore National Laboratory, 1998.

[5] , Plotstuff: A class for plotting stuff from Overture, Research Report UCRL-MA-132238, Lawrence Liver-
more National Laboratory, 1998.

[6] W. D. Henshaw and D. W. Schwendeman, Parallel computation of three-dimensional flows using over-
lapping grids with adaptive mesh refinement, J. Comput. Phys., 227 (2008), pp. 7469–7502. publications/

henshawSchwendemanPOG2008.pdf.

81

publications/AppeloBanksHenshawSchwendemanSmog2012.pdf
publications/AppeloBanksHenshawSchwendemanSmog2012.pdf
publications/BanksHenshawSchwendemanDeformingCompositeGrids.pdf
publications/BanksHenshawSchwendemanDeformingCompositeGrids.pdf
publications/cgns1990.pdf
publications/henshawSchwendemanPOG2008.pdf
publications/henshawSchwendemanPOG2008.pdf

Index

adaptive mesh refinement
ogen, 72

airfoil, 19

body of revolution, 28
boundary condition, 7

mixed boundary condition, 48
physical boundary, 7

boundary mismatch, 64
boundaryDiscretisationWidth, 70
building, 46

c-grid, 48
command file, 9
cutting holes

turning off, 8

explicit hole cutting, 51

grid generation, 1

h-grid, 48
hints, 53
hole cutting, 61

algorithm, 61
explicit, 51
manual, 52
phantom, 52

hybrid grid, 21

interpolation, 8
explicit, 8
implicit, 8
improper, 61
improved quality, 67
proper, 61
redundant, 61
turning off, 8

mapping
AirFoilMapping, 19
transfinite interpolation, 19

orthographic, 22
overlapping grid algorithm, 61

phantom hole cutting, 52

refinement grids, 66
rocket, 46

share flag, 8

tips, 55
trouble shooting, 53

unstructured grid, 21
user defined mapping, 56

82

	Introduction
	Commands
	Commands for ogen
	Commands when creating Mappings

	Things you should know to make an overlapping grid
	Boundary conditions
	Share flag
	Turning off the cutting of holes
	Turning off interpolation between grids
	Implicit versus explicit interpolation

	Examples
	Square
	Stretched Annulus
	Cylinder in a channel
	Cylinder in a channel, cell-centered version
	Cylinder in a channel, fourth-order version
	Inlet-outlet
	Valve
	NACA airfoil
	Hybrid grid for the inlet-outlet
	Stretched cube
	Sphere in a box
	Sphere in a tube
	Intersecting pipes
	Body Of Revolution
	3D valve
	3D wing in a box
	3D wing with Joukowsky cross-sections
	Three-dimensional flat-plate wing
	Lofted box
	Lofted Joukowsky Wing
	Lofted Wigley Ship Hull
	Wind farm
	Adding new grids to an existing overlapping grid.
	Incrementally adding grids to an overlapping grid.
	Other sample command files and grids

	Best practices when constructing an overlapping grid
	Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-block grid
	Automatic mixed-boundary interpolation
	Manual specification of mixed-boundary interpolation points
	Spitting a grid for interpolation of a grid to itself

	Explicit hole cutting
	Manual Hole Cutting and Phantom Hole Cutting
	Trouble Shooting
	Failure of explicit interpolation
	Tips

	Adding user defined Mapping's
	Importing and exporting grids to different file formats
	Overlapping Grid Generator: Ogen
	Command descriptions
	Interactive updateOverlap
	Non-interactive updateOverlap
	Moving Grid updateOverlap

	Algorithm
	Hole cutting algorithm
	Finding exterior points by ray tracing
	Adjusting grid points for the boundary mismatch problem
	Refinement Grids
	Improved Quality Interpolation
	Note:

	Treatment of nearby boundaries and the boundaryDiscretisationWidth
	Adaptive Mesh Refinement
	The algorithm for updating refinement meshes added to an overlapping grid.
	Example: Circle in a Channel
	Example: Valve

	Grid Generation Timings

