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Abstract: We describe the practical aspects of computing the time step for a PDE that has been discretized on a
curvilinear grid. Sample programs are given using Overture.
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1 ODEs
Consider the stability of the model problem (ODE initial value problem)

Yy =ay, acC

y(0) =wo
Suppose we discretize with some method
V" = S(aAt, 0" 0™ L) (1)
A = aAt (2)

The region of absolute stability for the scheme (1)) is defined to be the region in the complex plane for A = aAt such
that the solution v™ remains bounded for all initial data v°,

A={A€C:p"| <K Vn, Y%

Example: The forward Euler scheme

" ="+ aAt” (3)
— ’U"+1 — (1 + )\)"-"_1’1)0 (4)
is stable provided
14+ A <1

This defines the region interior to the circle in the complex plane centered at —1 with radius 1.
Example: The backward FEuler scheme

v =0 4+ aAte™ L (5)
= Tl = 7(1 — i)"“ 20 (6)
is stable provided .
R

This defines the region exterior to the circle in the complex plane centered at +1 with radius 1.
Example: The trapezoidal scheme

al\t

R - (v™ + 0" (7)
1 l)\ n+1
:>v"+1< +? > v° (8)
-1
is stable provided
1+ 35X
<
1—2x|~
This defines the region R(A) < 0, the left half plane.
Example: The midpoint rule (modified Euler) scheme
At
Un+% ="+ aTvn (9)
0" = 0" 4 a A" 3] (10)
1
= "M =1+ A+ 5)\2]"“110 (11)
is stable provided
1
‘1+A+2V <1




This defines an elliptical like region that extends to —2 on the real axis and passes through the point (—1,+/3). See
figure 77.
Example: The Leap-frog scheme

V"2 = 0" + 2aAt[v" ] (12)
is a two level scheme that we solve by trying v™ = k" which implies

K= ...

is stable provided « lies on the imaginary axis and ...

2 Fourier or von Neumann Stability Analysis for PDEs

Recall the discrete fourier transform and its inverse

N/2—-1
N 2TIWT
v; = E v,€ J
w=N/2
N-1
s i . 727rzwm_7~h
Vy = N vje
=0

2.1 Diffusion Equation
Now consider the parabolic PDE (v > 0)
Up = Vlgy xz € (0,1)

u(z,0) = up(x)

u and ug are 1-periodic

Introduce a grid on the interval [0, 1], and discretize in space
Evj(t) =vD,D_v; j=0,1,....,.N -1
v;(0) = uo(z;)
x; =jh h=1/N

v(x;) = v(zj4n)
To analyse the stability of this scheme we fourier transform,

d . v
%vw(t) = ﬁ(e

= —4% sin?(£/2)i,,

2miwh 24 e—27rzwh),ﬁw

where

£ =2nwh w=-N/2,...N/2-1
—r<é<T

Define

Q) = 4" s (e/2)

The scheme has been reduced to an ODE with A = Q(ﬁ) Any particular time-stepping routine will be stable provided

Q(&) lies in the stability region for all —7 < £ < 7.
Example: For forward Euler time-stepping the scheme is stable provided

1+QE) <1, —r<E<m



which implies
VAL < 1

h2 =2
Example: If we discretize with backward-Euler, then we require
1
1+ 4% sin?(£/2

<1, —nm &<
)
and thus the scheme stable for any value of At > 0, (since v > 0).

2.2 Convection Diffusion Equation

Consider the convection diffusion equation
Ut + AUy = Vgy

Discretize in space,

d
a’Uj = 7G,D0Uj (t) —+ I/D+D_’Uj (t)
and Fourier transform gives
d . , , .
%ﬁw = [—%(e’f —e ) ¢ %(eZ§ — 2+ e %)),

Define ) A
Q= {—h sin(¢) — 55 sin2(§/2)} At

A particular time stepping scheme will be stable provided Q lies in its stability region.
To simplify the discussion suppose that the stability region is contained in an ellipse:

2 2
Stability Region: A : (I) +<y> <1

ag Bo

If the real and imaginary parts of Q are

then the scheme is stable provided

IN
—_

(- (2)
oo 0
— 4VA2t sin?(£/2) 2+ Q—Atsin(ﬁ) 2
(aoh hBo
() +(55) =

are|(22) + (i)

1

IN

A sufficient condition is

which implies

Nl=

3 Variable Coefficients

Now consider the convection diffusion equation with variable coefficients
up + a(x)uy = V() ugy

If we discretize in space we get

G = () Doy (1) + () D4 D_ (1)



To simplify the analysis we freeze the coeflicients

d
%’U = —aoDQUj(t) + VOD+D_Uj(t)

and Fourier transform as before giving

vy

Q0 = {~ T2 sin(e) - T sint(e/2) | av

Now we unfreeze the coefficients

Q) = { -2 snie) - 2 s A

and impose the condition that Q(§ ,x) lies in the stability region of the time-stepping method for —m < £ < 7 and
0<x<1.
A “sufficient” condition is thus

1
2

) 4v(z)\” a(z)\?
At < —
= g2l [( agph? > - hBo
Result: This approach, although not strictly rigorous, usually works in practice. Why? Instabilities are usually
high-frequencies so as long as the coefficients vary smoothly it is a reasonable approximation to locally freeze them.

4 Stability in Multiple Space Dimensions
Consider the 2D heat equation

Up = V(Ugz + Uyy) 0<z,y<l1
u(xa Y, 0) = Uo(.r, y)
u and ug 1-periodic
Discretize in space

d

oV = V(DywD_3vyu + DiyD_yv,,) uw=01,..N—-1 v=0,1,...N—1

Now Fourier transform
UHV e E ;ﬁwell"gw e“’&l]
v

& = 2mwaxy, &y = 21wy, w = (wg,wy)
- < S:mgy <7

giving

d . 4sin?(&,/2)  4sin?(€,/2)\ .
dt”w:’/(_ smh(% /2) Smh(zy/ ))vw

and the scheme will be stable provided

A~ 2 é—w 2 . Qé_ 2
Q&r. &) = —AvAL (Sm 23/ ) s gy/ ))

is in the stability region. A X R
Example: For Forward Euler time stepping we require |1 + Q| < 1, or since Q € R we need —2 < @ < 0 and

thus L
111 11

At< — | =+ —

=2 [hg, * hg]



5 Variable Coefficients and a Curvilinear Grid

Now consider the problem of determining the time step for an equation discretized on a curvilinear grid using the
mapping method.

Given the equation
s+ alx)u, + b(xX)ty = () (10 + 1)

x=(r,y) O0<zy<l

Suppose we want to discretize on a region defined by the mapping x = g(r) where r are the unit square coordinates,
r = (r1,r2) = (r,s). To discretize we first transform to the unit square coordinates,

u(x) = u(g(r)) = U(r)
and compute derivatives using the chain rule
ou or, oU
ox; ZH: Ox; Ory,
Example: In 2D,
u, = 210U, 0rs 0U
T 9x Om ox Org
(NP (0N U 0n0n PU L Pn U 50U
N\ O or? Ox or3 Ox Ox Ori0re  0x2 Or;  0x2 Ors

Thus our equation transforms to

U+ a’(r)U""l + b(r)UT’2 = Dll(r)UTl’f‘l + DlZ(r)UTl’f‘z + DQZ(I')UTﬂ‘z

where
- - 87"1 87“1 827’1 (927’1
alr) = 5 + 500~ (53 + S ) vl
> - 87'2 67“2 627’2 827’2
b(r) = %a(x) + a—yb(x) - (8%2 + T v(x)

v1(r) = v(z)

67”1 2 87“1 2
[ + R
ox dy

v12(r) = v(x)

[ (97"1 87’2
| Oz Oz

22172 4 9

Ory ry
dy Oy

| I

vaa(r) = v(x)

o2\, (0r2)7]
ox y

d _ ~
%vuu + aDOrvp,l/ + bDOSv/LV = V11D+T‘D—Tvuu + V12DOT‘DOSU,[MJ) + V22D+3D—svuy)

Now discretize in space

If we freeze coefficients and Fourier transform we get
d . ia ib 4y sin?(&,/2)
20 = {_h1 sin(&1) — s sin(§2) — 2 -
= Q6. &)

Now unfreeze the coefficients and if we assume, as before, that the stability region is an ellipse, then a stability

condition is
- 2
i @ + @ + |:1 <4V11 +
Bo \ b1 ha (&%) h%

vigsin(§r) sin(€z)  4vapsin®(€2/2) s
Tuha 2 @

-3
|V12\+4V22 2
h3

hiha

At < min
0<ry,r2<1




5.1 Overture code for determining the time-step for a 2D scalar convection diffusion
equation

Here is a function that computes the time step for a convection diffussion equation, Overture/primer/getDt.C, it
is used by Overture/primer/mappedGridExample6.C

6 Systems of Equations

Consider now the system of equations

aiu_A'_A% —V827u
ot dr 0z

Suppose that the matrix A is diagonalizable

M0
A=S"TAS, A=|0 X ---
0 A\,

Now if we discretize in space

dvs
% =—ADgv; +vD D_v;
and Fourier transform
v _ ;isin(f)A B 4vsin®(£/2)] o
a | h h? |
and transform to diagonal form (w = Sv)
e - .9 p
dw 713111(5)/\7 4vsin“(£/2) W
dt i h h?
then defining
. isin(& 4vsin®(£/2
Q(ga /\u) = |~ h( ))\u - h2(§/ ) At

The scheme will be stable provided Q(f ,Ay) lies in the stability region for all eigenvalues.

6.1 The 1D Shallow Water Equations

The Shallow water equations in one space dimension are

hi +uhg + hu, =0
Up + Uty + ghy =0

If we discretize on a uniform grid,

Freezing coefficients and Fourier transforming

dv  [ug hol isin(§)
i[5 )

The eigenvalues of



are

)\i = Uy + \/ghj

Define
A 1At sin(€
Rt =t 0 ©)
Suppose that the stability region of the time stepping scheme extends to i3y, then we require
Q=] < Bo

which implies

-1
At < ﬁohrrgljiin{|uj| + \/ghj}

7 2D systems

Consider the 2D system

ou ou ou 9%u  H9*u
A Ay T A (el
ot TAXIG T B =V (8172 + 6y2>
Discretize
d .
% —A(xj)Dozvj — B(x;)Doyvj + v (D—y + D_yvj+ D_y+ D_yv;)

freeze coefficeints and fourier transform

do, [ isin(&;) isin(&,) sin?(£,/2)  sin®(&,/2)\] .
dt_[_ e 0T TR, 30_4”( o n2 )]U‘”

Define the matrix

Q(fx,ﬁy;xj) _ [%SlZ(ém)A(XJ) . ZSIZ,&B(X]) Y (sin2§f;/2) n sln2](l€2y/2)>:| A
T y 2 2

It is necessary that the all the eigenvalues of Q(fm,ﬁy;xj) lie within the stability region of the time stepping
method.

7.1 The 2D Shallow Water Equations

The Shallow water equations in one space dimension are

hy + uhg + vhy + h(ug +vy) =0
Up + Uy + VUy + ghy =0
UV + UV + vy + ghy =0

If we discretize on a uniform grid,

AV Uj hj 0 ”Uj 0 hj
- + 19 U4 0 DQ;CV]' + 10 Uy 0 DOij =0
dt
0 0 wy g 0 v
h;
Vj = Uj
Uy
Freezing coefficients and Fourier transforming gives
" UO’LM;]LS&L) + VOiSinEfy) Hoisizifl,) HOZNfoy)
Vw isin ) 4 sin isin(&, ‘ ~
dt isin(€,) ’ Y isin(€a) isin(€,)
g hy Y 0 UO hz x + VO hy Y



The eigenvalues are
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