Unstructured Hybrid Mesh Support for Overture

A Description of the Ugen and AdvancingFront Classes
and Documentation for Additional Support Classes

Kyle K. Chand

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551

chand@IInl.gov
http://www.lInl.gov/casc/people/chand
http://www.llnl.gov/casc/Overture

May 20, 2011

Abstract

Overture’s support for unstructured and hybrid mesh generation is implemented through the classes described
in this document. There are three tiers of classes used for the generation of unstructured meshes. The first tier
consists of container classes, essentially GeometricADT, used by the mesh generator to perform geometric searches.
The AdvancingFront class encapsulates the logic of an advancing front mesh generator and uses GeometricADT’s.
Finally, Ugen acts as the interface between the unstructured mesh generator and the rest of Overture.

The following classes are described in this document:

e Ugen : Unstructured/Hybrid mesh generator interface

e AdvancingFront : unstructured mesh generation using the advancing front method

e GeometricADT : bounding box alternating digital tree for geometric searches

e GeometricADT::iterator : defines an iteration path through a GeometricADT

e GeometricADT::traversor : performs a search traversal of a GeometricADT

e NTreeNode<int degree, class Data> : primitive container class used to build GeometricADT
e Exceptions : a list of the various exceptions thrown by the above classes

e CompositeGridHybridConnectivity : manages the mappings between unstructured and structrutred compo-
nents of a CompositeGrid

Contents

‘1 Introduction

2 Generating Hybrid Meshes

2.1 Preprocessing the Composite Grids
2.2 Class UZEIl . . o oo oo e e
2.3 Default CONSETUCION .« « « v o v v v e e e e e e e e
2.4 Constructor o e e e e e e e e e e
2.5 updateHybrido
2.6 computeZoneMasks L

Advancing Front Mesh Generation

3.0.1 Mesh Generation Algorithml o o oo oo

3.0.2 Mesh stretching control e
3.1 Class AdvancingFront L
3.2 Default Constructoﬂ ..
3.3 Constructoﬂ ...
3.4 ANIALZE s e e
3.5 destroyInfluenceliStt o e
3.6 isFrontEmptﬂ ..
3.7 insertFace e
3.8 advanceFront L e
3.9 addInﬁuencé ...
3.10 advanceFront L L e e

Geometric Searching

4.1 Class GeometricADT e
4.2 ConsStructon v o e e e
4.3 ConStructon e e e e e
4.4 InitTree e e e e e e e e e e
4.5 INSEIt . . . e e e e e e e e e e e e e e e
4.6 addElement.
4.7 delELement.o oo
4.8 verifyTree e e e
4.9 Class GeometricADT:Hterator « .« .« « o o o o o
4.10 Constructoﬂ ...
4.11 Copy Constructor o . o e
4.12 isTerminal L L e
4.13 Assignment to Another Tterator o o o oo
4.14 Assignment to a Node in the Seach Tree
4.15 Prefix Increment‘ ..
4.16 Postfix Increment‘ ..
4.17 Class GeometricADTtraversor o o v o v o s e e e e

Class NTreeNode<int degree, Class Data>,

5.1 Default Constructoﬂ ..
5.2 Constructoln] e e
5.3 Constructon e e e e
5.4 Destructor e e
5.5 add s

5.9 change L e
5.10 change L e e
5.11 change L
512 getTIUNK . . o o v ot
5.13 const getTrunk L e e e e e e
5.14 const getLeal e e
5.15 const getLeaf L e

Exception Classes‘

‘7 Composite Grid Hybrid Connectivitv{ 15

7.1 Composite Grid Hybrid Connectivities e 15
7.2 Connectivity datal. e e e e 16
7.3 Default CONStIUCION . . « « o o oo e e e e e e e 16
7.4 Initialized constructor L 16
7.5 setCompositeGridHybridConnectivity 16
7.6 destroy L e 17
7.7 getGridIndex2UVertex e e e 17
7.8 getUVertex2GridIndex e e 17
7.9 getGridVerterUVerteﬁ .. 17
7.10 getNumberOﬂnterfaceVertices‘ ... 17
7.11 getBoundaryFaceMAapping oot 18

1 Introduction

Hybrid meshes consist of regions of structured grids joined by unstructured meshes. Figure [1] compares overlapping
and hybrid meshes for the same geometry. Generation of unstructured hybrid meshes in Overture is orchestrated by
the class Ugen. When provided with a CompositeGrid, Ugen removes the overlap, determines the hole boundaries
and conducts the generation of an unstructured mesh filling the spaces between component grids. Currently, the
CompositeGrid must contain an overlapping grid with holes cut using the ‘ ‘compute for hybrid mesh’’ option
in Ogen. To generate unstructured meshes, Ugen utilizes an advancing front method implemented in the class
AdvancingFront. One the unstructured regions have been generated they are placed into an UnstructuredMapping
and subsequently added to the original CompositeGrid. Connectivity between the structured and unstructured
regions can be accessed through the class CompositeGridHybridConnectivity, an instance of which is created in
the original CompositeGrid.

(a) (b)

Figure 1: Comparison of Overlapping and Hybrid Meshes : (a) Overlapping Grid; (b) Hybrid Mesh

2 Generating Hybrid Meshes

The environment provided by Ugen assumes that mappings have already been created and that the user is prepared
to assemble a hybrid mesh. Selecting the “generate hybrid mesh” option in the main Ogen menu initially proceeds in
a manner similar to the overlapping grid version. A list of the mappings involved in the construction of the hybrid
mesh is built. As with the overlapping grid case, a priority is assigned to each mapping with selections being made

in ascending order of priority. Higher priority grids will cut holes in lower priority ones. Figure 7?7 displays the
initial state of the hybrid mesh generation environment just after the mappings for Figure ?7a have been selected.
There are several options now available via the pop-up menu :

e set plotting frequency (j1 for never) : This options selects how many unstructured elements will be generated
before the plot is updated. Setting the value to -1 forces the mesh generator to continue until the mesh is
completely generated or an error occurs.

e continue generation : continue generating the unstructured mesh until the plotting frequency is reached; the
mesh is complete; or an error occurs.

e enlarge hole : enlarge the hole and reinitialize the mesh. This option will destroy an already generated
unstructured mesh

e reset hole : destroy any unstuructured mesh elements and reinitialize the algorithm
e plot component grids (toggle) : plot/do not plot component grids
e plot control function (toggle) : plot/do not plot the control function
e open graphics : open a graphics dump file
e plot object : plot/refresh the image
e change the plot : change plotting characteristics such as the component grids and control function
e exit : exit the hybrid mesh generation interface, this will attempt to add the unstructured mesh to the
CompositeGrid and generate the connectivity between the unstructured and structured meshes.
2.1 Preprocessing the Composite Grids
2.2 Class Ugen

2.3 Default Constructor
Ugen()

2.4 Constructor

Ugen(PlotStuff & ps._)

ps- (input) : reference to the PlotStuff that the Ugen should use for plots

2.5 updateHybrid

void
updateHybrid(CompositeGrid & cg,
MappingInformation & maplInfo)

cg (input) : CompositeGrid on which to construct a hybrid mesh
maplInfo (input) : currently only provides a PlotStuff instance for plotting
Description : updateHybrid performs the following tasks, primarily through private and protected methods

e strips away the overlap in cg

determines the faces comprising the initial holes

initializes an AdvancingFront with the faces determined above

optionally generates or destroys mesh stretching influences on the AdvancingFront

provides the PlotStuff/command line interface for plotting and interactive mesh generation

Figure 2: An advancing front (red) grows off of an initial curve (black)

Currently, this method catches all exceptions arising from failures in the AdvancingFront’s mesh generation
algorithms. Low level data structure errors are, in general, not caught and are thrown through to the calling
scope. It is assumed that if a low level error occurs (say in a GeometricADT or, worse, an NTreeNode, that
the state is corrupt enough that updateHybrid cannot recover. Generally, updateHybrid will recover from
a mesh generation error by plotting the current state of the hybrid mesh and allowing a limited set of Ugen
manipulations.

2.6 computeZoneMasks

void
computeZoneMasks(CompositeGrid &cg, intArray * &zoneMasks, Integer Array
&numberOfMaskedZones)

cg (input/output) : the composite grid containing the mapped grids requiring zone masks, vertex masks may be
adjusted

zoneMasks (output) : an array of IntegerArray’s for each grid containing the mask for each zone (j1 means a zone
is masked out)

numberOfMaskedZones : an IntegerArray of the number of zones in each grid in cg that were masked out

Description : a zone will be considered masked out if any one of its vertices have MappedGrid: :mask value j=0 or
if all of the surrounding zone meet this criteria. One layer of ghost zones is included.
WARNING :: if a zone is found to be floating in a sea of masked zones (ie it is isolated) then it and its
constituent vertices are masked out as well; this adjusts the mapping’s vertex mask array.

3 Advancing Front Mesh Generation

Advancing front mesh generation creates an unstructured mesh by “growing” elements off of an initial set of curves
(2D) or surfaces (3D) which describe a connected domain. Discretized representations of these curves or surfaces are
collectively known as the ”front” which is successively ”advanced” until the domain is filled with an unstructured
mesh. Figure[2 illustrates an advancing front. In this case, the initial curve is bold black, the front is bold red with
dots and the generated elements are black The implmentation of the mesh generator follows that of Peraire, J, Peiro,
J. and Morgan, K., Ref 77.

3.0.1 Mesh Generation Algorithm

Advancement of the “advancing” front refers the the process by which new elements are created. The process may
be summarized as :

Figure 3: A cluttered view of candidate vertices

1. Choose and discretize an initial boundary

2. Select a face to advance

Find all nearby old vertices

Calculate possible new vertices

5. Prioritize and choose a vertex from the list of old and new vertices
6. Delete the starting face from the front and add any new faces

7. Return to 2 and repeat until the front is empty.

Initially, a discretized curve (2D) or surface (3D) must be created that encloses the region to be meshed. Assuming
we start with 2D curve discretized into a set of line segments (called “faces”), mesh generation consists of generating
elements/zones from faces in the front. As faces are used they are deleted from the front, while new faces are created
and added to it. Eventually the front will collapse upon itself, becoming empty, resulting in a completed mesh.
Zooming into the dashed circle of Figure 2 provides an opportunity to examine a sample front advance. Figure [3]
shows a face chosen for advancement and marks several important features of the algorithm. The letter symbols
indicate the points that could be used to complete a new element and dashed lines represent the new elements they
would create. A new element may be created by using existing points belonging to other faces in the front or a new
point may be created.

A user defined notion of the “ideal” element in that region of the mesh leads to the calculation of the “ideal”
new point, Pqea1- In @ uniform 2D mesh the ideal element would be an equliateral triangle, but typically mesh size
and quality control parameters can permit stretched elements. Candidate points that already exist in the front are
sought within a circle with an origin at P,j,,] and passing throught the points in the face. Figure 3/shows this search
circle in bold black and marks the candidates already in the front as E; and Es. An element can also be created by
generating a new point. In addition to the “ideal” point, the locations of new points are the centers of the circles
created using the two edge points and each existing candidate front point. In this case, the two circles are shown in
red and blue for the circles using F; and FE5 respectively. P; and P» are the additional new points to be considered.
Now the algorithm must choose which point to use, or, equivalently, which element to create.

The candidates E1, Ea, Pqeq]; P1, P2, are prioritized and assembled into a queue. Vertices that already exist, F1
and Fs are ordered according to how close the element they would create is to the “ideal” element. Next comes the

actual “ideal” vertex Pjjen1- Then the additional candidate new (Pp, P,) vertices are ordered in a similar way to

Figure 4: The new front

the existing vertices, the closer to “ideal” the element would be, the higher the priority. In Figure[3, the ordering
would be : E1, Ez, P,qaa1 P1, P2- The first candidate in this queue that generates a valid element (no intersections)
is chosen to complete the new element. Once the new element has been created any new faces are added to the front.
The original face, now buried beneath the front, is removed. Figure 4]illustrates the end result of our example. This
process is repeated until the front is empty.

3.0.2 Mesh stretching control

you’ll have to wait for this subsection

3.1 Class AdvancingFront
3.2 Default Constructor

AdvancingFront()

Purpose: Create an uninitialized AdvancingFront.

3.3 Constructor

AdvancingFront(intArray &initialFaces,
realArray &xyz_in,
Mapping *backgroundMapping. = NULL)

Purpose: Create an AdvancingFront initialized with a set of initial faces and a background mapping.
initialFaces (input) : the list of initial faces (vertex lists for each face)
xyz_in (input) : the initial list of vertices, referred to in initialFaces

backroundMapping_ (input, optional) : a pointer the the mapping that represents the underlying surface

3.4 initialize

void
initialize(intArray &initialFaces, realArray &xyz_in, Mapping *backgroundMapping_ = NULL)

Purpose: Initialize an AdvancingFront with a set of initial faces and a background mapping.
initialFaces (input) : the list of initial faces (vertex lists for each face)
xyz-in (input) : the initial list of vertices, referred to in initialFaces

backroundMapping_ (input, optional) : a pointer the the mapping that represents the underlying surface

3.5 destroyInfluenceList

void
destroyInfluenceList()

Purpose: Destroy any Influences that have been created for an AdvancingFront

3.6 isFrontEmpty

bool
isFrontEmpty() const

Purpose: Returns true if the front is empty, false otherwise

3.7 insertFace

int

insertFace(const IntegerArray &vertexIDs, int z1, int z2)
Purpose: Insert a 2D face into the front

vertexIDs (input) : indices for the vertices in the face

z1, z2 (input) : elements on either side of the face /

Comments :
X1 + vi
——> N
X2 + v2

X1, X2, and N are vectors The vertices should be ordered such that the front will grow in the correct direction.
This means, in 2D, that X2-X1 .cross. N sticks up out of the plane using the right-hand-rule.

3.8 advanceFront

int
advanceFront(int nSteps = 1)

Purpose: Advance the front (ie grow the mesh)

nSteps (input) : attempt to grow the mesh nSteps times

3.9 addInfluence

void
addInfluence(Influence &influence)

Purpose: Add a mesh growth influence to the front (influences mesh stretching and direction)

influence (input) : a reference to the influence that needs to be added

3.10 advanceFront

const intArray
generateElementList()

Purpose: generate a list of the vertices in each element

4 Geometric Searching

and this subsection

4.1 Class GeometricADT

4.2 Constructor

GeometricADT (int rangeDimension_)

Purpose : construct a geometric search ADT for a given dimension

rangeDimension_ (input) : dimension of the physical search space

4.3 Constructor
GeometricADT (const realArray & boundingBox.)
Purpose : construct a geometric search ADT given a bounding box domain

boundingBox_ (input) : bounding box of the ADT search space

4.4 initTree

void
initTree(const realArray & boundingBox_)

Purpose : initialize the tree given a particular bounding box

boundingBox_ : bounding box for the geometric search tree

4.5 insert

int

insert(iterator &insParent, int leaf, GeomADTTuple &data)
Purpose : insert a geometric entity into the tree

insParent (input) : the position in the tree to insert the data

leaf (input) : leaf of insertParent to add the data

data (input) : data to add to the tree

4.6 addElement
int
addElement(realArray &coords, int id)

Purpose : insert id into the search tree if id give the bounding box coordinates coords
coords (input) : bounding box coordinates for id (x1min, xlmax, x2min, x2max,..., Xnmin, Xnmax)

id (input) : id to store at the given location (probably should be a templatized type

4.7 delElement
int
delElement(iterator &delltem)

Purpose : delete an element, at location delltem, from the tree

delltem : iterator pointing to the location to delete from the tree

10

4.8 verifyTree

void
verifyTree()

Purpose : verify the structure and logic of the tree, usually done after deletions This method will throw a Verifica-
tionError exception if the data structure has been corrupted. Use of this method aught to be surrounded by a
try block.

4.9 Class GeometricADT::iterator

Creation of a GeometricADT: :iterator requires the specification of a target representing a location in bounding
box space. The iterator will then iterate from the root of a GeometricADT to the terminal leaf that would store an
object with the given target. The default constructor is protected since the iterator requires the context of both a
GeometricADT and a target bounding box.

4.10 Constructor
iterator(const GeometricADT &gADT, realArray & target.)

gADT (input) : the GeometricADT through which to iterate

target_ (input) : a realArray containing the target bounding box location

4.11 Copy Constructor

iterator(iterator &x)

X : iterator to copy

4.12 isTerminal

bool
isTerminal()

4.13 Assignment to Another Iterator

iterator &
operator=(iterator &i)

i: iterator to assign to

4.14 Assignment to a Node in the Seach Tree

iterator &
operator=(ADTType &x)

X : node to assign current value to

4.15 Prefix Increment

iterator &
operator++()

4.16 Postfix Increment

iterator
operator++(int)

11

4.17 Class GeometricADT::traversor

A GeometricADT: :traversor will traverse it’s GeometricADT yielding all the elements that overlap the target bound-
ing box. This class is the basic tool used for performing geometric searches using the GeometricADT class.

5 Class NTreeNode<int degree, Class Data>

5.1 Default Constructor
template<int degree, class Data>
inline

NTreeNode<degree,
NTreeNode()

Purpose : build and initialize a tree node

5.2 Constructor
template<int degree, class Data>
inline

NTreeNode<degree,
NTreeNode(Data &data_)

Purpose : build and initialize a tree node given the data for the node to contain

data (input) : reference to the data to be stored in the node

5.3 Constructor

template<int degree, class Data>

inline

NTreeNode<degree,

NTreeNode(Data &data_, NTreeNode *trunk.)

Purpose : build and initialize a tree node
data_ (input) : reference to the data to be stored in the node

trunk_ (input) : pointer to the trunk

5.4 Destructor

template<int degree, class Data>
inline

NTreeNode<degree,
~NTreeNode()

Purpose : destroy a node and all its leaves

5.5 add

template<int degree, class Data>
inline

int

NTreeNode<degree,

add(Data &data)

Purpose : add a data leaf to the next available leaf position

data (input) : data item to be stored

12

Returns : 0 on success

Throws : e TreeDegreeViolation : if the tree bookkeeping is corrupt
e NodeFullError : if all the leaves in this node are ful

5.6 add

template<int degree, class Data>
inline

int

NTreeNode<degree,

add(int d, Data &data)

Purpose : add a data leaf to a specified leaf
d (input) : leaf to store data

data (input) : data item to be stored
Returns : 0 on success

Throws : e TreeDegreeViolation : if d is not a valid leaf number (if d is greater than the degree of the tree or
less than zero

e NodeFullError : if d is already used up

5.7 del

template<int degree, class Data>
inline

int

NTreeNode<degree,

del(int nDel)

Purpose : delete a specified leaf

nDel (input) : leaf to delete

Returns : 0 on success

Throws : e TreeDegreeViolation : if d is not a valid leaf number (if d is greater than the degree of the tree or

less than zero

5.8 change

template<int degree, class Data>

inline

int

NTreeNode<degree,
change(NTreeNode<degree, Data> *nPtr)

Purpose : change a node’s trunk
nPtr (input) : pointer to the new trunk
Returns : 0 on success

Throws : nothing

13

5.9 change

template<int degree, class Data>

inline

int

NTreeNode<degree,

change(int d, NTreeNode<degree, Data> *nPtr)

Purpose : changes a particular leaf

d (input) : leaf to change

nPtr (input) : pointer to the new leaf
Returns : 0 on success

Throws : e TreeDegreeViolation : if d is not a valid leaf number

5.10 change

template<int degree, class Data>
inline

bool

NTreeNode<degree,
querry(int d)

Purpose : see if a particular leaf has data
d (input) : leaf to querry

Returns : false if leaf d is NULL, true otherwise

Throws : e TreeDegreeViolation : if d is not a valid leaf number
5.11 change

template<int degree, class Data>

inline

bool

NTreeNode<degree,

querry()

Purpose : see if the trunk has data
d (input) : leaf to querry
Returns : false if the trunk pointer is NULL, true otherwise

Throws : e TreeDegreeViolation : if d is not a valid leaf number

5.12 getTrunk

template<int degree, class Data>
inline

NTreeNode<degree,Data> &
NTreeNode<degree,

getTrunk()

Purpose : return a reference to the trunk node
Returns : a reference the the trunk

Throws : nothing

14

5.13 const getTrunk

template<int degree, class Data>
inline

const NTreeNode<degree,Data> &
NTreeNode<degree,

getTrunk() const

Purpose : return a const reference to the trunk node
Returns : a const reference the the trunk

Throws : nothing

5.14 const getLeaf

template<int degree, class Data>
inline

NTreeNode<degree,Data> &
NTreeNode<degree, getLeaf(int d)

Purpose : return a reference to a specific leaf node
d (input) : leaf to return
Returns : a reference to the requested leaf

Throws : e TreeDegreeViolation : if d is not a valid leaf number

5.15 const getLeaf

template<int degree, class Data>
inline

const NTreeNode<degree,Data> &
NTreeNode<degree,

getLeaf(int d) const

Purpose : return a const reference to a specific leaf node
d (input) : leaf to return
Returns : a reference to the requested leaf

Throws : e TreeDegreeViolation : if d is not a valid leaf number

6 Exception Classes

7 Composite Grid Hybrid Connectivity

7.1 Composite Grid Hybrid Connectivities

A CompositeGridHybridConnectivity manages the mappings between the structured and unstructured components
of hybrid meshes contained in a CompositeGrid. This class enables a user to iterate through the boundary faces
of an unstructured mesh and access the adjacent structured elements. The inverse is also available where the user
iterates through the elements in a structured grid seeking the adjacent unstructured elements, if any exist.

15

7.2

Connectivity data

gridIndex2UnstructuredVertex : maps a particular grid and index into an unstructured grid and vertex id
unstructured Vertex2GridIndex : maps an unstructured vertex into a grid and index

gridVertex2Unstructured Vertex : condensation of vertexIDMapping, contains all the vertices on a particular
grid that are on a hybrid interface

boundaryFaceMapping : maps the boundary element of unstructured boundary faces into a grid and zone index

7.3 Default Constructor

CompositeGridHybridConnectivity()

7.4 Initialized constructor

CompositeGridHybridConnectivity (const int &grid_,
intArray * gridindex2UVertex_,
intArray & uVertex2GridIndex_,
intArray * gridVertex2U Vertex_,
intArray & boundaryFaceMapping_)

grid (input) : the grid number in cg that contains the unstructured mesh referred to by this connectivity

gridIndex2UVertex_ (input) : an array of IntegerArrays the length of the number of grids in cg_; This data
maps a structured vertex in a particular strutured grid into the corresponding unstructured vertex id, if
the mapping exists (ie, if the structured vertex lies on the hybrid interface)

uVertex2GridIndex_ (input) : maps an unstructured boundary vertex into a structured grid in cg- and the
corresponding indices on that grid

gridVertex2UVertex_ (input) : an array of IntegerArrays the length of the number of grids in cg_; a con-
densation of vertexIDMapping, this contains a list of all the interface vertices for each grid and the
unstructured vertices they map to

boundaryFaceMapping_ (input) : for each boundary face in the unstructured part of the hybrid mesh this
data structure contains the grid and indices for the adjacent structured zone.

Returns : void

Throws : CompositeGridHybridConnectivityError is thrown through this method by setCompositeGridHy-
bridConnectivity

7.5 setCompositeGridHybridConnectivity

void

setCompositeGridHybridConnectivity (const int &grid_,
intArray * gridindex2UVertex_,
intArray & uVertex2GridIndex_,
intArray * gridVertex2UVertex_,
intArray & boundaryFaceMapping.)

with externally computed index arrays. Generally these arrays are computed during the generation of a hybrid
mesh by methods in Ugen and AdvancingFront.
grid (input) : the grid number in cg that contains the unstructured mesh referred to by this connectivity

gridIndex2UVertex_ (input) : an array of IntegerArrays the length of the number of grids in cg_; This data
maps a structured vertex in a particular strutured grid into the corresponding unstructured vertex id, if
the mapping exists (ie, if the structured vertex lies on the hybrid interface)

16

uVertex2GridIndex_ (input) : maps an unstructured boundary vertex into a structured grid in c¢g_ and the
corresponding indices on that grid

gridVertex2UVertex_ (input) : an array of IntegerArrays the length of the number of grids in cg_; a con-
densation of vertexIDMapping, this contains a list of all the interface vertices for each grid and the
unstructured vertices they map to

boundaryFaceMapping_ (input) : for each boundary face in the unstructured part of the hybrid mesh this
data structure contains the grid and indices for the adjacent structured zone.

Returns : void

Throws : — CompositeGridHybridConnectivityError

7.6 destroy

void
destroy()

Throws : nothing

7.7 getGridindex2U Vertex

const intArray &
getGridIndex2UVertex(int grid_) const

grid (input) : the requested grid

Returns : a const IntegerArray reference to the IntegerArray with grid’s connectivity to the unstructured
mesh

Throws : nothing (!) (but should perform a check on the validity of grid and throw an appropriate error)

7.8 getUVertex2GridIndex

const intArray &
getUVertex2GridIndex() const

Returns : a const IntegerArray reference to the unstructred mesh’s connectivity to vertices in the structured
grids
Throws : nothing

7.9 getGridVertex2U Vertex

const intArray &
getGridVertex2U Vertex(int grid_) const

grid (input) : the requested grid

Returns : a const IntegerArray reference to the IntegerArray with grid’s connectivity to the unstructured
mesh, but only for those verticies sitting on the structured/unstructured interface

Throws : nothing (!) (but should perform a check on the validity of grid and throw an appropriate error)

7.10 getNumberOfInterfaceVertices

int

getNumberOfInterfaceVertices(int grid_) const

grid (input) : the requested grid

Returns : int; the number of vertices on the hybrid structured/unstructured interface for grid

Throws : nothing (!) (but should perform a check on the validity of grid and throw an appropriate error)

17

7.11 getBoundaryFaceMapping

const intArray &
getBoundaryFaceMapping() const

Returns : const IntegerArray &; the boundary face mapping array, 2nd dimension is length 4 (0 - grid, 1 -
i1,2-1i2, 3-1i3)

18

	Introduction
	Generating Hybrid Meshes
	Preprocessing the Composite Grids
	Class Ugen
	Default Constructor
	Constructor
	updateHybrid
	computeZoneMasks

	Advancing Front Mesh Generation
	Mesh Generation Algorithm
	Mesh stretching control

	Class AdvancingFront
	Default Constructor
	Constructor
	initialize
	destroyInfluenceList
	isFrontEmpty
	insertFace
	advanceFront
	addInfluence
	advanceFront

	Geometric Searching
	Class GeometricADT
	Constructor
	Constructor
	initTree
	insert
	addElement
	delElement
	verifyTree
	Class GeometricADT::iterator
	Constructor
	Copy Constructor
	isTerminal
	Assignment to Another Iterator
	Assignment to a Node in the Seach Tree
	Prefix Increment
	Postfix Increment
	Class GeometricADT::traversor

	Class NTreeNode<int degree, Class Data>
	Default Constructor
	Constructor
	Constructor
	Destructor
	add
	add
	del
	change
	change
	change
	change
	getTrunk
	const getTrunk
	const getLeaf
	const getLeaf

	Exception Classes
	Composite Grid Hybrid Connectivity
	Composite Grid Hybrid Connectivities
	Connectivity data
	Default Constructor
	Initialized constructor
	setCompositeGridHybridConnectivity
	destroy
	getGridIndex2UVertex
	getUVertex2GridIndex
	getGridVertex2UVertex
	getNumberOfInterfaceVertices
	getBoundaryFaceMapping

