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Two-dimensional Vlasov simulations of nonlinear electron plasma waves are presented, in which the

interplay of linear and nonlinear kinetic effects is evident. The plasma wave is created with an

external traveling wave potential with a transverse envelope of width Dy such that thermal electrons

transit the wave in a “sideloss” time, tsl � Dy=ve. Here, ve is the electron thermal velocity. The

quasisteady distribution of trapped electrons and its self-consistent plasma wave are studied after the

external field is turned off. In cases of particular interest, the bounce frequency, xbe ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=me

p
,

satisfies the trapping condition xbetsl > 2p such that the wave frequency is nonlinearly downshifted

by an amount proportional to the number of trapped electrons. Here, k is the wavenumber of the

plasma wave and / is its electric potential. For sufficiently short times, the magnitude of the negative

frequency shift is a local function of /. Because the trapping frequency shift is negative, the phase of

the wave on axis lags the off-axis phase if the trapping nonlinearity dominates linear wave

diffraction. In this case, the phasefronts are curved in a focusing sense. In the opposite limit, the

phasefronts are curved in a defocusing sense. Analysis and simulations in which the wave amplitude

and transverse width are varied establish criteria for the development of each type of wavefront. The

damping and trapped-electron-induced focusing of the finite-amplitude electron plasma wave are also

simulated. The damping rate of the field energy of the wave is found to be about the sideloss rate,

�e � t�1
sl . For large wave amplitudes or widths Dy, a trapping-induced self-focusing of the wave is

demonstrated. VC 2011 American Institute of Physics. [doi:10.1063/1.3577784]

I. INTRODUCTION

The dynamics of finite-amplitude electron plasma waves

(EPWs) is rich in interesting phenomena and has received

much attention in experiments,1,2 theory,3–6 and computer

simulation.7–9 In stimulated Raman backscattering (SRS), fi-

nite-amplitude electron plasma waves are responsible for

scattering an incident electromagnetic wave into a backscat-

tered electromagnetic wave.10,11 EPWs, produced by the

two-plasmon decay instability,12 are important in both

direct-drive inertial confinement fusion13 and hohlraums,14

where the high energy electrons accelerated by the EPW

may have deleterious effects on the implosion. SRS is vitally

important to indirect-drive inertial confinement fusion

(ICF),15,16 where recent experiments at the National Ignition

Facility (NIF) have shown significant backscatter.17,18

SRS was studied systematically and modeled exten-

sively in experiments with well-characterized plasma condi-

tions and laser intensities of interest to NIF experiments.19,20

The results of these experiments provided a database for the-

oretical modeling that is used for predicting backscattering

of the laser light for NIF ignition campaign experiments.21

Laser plasma instabilities, such as SRS and two-plasmon

decay, place constraints on the ICF ignition designs that

require compromises between the optimal parameters for

implosions and for minimizing plasma instabilities.22 In

addition to ICF, SRS offers the intriguing possibility of pro-

ducing ultrashort pulses of relativistically intense light by

scattering long-pulse, low-intensity laser light from moderate

amplitude EPWs.23 The onset intensity and scaling of SRS

have been modeled remarkably well with simulation codes24

that neglect nonlinear and kinetic effects on the EPWs, de-

spite the fact that these very simulations have EPW ampli-

tudes that trap a significant number of electrons.25 However,

such codes are not as successful at predicting the levels of

SRS in the strongly nonlinear limit when the damping, dis-

persion, and distortion of the EPW influence Raman scatter-

ing in important ways.

Nonlinear limitations on the effectiveness of large am-

plitude electron plasma waves in SRS backscattering laser

light have been considered since the earliest experiments.

The Langmuir decay instability,26–28 for example, involves

the backscatter of the large amplitude EPW by an ion acous-

tic wave. In NIF plasma conditions, that process is inhibited

by the large damping rate of ion acoustic waves in helium

and hydrocarbon plasmas. Recent work has shown that the

longitudinal29 and transverse trapped electron modulational
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instablities30 are effective in limiting the amplitude and co-

herence of the EPW. Because the EPW is produced in a laser

speckle, it is born with a transverse modulation that can

grow and filament under certain conditions.31,32 The longitu-

dinal modulations must grow from weaker perturbations.

Rose has investigated the modulational stability of EPWs in

the presence of trapped electrons with two-dimensional per-

turbations, amplitude-dependent diffraction of the EPW, and

the competition of the modulational instability with Lang-

muir wave decay instability.31 Rose and Yin have studied

the filamentation instability of a finite-amplitude EPW.32

Recent SRS simulations have shown how the filamentation

of the EPW can limit the SRS.30 The fundamental underlying

physics responsible for the EPW phenomena in the afore-

mentioned studies of Rose, Yin and co-workers, viz., finite-

amplitude, kinetic effects on EPW dispersion and propaga-

tion in the presence of electron trapping, is examined from

another perspective in the analysis and simulations presented

here.

Motivated by the important kinetic effects of finite-am-

plitude EPWs in SRS, in other instabilities, and in wave heat-

ing of plasma, we employ the useful tool of numerical

simulation to understand more thoroughly the complex phe-

nomena involved. Moreover, we simplify by limiting our-

selves to the purely electrostatic problem of driven EPWs.

Vlasov simulation provides a means of simulating plasma

physics that is free of statistical noise inherent to particle

methods,33 albeit at a higher computational cost in most

cases.34–37 Here we report Vlasov simulations of finite-am-

plitude EPWs in two spatial and two velocity dimensions.

We excite waves by introducing an external electric field

that is additive to the self-consistent internal electric field

satisfying Gauss’s law. The externally imposed longitudinal

electric field has the form,

Eext
x ¼ AðyÞPðtÞE0 cosðkx� x0tÞ; (1)

where A(y) is the transverse wave envelope,38

AðyÞ ¼ exp � 1

2

y

Dy

� �2
" #

; (2)

that is maximum at y¼ 0 and where P(t) is a temporal shape

function,

PðtÞ ¼

1

2
1þ tanh 4

2t

tr
� 1

� �� �� �
if t< tr;

1

2
1� tanh 4

2ðt� tdÞ
tr

� 1

� �� �� �
if tr � t< trþ td;

0 otherwise:

8>>>>>><
>>>>>>:

Our simulations are periodic and one wavelength long along

the propagation axis. In our simulations, we use kkDe ¼ 1=3

and x0=xpe ¼ 1:200, similar to recent SRS simulations30 and

experimental values.19,20 The driving frequency chosen here

is equal to the linear resonant frequency determined by ki-

netic theory for the value of kkDe because SRS tends to occur

most efficiently for frequencies near the linear resonance.

The resonant response to the drive is somewhat insensitive to

the precise value of driving frequency for driver frequencies

whose difference from the linear resonant frequency is less in

magnitude than the damping rate of the Langmuir wave. Af-

ter the external driving field is turned off, the plasma

responds only to the electric field, E ¼ �r/ where /ðx; y; tÞ
satisfies Poisson’s equation. Our simulations illustrate some

of the interesting physics of EPW propagation in two spatial

dimensions that include both linear diffraction and nonlinear-

ities associated with the trapping of electrons.

We consider physical situations with a well-defined

ordering and separation of timescales. The EPW oscillation

time, / x�1
0 , is much shorter than the electron trapping pe-

riod at the bottom of the potential well, / x�1
be , in the frame

of reference comoving with the phase velocity of the EPW.

At this point, it is convenient to introduce other time scales

of interest: the time at which the driven wave reaches its

maximum amplitude, tpeak; the transit time of a thermal elec-

tron across the lateral size of the simulation, tT¼Ly/ve; the

time for diffractive spreading rate of the wave, t2 obtained in

Appendix A; and the sideloss time tsl ¼ Dy=ve. Here, Ly is

the transverse size of simulation and t2 ¼ 1=
ffiffiffi
3
p

xpeðDy
kDe
Þ2 xk

xpe
.

In all cases of interest, t2 � tsl because the EPW width is

many electron Debye lengths, i.e., Dy� kDe. The transit

time, tT, is less than the diffraction time if Dy >
ffiffiffiffiffiffiffiffiffiffiffi
kDeLy

p
. In

our applications, the time scales obey the inequalities:

tb < tpeak; tsl < tT ; t2.

In our simulations, the EPW evolution is studied after

the external field Eq. (1) is turned off, that is, for t > tr þ td.

For a plane wave with periodic transverse boundary condi-

tions, the EPW at this time would be an undamped, quasi-

BGK wave with a frequency negatively shifted from the

linear dispersion value.4,5,39 The amplitude of the wave when

the drive is turned off may be limited by the detuning of the

resonance because of the nonlinear frequency shift. However,

in simulations discussed in this paper, the external field has

been turned off before detuning has an effect; thus

tpeak¼ trþ td.

When a strongly nonlinear EPW is excited by an exter-

nal field with finite lateral extent, such as Eq. (2), the result-

ing EPW has its largest amplitude on axis (i.e., y¼ 0). The

trapping and concomitant nonlinear frequency shifts are

weaker laterally off axis. Given that the nonlinear frequency

shift due to trapping is negative, the lateral dependence of

the frequency shift and the associated wave phase velocity

lead to phasefronts, if certain conditions are met, that are

curved in a focusing sense that we will refer to as nonlinear

wavefront bowing.40 Nonlinear wavefront bowing is illus-

trated in figures displayed in Sec. III.

In the linear analysis (Appendix) of the propagation of

an EPW, a wave localized in the plane transverse to the prop-

agation direction will diffract and have maximally curved

wavefronts in a defocusing sense at a time, tmax ¼ t2=
ffiffiffi
3
p

. In

Sec. III, a criterion is established for the establishment of

nonlinear bowing by comparing the focusing curvature pro-

duced by nonlinear frequency shifts at tmax to the maximally

curved defocusing linear wavefronts. Our Vlasov simulations

establish the validity of this estimate. Our analysis and simu-

lations quantify the linear and nonlinear wavefront bowing
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physics regimes and provide insight into the wavefront bow-

ing reported by Yin et al. in the simulation studies of stimu-

lated Raman backscatter.40,41

Because of the spatial profile of the driver, the EPW fre-

quency shift is a function of its transverse location for times

less than the sideloss time, the simulation lateral transit time,

and the time for diffractive spreading rate of the wave.

Boundary conditions influence the results after either the lat-

eral transit time or the time for wave diffraction to encounter

the lateral boundaries, whichever is shorter.

The simulations also allow us to study other two-dimen-

sional aspects of the EPW dynamics. Although the trapping

of electrons can flatten the electron velocity distribution near

resonance and can nonlinearly reduce electron Landau

damping,42 some of the Landau damping can be restored by

undisturbed plasma that flows laterally into the domain of

the EPW from the boundaries. The loss of trapped electrons

from the wave leads to “residual” damping of the EPW,

�sl / t�1
sl , such that, after the drive turns off, the wave loses

energy to the transiting electrons. If outgoing BCs are

applied such that incoming electrons are sampled from an

unperturbed distribution, e.g., a Maxwell–Boltzmann distri-

bution, the wave continues to decay with time, and the trap-

ping regions also shrink with time. Eventually linear Landau

damping is re-established. If periodic boundary conditions

(BCs) are applied, this loss ceases when t > tT . In addition,

with periodic BCs, an EPW can evolve to have a perturbed

electron velocity distribution that is nearly uniform laterally.

In this circumstance, we observe that there is a nonlinear fre-

quency shift that is likewise laterally uniform so that there is

no further evolution of nonlinear bowing. Thus, the lateral

boundary conditions can have a marked influence on the

EPW propagation. The laterally outgoing BC on the distribu-

tion function is appropriate for EPWs driven by the pondero-

motive force of a single laser speckle,43 if the light wave is

below the filamentation threshold. The periodic BC is more

appropriate for the many-speckle case that is typical of most

ICF experiments.18,19

Although the EPW field energy drops once the external

field is turned off, the amplitude of the wave on axis does

not if the trapping condition is met. Because of the focusing

nature of the nonlinear phasefronts, one expects the EPW

amplitude on axis to increase. For most of our simulations,

this tendency is overcome by the loss of trapped electrons.

However, we have clearly demonstrated in Sec. IV such

trapped-electron-induced focusing when the sideloss rate

was minimized.

The paper is organized as follows. In Sec. II, we

describe the numerical algorithm used in our Vlasov–Poisson

simulations. In Sec. III, we present the results of simulations

and accompanying analysis that address the effects of finite

amplitudes, electron trapping, and linear diffraction on the

frequency of the plasma wave and on the curvature of the

wave fronts. We examine the effects of trapping and lateral

transit of electrons across a localized plasma wave on the

self-focusing and damping of the wave in Sec. IV. Conclu-

sions and discussion are presented in Sec. V. Simplified ana-

lytical models of linear and nonlinear wavebowing for an

undriven EPW are given in Appendix A.

II. APPROACH

Consider the time evolution of a collisionless plasma in

two space and two velocity dimensions with a stationary

background of neutralizing ions. Furthermore, assume the

nonrelativistic and electrostatic limits. Such a plasma is well

described by the Vlasov–Poisson system,

@f

@t
þ vx

@f

@x
þ vy

@f

@y
� Ex

@f

@vx
� Ey

@f

@vy
¼ 0; (3)

Ex ¼ �
@/
@x
þ Eext

x ; Ey ¼ �
@/
@y

; (4)

@2/
@x2
þ @

2/
@y2
¼
ð1
�1

ð1
�1

f dvxdvy � 1 ¼ q: (5)

Here f(x, y, vx, vy) is the electron distribution function; Ex

and Ey are the x- and y-coordinates of the electric field,

respectively; Eext
x is the externally applied electric field; and

/ is the electric potential. Distance has been normalized by

the Debye length, velocity by the thermal velocity, time by

the plasma frequency, and the electric field by Te= ekDeð Þ.
The domain is artificially truncated in the velocity dimen-

sions using vx 2 ½vxmin
; vxmax

� and vy 2 ½vymin
; vymax

�, and a char-

acteristic boundary condition are applied. The physical space

domain uses x 2 ½�Lx; Lx� and y 2 ½�Ly; Ly�. For the prob-

lems presented in this manuscript, periodic conditions are

applied in the x-direction. For the y-direction, either periodic

or characteristic boundary conditions are applied for the distri-

bution function f ðx; y; vx; vy; tÞ, while a periodic condition is

always applied to the Poisson equation. For cases where a

characteristic boundary condition is applied, incoming charac-

teristics carry an undisturbed Maxwellian distribution.

Numerical approximation of Eqs. (3) through (5) fol-

lows an Eulerian finite-volume approach. Phase space is di-

vided into cells using a Cartesian grid with mesh spacings

Dx, Dy, Dvx, and Dvy. The Vlasov equation (3) is discretized

using the conservative fourth-order finite-volume scheme

introduced in earlier work.44,45 Integrating (3) over a phase-

space cell yields the system of ordinary differential equations

(ODEs),

d

dt
�fijkl ¼ �

1

DxDyDvxDvy

ð
Vijkl

r � Fdx dy dvxdvy;

¼ � 1

Dx
hFxiiþ1

2
;jkl � hFxii�1

2
;jkl

� �
� 1

Dy
hFyii;jþ1

2
;kl � hFyii;j�1

2
;kl

� �

� 1

Dvx
hFvx
iij;kþ1

2
;l � hFvx

iij;k�1
2
;l

� �

� 1

Dvy
hFvy
iijk;lþ1

2
� hFvy

iijk;l�1
2

� �
: (6)

Here �fijkl is the average distribution function over the cell-

centered about ðxi; yj; vxk
; vyl
Þ, the angle braces indicate face

average quantities, and F ¼ ðFx;Fy;Fvx
;Fvy
Þ are numerical

fluxes at cell boundaries. High-order approximations of the

numerical fluxes can be achieved by using high-order

approximations of the cell-face averages.44,45 For example,
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hFxiiþ1
2
;jkl�hvxiiþ1

2
;jklhf iiþ1

2
;jklþ

Dvx

24
hf iiþ1

2
;jþ1;kl�hf iiþ1

2
;j�1;kl

� �
:

(7)

In order to determine the needed face-averaged quantities of

the distribution function, we use a nonlinear algorithm that

adapts the stencil so as to control numerical oscillations.46

For example, the average about the cell face ðiþ 1
2
; jklÞ is

defined using a weighted average of two third-order averages

hf iðLÞ
iþ1

2
;jkl

and hf iðRÞ
iþ1

2
;jkl

as in

hf iiþ1
2
;jkl ¼ w

ðLÞ
iþ1

2
;jkl
hf iðLÞ

iþ1
2
;jkl
þ w

ðRÞ
iþ1

2
;jkl
hf iðRÞ

iþ1
2
;jkl
: (8)

The third-order averages are defined as

hf iðLÞ
iþ1

2
;jkl
¼ 1

6
��fi�1;jkl þ 5�fijkl þ 2�fiþ1;jkl

	 

(9)

hf iðRÞ
iþ1

2
;jkl
¼ 1

6
2�fijkl þ 5�fiþ1;jkl � �fiþ2;jkl

	 

: (10)

The weights are determined by

if hvxiiþ1
2
;jkl > 0

� �
;

w
ðLÞ
iþ1

2
;jkl
¼ maxðwð1Þ

iþ1
2
;jkl
;w
ð2Þ
iþ1

2
;jkl
Þ

w
ðRÞ
iþ1

2
;jkl
¼ minðwð1Þ

iþ1
2
;jkl
;w
ð2Þ
iþ1

2
;jkl
Þ

8>><
>>:

else

w
ðLÞ
iþ1

2
;jkl
¼ minðwð1Þ

iþ1
2
;jkl
;w
ð2Þ
iþ1

2
;jkl
Þ

w
ðRÞ
iþ1

2
;jkl
¼ maxðwð1Þ

iþ1
2
;jkl
;w
ð2Þ
iþ1

2
;jkl
Þ

8>><
>>: ;

(11)

where w
ð1Þ
iþ1

2
;jkl

and w
ð2Þ
iþ1

2
;jkl

are the traditional WENO weights

determined as in earlier work.47,48 To evolve the set of

ODEs in (6), we use the standard explicit fourth-order

Runge–Kutta time discretization.49

Because cell-averaged quantities are directly time-

advanced, the cell-averaged charge density used in the

Poisson equation (5) is easily computed through summation,

�qij ¼ DvxDvy

XNvx

k¼1

XNvy

l¼1

�fijkl � 1: (12)

Numerical approximation of the Poisson equation is then

carried out on the cell-averaged densities directly using cen-

tered finite differences using the solvers in the Overture soft-

ware package.50,51 The discretization uses the centered

fourth-order difference approximations giving,

� �/iþ2;j þ 16 �/iþ1;j � 30 �/ij þ 16 �/i�1;j � �/i�2;j

Dx2

þ
� �/i;jþ2 þ 16 �/i;jþ1 � 30 �/ij þ 16 �/i;j�1 � �/i;j�2

Dy2
¼ �qij:

(13)

A direct LU (lower and upper triangular matrices)-decompo-

sition of the resulting matrix is performed as a preprocessing

step; thus, the solution of the Poisson system at each time

step requires only a back substitution. Finally, cell-average

values of the electric field are derived from cell-averages of

the electric potential via fourth-order centered differences:

�Exij �
1

12Dx
8ð �/iþ1;j � �/i�1;jÞ � �/iþ2;j � �/i�2;j

� �
: (14)

More details concerning the discretization are to be found in

Banks and Hittinger.46

It is worth noting that, for the computations performed

in this work, parallel processing on hundreds or thousands of

processors was required. Our parallel decomposition per-

forms a tensor product decomposition on the distribution

function among all but a single processor. This last processor

is reserved for the Poisson solve. This decomposition strategy

has worked well and provides excellent parallel scaling for

the simulations presented here, but will require some modifi-

cation as the problem sizes grow further. At some size, the

Poisson solve must also be distributed in parallel, and the

direct LU-decomposition we perform here will no longer be

viable. Instead, an iterative linear solver such as GMRES

(generalized minimal residual method) will be employed.52

Our preliminary studies indicate that this approach works

well; only two or three coupling iterations are required to

achieve convergence. More detailed studies of issues relating

to parallelization will be the subject of future work.

III. EFFECTS OF TRAPPING AND DIFFRACTION ON
PLASMA WAVE PROPAGATION

In this section, we report simulation results that illustrate

electron plasma wave nonlinearities associated with electron

trapping phenomena in one and two spatial dimensions. We

first report observations of nonlinear frequency shifts in two

spatial dimensions. We follow this with a discussion of how

linear and nonlinear effects influence wavefront curvature in

two spatial dimensions.

A. Nonlinear frequency shift due to electron trapping
in two spatial dimensions

We first note that, in physical circumstances, EPWs are

inevitably localized in space. In ICF experiments at the

National Ignition Facility, large amplitude EPWs are created

by stimulated Raman backscattering in laser beams with in-

tensity .1015 W=cm2 with a focal spot diameter of

�0:5 mm. However, the NIF focal spot consists of thousands

of intense speckles of transverse size of order fsk0 � 3	 10�4

cm, where fs is the f-number of the lens and k0 is the vacuum

wavelength of the laser light, viz., 351 nm. Since SRS is a

nonlinear process, the backscattered light and the associated

EPWs are also localized in the laser speckles. The simulation

results presented here illustrate some aspects of two-dimen-

sional localization and trapping on EPW propagation.

For finite wave amplitude, there are nonlinear frequency

shifts from trapping that are proportional to
ffiffiffiffi
/
p

and quad-

ratic nonlinearities, /2.53 Both nonlinearities are naturally

present in Vlasov simulations. For an EPW, the quadratic

nonlinearity leads to a positive frequency shift.54,55 For small

wave amplitudes, the case of interest in this paper, the

052102-4 Banks et al. Phys. Plasmas 18, 052102 (2011)

Downloaded 09 May 2011 to 128.115.27.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



square-root nonlinearity dominates the quadratic fluid nonli-

nearity if kkDe& 0:25 and e/=Te < 1. Recently, comparison

of fluid and kinetic effects on EPW frequency shifts has

shown that, even though smaller, fluid shifts can play an im-

portant role.56

The magnitude of the frequency shift and the distribu-

tion of the trapped electrons depend on the details of the pro-

cess that creates the EPW. Two limiting cases have been

treated analytically. Dewar’s calculation4 of the nonlinear

frequency shift accounts for whether the wave is turned on

“suddenly” or “adiabatically,” which affects the distribution

in energy of the resonant electrons, trapped and untrapped.

In both cases, the frequency shift is found to be

Dxnl

xpe

¼ � a

ðkkDeÞ3
dn

n

� �1=2
1

2p

� �1=2

ðv2 � 1Þ exp � v
2

2

� �
;

(15)

where v ¼ x=kvth, jdn=nj ¼ k2k2
Deje/=Tej is the relative

electron density perturbation in the EPW, and a ¼ 0:544 (ad-

iabatic wave turn on) or 0.823 (sudden wave turn on). Vlasov

simulations of the nonlinear frequency shift of an EPW due

to electron trapping and of an ion acoustic wave due to elec-

tron and ion trapping have shown in 1D that the frequency

shift follows the “sudden” or “adiabatic” relation if the wave

is initialized at finite amplitude or driven slowly to its final

amplitude, respectively.57 Defining the condition for

“sudden” as
Ð tpeak

0
xbðtÞdt < 2p and assuming that the wave

grows at most linearly with t, we obtain the condition,

xbðtpeakÞtpeak < 3p where the bounce frequency xb

¼ kkDe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=Te

p
xpe. In terms of the wave amplitude, this

condition for the sudden approximation, e/ðtpeakÞ=Te

< ð3p=ðkkDexpetpeakÞÞ2, is well satisfied even for the largest

fields in our simulations.

The condition describing whether the wave is excited

suddenly or adiabatically acquires a dependence on trans-

verse position y through the dependence of the EPW ampli-

tude on lateral position y. If the EPW amplitude at a given

location y is relatively constant over a time exceeding two

trapping periods, then the theories of Morales and O’Neil5

and Dewar4 are applicable in describing the nonlinear fre-

quency shift in the EPW due to trapping. There has been

much additional work on the calculation of the nonlinear dis-

persion relation for an EPW when driven and in particular,

when driven by stimulated Raman scattering, e.g., the studies

of Rose and Russell39 and more recently by Benisti et al.58–

60 Rose and Russell39 obtain a nonlinear frequency shift that

is close to the value determined in the sudden approximation

by Morales and O’Neil5 and by Dewar.4 Benisti et al. con-

sider freely-propagating and driven waves in the adiabatic

limit and emphasize circumstances in which the driving of

the EPW is determined directly by stimulated Raman scatter-

ing.58–60 For a freely-propagating EPW in the adiabatic limit

and for kkDe ¼ 0:35, Benisti et al.58 obtain frequency shifts

as a function of amplitude that are slightly larger in magni-

tude than the adiabatic result of Dewar4 and generally track

Dewar’s formula. For larger values of kkDe, Benisti et al.’s
results are relatively larger in magnitude than Dewar’s adia-

batic result.59

In the simulations, the frequency of the EPW was

obtained at several different lateral positions to verify the pre-

dicted dependence of the phase velocity on the wave ampli-

tude. The external field wavenumber and frequency were,

respectively, kkDe ¼ 1=3 and x0=xpe ¼ 1:200 for the sake of

specificity, which is the linear kinetic normal mode fre-

quency. The nonlinear frequency shifts were calculated well

after the external field was zero, i.e., for t > tr þtd ¼ 50=xpe.

A Hilbert transform of the field time dependence at a speci-

fied spatial location over a time interval, typically

100 < xpet < 300, is done to obtain the frequency in the non-

linear state.61 Frequency shifts, the frequency from the trans-

form minus the driver frequency, are plotted as a function of

wave amplitude in Fig. 1. With one exception, the transverse

boundaries in y were set far enough away from the central

axis to have little effect for xpet � 300.

The simulation data in Fig. 1 tracks the
ffiffiffiffi
/
p

scaling very

well, and all the simulations are in the sudden turn-on re-

gime. In 2D with periodic boundary conditions and times

less than the transit time of a thermal electron across the

wave, the velocity distribution functions retain their depend-

ence on y. The frequency shifts obtained from off axis, where

the wave amplitude is weaker, are smaller in value as

expected. In all of our simulations except for the largest am-

plitude wave shown in Fig. 1, the fluid frequency shift56 is

insignificant.

In simulations with periodic boundary conditions in y
and at times larger than tT, the transit time of a thermal elec-

tron across the system, the resonant electron distribution

becomes uniform laterally. This results in the nonlinear fre-

quency shift losing its spatial dependence on the local value

of / and y, although the wave amplitude retains a depend-

ence on y. The frequency shifts with red crosses in Fig. 1 are

FIG. 1. (Color online) Nonlinear frequency shifts vs square-root of wave

amplitude je/=Tej1=2
, for laterally periodic boundary conditions. The

squares are frequency shifts determined on axis. The blue triangles and red

crosses are for different lateral positions. The blue data is for the wide driver

case where the nonlinear shifts are dominant and the measurements were

made for a time interval before a thermal transit time across the wave. The

red crosses for a narrow driver run long enough so that the resonant elec-

trons have the same distribution for all y. Thus, the frequency shift (red

crosses) is nearly independent of the local field, /.
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taken at the different lateral positions y=kDe ¼ 3:9, 59, 98,

122 over the time interval xpet ¼ ½100; 300� when the

trapped electron distribution has become more uniform. In

this case, tT ¼ 251x�1
pe and Dy ¼ 31:4kDe. The frequency

shifts are then dependent on the wave amplitude at earlier

times and at other positions, i.e., there is a nonlocal depend-

ence of frequency shift on wave amplitude. One should com-

pare this narrow driver case to the wider driver case where

the frequency shift for different lateral positions (blue trian-

gles) is consistent with the local value of /. In most cases,

the wider driver case is the one of physical interest.

B. Wavefront bowing

Nonlinear wavefront bowing is a significant feature in

2D and 3D PIC simulations of stimulated Raman backscatter

in transversely localized electromagnetic fields.40,41 A sim-

plified analysis of wavefront bowing for a large-amplitude

EPW with a transverse amplitude dependence that is peaked

on axis is provided in Appendix A. This analysis compares

the 2D constant phase surfaces with curvature determined by

linear diffraction to surfaces with curvature determined by

the nonlinear frequency shift. The curvature for linear wave-

front bowing is found to be

Cl ¼ �

3

2

kDe

Dy

� �2xpe

xk
xpet

1þ 9
kDe

Dy

� �4x2
pe

x2
k

x2
pet2

(16)

while that due to the nonlinear bowing is

Cnl ¼ �
1

4

Dxnl

xpe

xpet; (17)

where Dy is a measure of the initial transverse width of the

EPW envelope [see Eq. (2)], xk ¼ xpeð1þ 3k2k2
DeÞ

1=2
is the

linear Bohm–Gross frequency, and Dxnl is given in Eq. (15).

Because Dxnl < 0, the curvatures have opposite signs

(Cl < 0, Cnl > 0), and both grow initially in time as xpet.
The wave forms suggested by this analysis are plotted in Fig.

2 for small-amplitude waves and in Fig. 3 for large-ampli-

tude waves in the trapping-dominated regime. Of course, this

analysis is limited in that it neglects damping, assumes an in-

finite homogeneous domain, and uses the wave amplitude as

a parameter in the nonlinear calculation.

The linear curvature peaks at a value max (Cl)¼ – 1/4 at

a time tmax determined by

3
kDe

Dy

� �2xpe

xk
xpetmax ¼ 1: (18)

If Cnl � jClj for t
 tmax, then Cnl � jClj for all time, which

is equivalent to

1

4

Dxnl

xpe










� 3

2

kDe

Dy

� �2xpe

xk
: (19)

When Eq. (19) is satisfied, the trapping nonlinearity is domi-

nant, and the wavefront is nonlinear. In the opposite limit of

Eq. (19), linear bowing is initially dominant but relaxes in

time. Thus the wave front curvature can change sign depend-

ing on the evolution of the wave amplitude. For times much

FIG. 2. (Color online) Plot of electric field contours at

fixed times (a) xpet ¼ 60 and (b) xpet ¼ 120 with

Dy=kDe ¼ 12 showing evolution of wavefront bowing

from linear theory.

FIG. 3. (Color online) Plot of electric field contours at

fixed times (a) xpet ¼ 60 and (b) xpet ¼ 120 with

Dy=kDe ¼ 12 and e/=Te ¼ 0:012 initially on axis

showing nonlinear wavefront bowing.
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greater than the time it takes a thermal electron to transit lat-

erally across the simulation domain, the phase velocity is in-

dependent of y, the nonlinear bowing no longer evolves, and

the wavefront pattern freezes.

Figures 4–6 display plots of the electric field from simu-

lations of waves in the large and very small-amplitude

physics regime, with peak wave amplitudes on axis

e/=Te ¼ 0:0024, 0.081, and 0.075, respectively. (Other than

the peak values of the driving amplitude and the width of the

driving wave, the parameters used here are the same as those

in the simulations contributing to Fig. 1.) The simulation in

Fig. 6 uses a wide waveform, and the amplitude on axis

remains near its peak amplitude over the duration of the sim-

ulation. The simulations in Figs. 4 and 5 have relatively nar-

row waveforms with wave amplitudes that relax to

significantly smaller amplitudes on axis as the wave spreads.

The simulation results can be compared qualitatively to the

analytic results shown in Figs. 2 and 3. We note that the time

duration of the wave driver in these simulations is � 50x�1
pe ,

while the plots in Figs. 2 and 3 are for times in the theoretical

model used with instantaneous wave turn on; thus, compari-

sons should be made between the theoretical models and the

simulations with a time lag of � 50x�1
pe in the simulations.

Quantitative comparison is inappropriate because the initial

wave drive, the transverse boundaries, the effects associated

with electron transit across the wave, and the finite wave

damping in the simulations are not included in the analysis.

A measure of the relative nonlinearity expected in the

wavefront bowing is to evaluate Cnl at the time when the lin-

ear curvature maximizes, i.e., Eq. (18), and compare it to the

value of the maximum linear curvature,

CnlðxpetmaxÞ ¼
1

12

Dxnl

xpe










 xk

xpe

Dy

kDe

� �2

: jmaxðClÞj ¼ 1=4:

(20)

Note the condition CnlðxpetmaxÞ � 1=4 from Eq. (20) differs

from the condition in Eq. (19) precisely by a factor of two.

For the simulation results in Figs. 4 and 5, CnlðxpetmaxÞ
¼ 0:02 and 0.15, respectively, evaluated on axis at

xpetmax � 60 after the termination of the drive when the

wave amplitudes have decreased on axis substantially, i.e.,

e/=Te ¼ 0:0003 and 0.021. We observe that the physics in

Fig. 4 is clearly linear, and the curvature tends to saturate for

times exceeding Oðxpetmax ¼ ðDy=kDeÞ2ðxk=xpeÞ=3 � 60Þ
after the driver is terminated. The curvature in Fig. 6 is in

the highly nonlinear regime, Cnl � jClj. Because the wave is

relatively wide and maintains its amplitude over the duration

of the simulation, the nonlinear bowing and curvature con-

tinue to grow in time. Figures 4 and 6 compare qualitatively

well to Figs. 2 and 3, respectively. In Fig. 5, there is some

weak dimpling of the wave fronts near the axis at

xpet ¼ 120 that suggests that the trapping nonlinearity has a

small, but finite influence. This dimpling grows into a more

pronounced distortion visible at xpet ¼ 200.

We conclude that the simulation shown in Fig. 4 is in a

physics regime where linear dispersion is largely dominant

in determining the wave front curvature, and the simulation

compares qualitatively to the theoretical wavefronts in

Fig. 2. The simulation shown in Fig. 6 with its larger width

maintains its amplitude near the axis and remains in a

physics regime where nonlinearity is determining the curva-

ture. There is qualitative agreement between the wave fronts

FIG. 4. (Color online) Plot of electric field contours at

xpet ¼ 120 and 200 showing wavefront bowing from a

simulation with Dy=kDe ¼ 12 and peak wave amplitude

e/=Te ¼ 0:0024 on axis which then steadily decreases.

FIG. 5. (Color online) Plot of electric field contours at

xpet ¼ 120 and 200 showing wavefront bowing from

simulation with Dy=kDe ¼ 12 peak wave amplitude

e/=Te ¼ 0:081 on axis which then decreases.
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in Fig. 6 and the theoretical wave fronts shown in Fig. 3.

Whether the wave curvature is positive or negative in our

simulations (indicating physics dominated by nonlinear trap-

ping or linear dispersion) is consistent with the conditions

given in Eqs. (19) and (20). In addition, the estimate for the

saturation time of the linear bowing, Eq. (18), is also useful

in providing understanding of the simulations results.

In the stimulated Raman backscattering simulations

shown in Fig. 1 of Yin et al.,40 the parameters for the elec-

tron plasma wave correspond to kkDe ¼ 0:34, Dy � 2lm,

and Dy=kDe ¼ 1:3	 102. Hence, xpetmax ¼ O 6	 103ð Þ; and

the comparison in Eq. (19) yields O 10�2ð Þ : O 10�4ð Þ for the

relative magnitude of the nonlinear curvature compared to

the linear curvature for t
 tmax. One concludes that the

wave curvature of the EPW in Fig. 1 of Yin et al.40 is in the

highly nonlinear regime exhibiting self-focusing curvature.

IV. FOCUSING AND DAMPING OF FIELDS FROM
TRAPPED ELECTRONS

Consider an EPW wave with a finite transverse extent

and consider electrons that transit through the wave trans-

versely, become trapped, exchange energy with the wave

and leave. Nonresonant electrons adiabatically acquire an os-

cillatory energy as they enter into the wave and give the

energy back as they leave. In contrast, the resonant electrons,

with a parallel velocity within a trapping velocity of the

phase velocity, together remove a net amount of energy from

the wave. That is, some electrons gain and some lose energy

to the field but there is a net loss by the field. In this section,

the rate of energy loss through convection is examined in

some detail. Detrapping by electron–electron collisional drag

and electron–ion pitch-angle scatter is not included in the

Vlasov simulations nor in our theoretical estimates. Recent

theory62–64 has shown that, in cases of high importance, col-

lisional detrapping is less important than convective loss for

localized EPWs.

For wide enough wave shapes or strong enough wave

amplitudes, the wavefronts develop a focusing curvature as a

result of nonlinear bowing. If damping is neglected, this fo-

cusing would narrow the transverse shape of the field while

increasing the field amplitude on axis consistent with wave

energy conservation. However, the transiting, resonant elec-

trons actually take energy from the wave field, which

reduces the wave amplitude. Damping and focusing effects

are thus in competition with respect to the evolution of the

amplitude on axis. In all simulation results presented so far,

the damping effect dominated the focusing on axis. In this

section, we will, however, show an example wherein the

transiting electron damping rate is slow enough that the field

amplitude on axis increases even as the total field energy

decreases with time. Theoretical analysis has identified the

key parameter for energy loss through convection to be the

number of bounce cycles in the interaction of resonant elec-

trons with the wave. This number is given by the product of

the bounce frequency and the sideloss time, Nb

¼xbetsl=2p¼ kkDeðDy=2pkDeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=Te

p
¼ kkDeðwfw=4p

ffiffiffiffiffiffiffi
ln2
p

kDeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=Te

p
, where wfw’ 2

ffiffiffiffiffiffiffi
ln2
p

Dy is the FWHM of the

external field intensity. The case shown in Fig. 6, for exam-

ple, has wfw¼ 160kDe and Nb¼ 1.3 for the peak wave ampli-

tude on axis. Other simulations, especially those with linear

phase fronts, have bounce numbers less than one. For com-

parison of these parameters with a practical application, con-

sider an EPW driven within a laser speckle of a NIF beam

with lateral width, fsk0¼ 2:8	10�4 cm, where the f-number

fs� 8 and the laser wavelength k0¼ 351 nm. For typical

plasma parameters Te¼ 2.5 keV and electron density

Ne¼ 0.1 Nc, where Nc is the critical density, fsk0=kDe� 220.

Note, in our example, kkDe¼ 1=3 is determined from the

SRS matching conditions for these values of Ne and Te.

As the bounce number increases, the physical system

approaches the 1D limit where the Landau damping of a

large-amplitude EPW decreases with time and where, after

several bounce periods, a loss-free nonlinear wave is estab-

lished.65 That is, a quasi-BGK state is achieved in the limit

that wfw=kDe !1. In Fig. 7, a comparison of the evolution

of the EPW for a wide spatial envelope, wfw=kDe ¼ 151, is

displayed for two different transverse boundary conditions

on the electron distribution: periodic and outgoing. For the

outgoing condition, outflow is handled through extrapolation

and inflow is specified by an undisturbed Maxwellian with

the same parameters as the initial distribution. In both cases,

the total field energy, WE ¼
Ð

x;y jE2ðx; yÞjdxdy, decreases in

time after the driving field turns off at xpet ¼ 50. The two

cases differ noticeably after xpet ¼ 220, the time it takes a

thermal electron to travel from the peak field to the bound-

ary. In the periodic case, the loss of field energy to kinetic

energy ceases at late times when the distribution of resonant

electrons becomes more uniform laterally. For the outgoing

boundary condition, the loss is monotonic. A different

FIG. 6. (Color online) Plot of electric field contours at

xpet ¼ 140 and 280 showing wavefront bowing from

simulation with Dy=kDe ¼ 90 and peak wave amplitude

e/=Te ¼ 0:075 on axis whose amplitude is relatively

stationary near the axis.
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picture emerges when the history of maximum field ampli-

tude (which is on the axis) is displayed. The maximum field

amplitude actually increases slightly after the driver is off

and, in the periodic case, maintains that amplitude until late

in time. With outgoing boundary conditions the maximum

decreases monotonically with time. When t > tT ¼ 440, the

periodic boundary conditions affect the further evolution of

the field. Also shown in Fig. 7, are lineouts of the transverse

spatial dependence of the EPW field at the axial position

where the field is maximum. In the periodic case, as the field

amplitude increases slightly on axis, its width narrows. This

result suggests an EPW self-focusing process. In the out-

going electron case, the EPW field narrows as well but the

wave damping from the transverse loss rate overcomes the

tendency of the field to grow on axis. The focusing effect of

curved wavefronts is limited by two effects of the transiting

electrons: (1) the loss of field energy to the resonant elec-

trons that transit the wave and (2) the increasingly uniform

trapping region. The first effect makes the condition in Eq.

(19) more difficult to satisfy. The second reduces the trans-

verse dependence of the frequency shift on the local wave

amplitude.

For an EPW of � 1=3 the width of the previous exam-

ple, wfw ¼ 52kDe, and driven to the same amplitude at

xpet ¼ 50, the bounce number is Nb � 0:5. This case is

shown in Fig. 8 where the maximum field amplitude drops

quickly as soon as the driving field is turned off. The total

width of the simulation is also smaller in this case, and

tT ¼ 125x�1
pe . The behavior of the periodic simulations dif-

fers from the outgoing electron simulations as soon as

t > td þ tT=2, as was true of the field with the wider simula-

tion size. The transverse spatial dependence of the field

widens with time as the field decreases in amplitude. This

spreading behavior is independent of the distribution bound-

ary condition, although, of course, the rate of decrease of the

field amplitude is slower with periodic boundary conditions

FIG. 7. (Color online) Comparison of the EPW field

history for periodic and outgoing boundary conditions

for the wide lateral shape, wfw=kDe ¼ 151. The driving

external field is turned off at xpet ¼ 50. (a) The history

of the EPW field energy, WE, with periodic (black) and

outgoing electron (red) boundary conditions. (b) The

history of the peak EPW field with periodic (black) and

outgoing electron (red) boundary conditions. (c) Trans-

verse spatial dependence of Ex(xp, y) at five times for

the periodic electron distribution boundary conditions.

(d) Transverse spatial dependence of Ex(xp, y) at five

times for the outgoing electron distribution boundary

conditions. For (c) and (d), xp is the position at which

Ex(x, y¼ 0) is maximum. Electric fields are normalized

such that Ecode ¼ ekDeE=Te.

FIG. 8. (Color online) Comparison of the EPW field history for periodic and outgoing boundary conditions for a narrow lateral shape, wfw=kDe ¼ 52. The driv-

ing external field is turned off at xpet ¼ 50. (a) The history of the peak EPW field with periodic (black) and outgoing electron (red) boundary conditions. (b)

The history of the EPW field envelope at y ¼ �43kDe with periodic (black) and outgoing electron (red) boundary conditions. (c) Transverse spatial dependence

of Ex(xp, y) at five times indicated for the outgoing electron distribution boundary conditions. Here, xp is the position for which Ex(x, y¼ 0) is a maximum.

052102-9 Two-dimensional Vlasov simulation of electron plasma wave trapping Phys. Plasmas 18, 052102 (2011)

Downloaded 09 May 2011 to 128.115.27.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



transverse to the propagation direction. The field transverse

size and amplitude are small enough to have linear phase

fronts at all times.

Focusing can be convincingly demonstrated by increas-

ing the wave amplitude for a given width or by increasing

the width to lower the loss rate of resonant electrons. For the

second choice, consider a simulation with a transverse size

of 804kDe, tT ¼ 804x�1
pe , and width wfw ¼ 201kDe with peri-

odic boundary conditions. In Fig. 9, transverse lineouts of

the 2D field at the axial position where Ex is maximum are

shown. At xpet ¼ 50, when the drive turns off, the field

shape is determined by the driving potential. After that time,

the curved wave fronts cause the field to focus. A balance of

focusing and diffraction occurs when xpet ¼ 500 after which

the maximum amplitude decreases. The 2D field at

xpet ¼ 500 in Fig. 9 shows nonlinear wavefront curvature.

Later in time, the diffraction is dominant, and the wavefronts

have linear curvature as also shown in Fig. 9. This behavior

contradicts the analysis in Secs. A and III, which show that

once nonlinear bowing is dominant it remains so. That analy-

sis neglected damping by transiting electrons and the devel-

opment of a transversely uniform trapping region also due to

the transiting resonant electrons. The first effect reduces the

magnitude of the frequency shift and makes the condition for

nonlinear bowing in Eq. (19) harder to satisfy later in time.

The second effect reduces the transverse dependence of the

frequency shift on the local field amplitude.

It is instructive to view the evolution of the distribution

function at these different epochs. In Fig. 10, the distribution

of electrons in the trapped region at the maximum of the

EPW potential / is shown as a function of the axial velocity

and the transverse position, and also as a function of the axial

velocity and the axial position at the centerline in y. The dis-

tribution is integrated over the transverse velocity. The ve-

locity distribution is also shown as a function of the axial

velocity as lineouts at the peak of the EPW amplitude in x
and at various values of y and times in Fig. 11. The trans-

verse shape of the resonant electrons reflects the shape of the

driving potential at xpet ¼ 50 when the drive turns off. By

xpet ¼ 250, some accelerated electrons have reached the lat-

eral edge of the simulation region and the shape of the

trapped region has narrowed (not shown in the figure). At

xpet ¼ 500, a tail of electrons has appeared at the lateral

boundaries and the trapped electrons occupy a narrower

FIG. 9. (Color online) The EPW field for a lateral shape wfw ¼ 201kDe. The driving external field is turned off at xpet ¼ 60. (a) The transverse shape of the

EPW at the axial position, xp, where the field is a maximum for five times after the driving field is off. (b) Two-dimensional filled contour maps of the EPW

field at the time of maximum focusing. (c) Two-dimensional filled contour maps of the EPW field after diffraction has overtaken focusing. There are 13 equally

spaced contours in the range [�0.03, 0.03] for both figures (b) and (c).

FIG. 10. The distribution of electrons

shown in Fig 9. F(Vx, Y) at the position

of maximum potential for the EPW field

and F(Vx, X) at y¼ 0: (a) and (b)

xpet ¼ 60, (c) and (d) xpet ¼ 500, (e)

and (f) xpet ¼ 990. The distribution is

integrated over the transverse velocity.

The phase velocity is 3.6 Vte.
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region in physical space. At the final time shown, the distri-

bution is becoming uniform transversely. The results with

outflowing electron boundary conditions are the same until

xpet ¼ 500, after which the field amplitude continues to drop

in time whereas, in the periodic case, the boundary condition

stops the loss. The distribution at late times shows a reduced

tail of trapped electrons but still a nearly uniform distribution

as a function of the transverse spatial variable.

From the rate of decrease of the field energy with time

for the simulations with outflowing electron boundary condi-

tions, we can extract a field energy damping rate. The time-

dependence of the field energy, WE ¼
Ð

x;y jE2ðx; yÞjdxdy, is

fit to an exponential after the driver is off with the result,

�t=xpe, given in the second column of Table I. The value

does depend slightly on the time interval chosen. For the

widest case that exhibited self-focusing, �t=xpe ¼ 0:0017 if

the fit extends to 1000x�1
pe rather than to 800x�1

pe . The value

of �t is even less sensitive to the time interval chosen for the

other entries in Table I. This damping rate for the field

energy is approximately vte=ð4wfwÞ=xpe ¼ kDe=ð4wfwÞ, the

third column in Table I. In terms of the sideloss loss rate,

�t ’ �sl=ð8
ffiffiffiffiffiffiffi
ln 2
p

Þ, a remarkably good scaling especially

given the facts that the sideloss rate is calculated from the

driver transverse size and that the transverse size of the field

is significantly different from the shape of the driving field.

We also note that other factors, such as the phase velocity of

the external field, have not been varied. Thus the field energy

damping rate might well have other dependencies.

V. CONCLUSIONS AND DISCUSSION

We have presented the results of 2D Vlasov electrostatic

simulations of Langmuir waves driven to large amplitude by

a traveling wave potential with a phase velocity several

times the thermal velocity, vph/ vte¼ 3.6. The driving poten-

tial is given a spatial envelope transverse to the propagation

direction to mimic the localization of the EPW in a laser

speckle driven by stimulated Raman scattering. Our particu-

lar aims were to establish the conditions for which the phase

fronts are curved in a focusing or defocusing manner and the

effect of transverse convective loss of resonant, trapped elec-

trons from the wave. These questions can be addressed with

the modest-sized simulations that are one EPW wavelength

long in propagation direction but up to 40 wavelengths in the

transverse direction. The EPWs were driven at the linear

Landau resonance of x ¼ 1:2xpe for kkDe ¼ 1=3 over a rela-

tively short time of about ten cycles.

In Sec. III, we established that a large-amplitude travel-

ing EPW is produced in a BGK-like state for which the wave

is weakly damped and resonant electrons cause a nonlinear

frequency shift proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=Te

p
. The frequency shift

FIG. 11. (Color online) Lineouts of the

distribution of electrons at the position of

maximum potential for the EPW field

shown in Fig. 9. and various y positions,

F(Vx) vs Vx at (a) xpet ¼ 60, (b)

xpet ¼ 250, (c) xpet ¼ 500, and (d)

xpet ¼ 990. The distribution is integrated

over the transverse velocity. The phase

velocity is 3.6 Vte. Note, the distributions

for y=kDe ¼ 295 and y=kDe ¼ 383 are

nearly the same.

TABLE I. Transit damping rates.

wfw=kDe �t=xpe kDe=ð4wfwÞ

201 0.0013 0.0012

151 0.002 0.0017

94 0.0031 0.0027

52 0.0049 0.0048
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magnitude and sign (negative) were shown to be in good

agreement with the predictions of the theories of Dewar4 and

Morales and O’Neil.5 For a slowly varying transverse profile

of the EPW, the frequency shift is a function of the local

value of the EPW amplitude. Thus the phase velocity of the

wave is larger where the wave amplitude is smaller and, with

time, the contours of constant phase curve more and more in

a focusing sense in direction of the wave propagation. This

is termed nonlinear wave bowing. For very small-amplitude

waves, the frequency shift is insignificant, and the phase

fronts curve backward (defocusing) with time because of the

diffractive effects of EPW propagation in a finite tempera-

ture plasma. This is termed linear wave bowing. Nonlinear

Langmuir wave bowing was previously shown by Rose and

Yin32 in PIC simulations to be a feature of SRS in speckled

laser beams.

The diffractive effects are strong if the transverse size of

the laser beam is small, whereas the frequency shifts are

large when the wave amplitude is large. We have developed

a quantitative measure (see Appendix A) that predicts which

effect is dominant and have shown its validity by comparison

with simulations. However, the resonant electrons that leave

the wave by convecting laterally take energy from the wave.

Other electrons that enter the wave laterally are, on average,

accelerated and take energy from the wave but give part of it

back as they leave. In Sec. IV, we showed by fitting the

results of the simulations that the wave field energy effec-

tively damps at about the sideloss rate, vte/(4 wfw), where wfw

is the FWHM of the driving wave field lateral spatial profile.

Another effect of the lateral motion of the resonant electrons

is that the distribution of trapped electrons eventually

becomes more uniform as a function of lateral distance from

the peak wave amplitude. Thus, the number of trapped elec-

trons is no longer a local function of the wave amplitude,

and the nonlinear wave front bowing ceases to develop.

Because of nonlinear curvature of the phase fronts,

trapped electron self-focusing is predicted to occur with a

growth time of hundreds of 1=xpe.31,32 In addition, the loss

of field energy with time and the nonlocal relation of the fre-

quency shift to the wave amplitude establish thresholds for

Langmuir wave self-focusing. Most of our simulations

shown in Sec. III were done for too short a time, too narrow

an EPW, or too small an amplitude to show an increase in

the wave amplitude on axis due to focusing. However, when

the wave satisfies the conditions for “nonlinear bowing,” the

wave amplitude on axis drops much slower than the total

field energy while the wave amplitude off axis drops faster

than the total field energy. In Sec. IV, we show that a field

with a wide enough initial spatial profile (thus weak transit

damping losses) does increase its on-axis amplitude with a

concomitant narrowing spatial profile if the conditions for

nonlinear bowing are met. That is, trapped electron-induced

self-focusing occurs.

As mentioned in the introduction, finite-amplitude

EPWs may also be subject to various types of instabilities,

such as the trapped particle instability (TPI; Ref. 66) or other

modulational instabilities.67 Our purely electrostatic simula-

tions also preclude the possibility of electromagnetic insta-

bilities, such as the Weibel instability, from which magnetic

fields can grow.68 The longitudinal electrostatic instabilities,

involving sidebands, were unable to develop in the simula-

tions presented in this paper as only single wavelength long

systems in the longitudinal direction were considered. An

obvious question is how the time scales over which these

longitudinal instabilities may develop and break-up the origi-

nal wave compared with the characteristic times of linear

and nonlinear bowing studied in this paper. To systemati-

cally address this issue, multiple wavelength long simula-

tions shall be carried out in the future. One may nonetheless

attempt to estimate under what conditions the instability

time scales might become comparable to bowing times. To

this end, the reduced model for the TPI by Kruer, Dawson,

and Sudan66 was solved which has shown good semiquanti-

tative agreement with fully kinetic simulations.29,69 Their

simple dispersion relation has three independent parameters:

the wave number kkDe of the large amplitude EPW, the

bounce-frequency xb, and the fraction ft of trapped electrons.

Consistent with the physical conditions for the simulations in

this paper, one sets kkDe ¼ 1=3 and xb=xpe ¼ kkDeðe/=
TeÞ1=2

as is appropriate for the bounce frequency of deeply

trapped electrons. Finally, the fraction of trapped electrons ft
is estimated by assuming a finite-amplitude, purely sinusoi-

dal EPW and numerically integrating the electron distribu-

tion predicted by theory for sudden or adiabatic generation

of the wave (as given by Eq. (1) or (4), respectively in Dew-

ar’s paper4). For e/=Te < 1=8, the number of trapped elec-

trons for both distributions are approximately equal. The

numerically computed TPI growth rate cTPI is well approxi-

mated by cTPI ’ xb=8 at least for our plasma parameters and

the field amplitudes for which wave bowing and self-focus-

ing were simulated. Assuming that the sidebands involved in

the TPI must grow from thermal noise levels with an energy

ratio of the finite EPW to noise of ’ nek
3
De � 104, one finds

that approximately 4 e-folding times of the TPI are required

for the sidebands to reach amplitudes that are comparable to

the initial wave and break it up. One thus concludes that the

characteristic time for sideband growth is of order,

tTPI ’ 32x�1
b ’ 100ðe/=TeÞ�1=2x�1

pe .

For characteristic bowing times, let us consider the time

t1/4 at which the (absolute values) of linear (l) and nonlinear

(nl) curvatures, given by Eqs. (16) and (17), respectively,

reach the value 1
4
. This definition is based on the fact that, for

the linear bowing case, this is the situation of maximum cur-

vature. One thus has tl
1=4
¼ tmax with tmax given by Eq. (18).

For the nonlinear case, one obtains from (17),

xpe tnl
1=4 ¼

xpe

jDxnlj
¼

ffiffiffiffiffiffi
2p
p

a
ðkkDeÞ2

expðv2

2
Þ

v2 � 1







v¼v/=vth;e

e/0

Te

� ��1=2

:

Thus, the characteristic nonlinear bowing time tnl
1=4 in fact

presents the same scaling, tnl
1=4 � /�1=2

0 , in terms of the wave

amplitude /0 as the growth time tTPI of the TPI. Setting

kkDe ¼ 1=3, as considered for the simulations presented in

this paper, one obtains xpe tnl
1=4 ’ 13ðe/0=TeÞ�1=2

(having

used the Bohm–Grosss dispersion and assumed sudden wave

generation, i.e., a ¼ 0:823). From the above estimates, non-

linear bowing thus appears to develop before the TPI breaks

up the wave, independent of wave amplitude. As demonstrated

052102-12 Banks et al. Phys. Plasmas 18, 052102 (2011)

Downloaded 09 May 2011 to 128.115.27.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



in the simulations, and according to Eq. (19), for sufficiently

low amplitudes /0 and narrow transverse widths Dy, the linear

bowing time tnl
1=4 may be even shorter than the nonlinear bow-

ing time, tl
1=4 < tnl

1=4, but from these simple estimates, tTPI is

never the shortest time scale. One may thus conclude that both

linear and nonlinear bowing of EPWs may be expected to be

important features appearing in multidimensional and multiwa-

velength systems, such as relevant to SRS studies under laser-

fusion conditions.
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APPENDIX A: WAVE FRONT BOWING IN THE LINEAR
AND NONLINEAR LIMITS

In this appendix, we present calculations for the two-

dimensional phase fronts expected for an undriven electron

plasma wave in an infinite homogeneous plasma in the limits

of (i) an arbitrarily small-amplitude wave and (ii) a large-

amplitude wave in which a nonlinear frequency shift is

assumed to dominate linear diffraction. These two limits are

referred to as the linear and nonlinear regimes.

1. Wave evolution and bowing in the linear limit

One considers the evolution of a two-dimensional for-

ward propagating EPW along the direction x, with a Gaus-

sian transverse envelope. One thus assumes that at time t¼ 0

the corresponding electrostatic potential /ðx; y; t ¼ 0Þ is

given by

/ðx; y; t ¼ 0Þ ¼ A0ðyÞ cosðkxÞ; (A1)

with A0(y) the Gaussian envelope,

A0ðyÞ ¼ /0 exp � 1

2

y

Dy

� �2
" #

;

with root mean square (rms) width Dy. To derive the subse-

quent time evolution of the wave field (A1), it is convenient

to consider the corresponding plane wave, i.e., Fourier

mode, decomposition,

/ðx; y; t ¼ 0Þ ¼
ðþ1
�1

Â0ðkyÞ eikyy dky
1

2
eikx þ c:c:
	 


where c.c. stands for the complex conjugate and Â0ðkyÞ is

given by the Fourier transform of A0(y),

Â0ðkyÞ ¼
1

2p

ðþ1
�1

A0ðyÞe�ikyy dy ¼ /0Dyffiffiffiffiffiffi
2p
p exp � 1

2
ðkyDyÞ2

� �
:

Then, making use of the linear dispersion relation for EPWs

given by the Bohm–Gross relation, providing the wave fre-

quency xK for a plane wave with wave vector ~K,

xK ¼ xpe 1þ 3 K2k2
De

	 
1=2
;

where xpe and kDe stand, respectively, for the electron

plasma frequency and Debye length, the electrostatic field at

time t for the forward propagating wave can be written as

/ðx; y; tÞ ¼
ðþ1
�1

dkyÂ0ðkyÞ
1

2
eiðkxþkyy�xKtÞ þ c:c:
h i

; (A2)

where for this last relation K ¼ ðk2 þ kyÞ1=2
. Note that damp-

ing, in particular Landau damping, has been neglected. To

obtain an explicit relation (A2), one Taylor expands the dis-

persion relation around k to second order in kykDe,

xK ’ xk þ
3

2

x2
pe

xk
ðkykDeÞ2;

with xk ¼ xpeð1þ 3 k2k2
DeÞ

1=2
. This should be a very good

approximation, as the transverse envelope is typically many

Debye lengths long, so that kykDe � ðDy=kDeÞ�1 
 1. Mak-

ing use of the relationðþ1
�1

dk expð�akÞ2 ¼
ffiffiffi
p
p

a
;

valid for any complex constant a such that ReðaÞ > 0, the in-

tegral over ky in (A2) can be carried out analytically, leading

to

/ðx;y;tÞ¼Aðy;tÞcos kx�xktþ3

2

kDe

rðtÞDy

� �2x2
pe

xk
t

y

Dy

� �2

�h

" #
;

(A3)

with the time evolving envelope A(y, t) given by

Aðy; tÞ ¼ /0ffiffiffiffiffiffiffiffi
rðtÞ

p exp � 1

2

y

rðtÞDy

� �2
" #

; (A4)

and the phase factor h such that

tanð2 hÞ ¼ 3
kDe

Dy

� �2x2
pe

xk
t:

According to (A4), the envelope remains Gaussian over

time. The corresponding rms width is given by

DyðtÞ ¼ rðtÞDy, with

rðtÞ ¼ 1þ 9
kDe

Dy

� �4 xpe

xk

� �2

ðxpetÞ2
" #1=2

;

which thus asymptotically increases linearly in time. The

time t2 at which the rms width of the envelope has doubled is

such that rðt2Þ ¼ 2 and leads to

xpet2 ¼
1ffiffiffi
3
p Dy

kDe

� �2 xk

xpe

:
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According to Eq. (A3), all wavefronts (constant phase

curves) are parallel to the parabolic curve x¼ x(y) defined by

kx ¼ � 3

2

kDe

rðtÞDy

� �2x2
pe

xk
t

y

Dy

� �2

¼ ClðtÞ
y

Dy

� �2

;

with the normalized curvature coefficient Cl given by

ClðtÞ ¼ �
3

2

kDe

rðtÞDy

� �2x2
pe

xk
t: (A5)

The subscript “l” stands for “linear” as the derived wavefront

bowing results from the linear diffraction properties of the

EPWs. Note that this linear curvature is negative. Its absolute

value jClðtÞj increases, at first linearly, in time up to its maxi-

mum of 1/4 which is reached at time tmax given by

xpetmax ¼ xpet2=
ffiffiffi
3
p
¼ 1

3

Dy

kDe

� �2 xk

xpe

:

For times t > tmax, the curvature Cl(t) decreases and asymp-

totically in time vanishes. The time evolution of jClðtÞj is

shown in Fig. 12. The electrostatic field /ðx; yÞ at time tmax

where the negative curvature bowing resulting from the lin-

ear evolution is maximum is shown in Fig. 13.

2. Wave evolution and bowing in the nonlinear limit

According to Morales and O’Neil5 and Dewar,4 the non-

linear frequency shift Dxnl for an EPW-type plane wave

with finite relative density amplitude dN=N, N being the

background electron density, is given by

Dxnl

xpe

¼� a

ðkkDeÞ3
dN

N

� �1=2
1ffiffiffiffiffiffi
2p
p ðv2� 1Þexp �v2

2

� �




v¼v/=vth;e

;

(A6)

having assumed a Maxwellian background, v/ ¼ xk=k being

the phase velocity relative to the wave number k, and

vth;e ¼ ðTe=meÞ1=2
the thermal electron velocity. The fre-

quency shift Dxnl depends on how the finite-amplitude wave

has been generated. This is reflected by the factor a, which

takes on the two limiting values aadiab ¼ 0:544 and

asudden ¼ 0:823 depending on whether the wave has been

turned on adiabatically or suddenly, respectively. The refer-

ence time scale for differentiating between these two limiting

cases is the bounce frequency of (deeply) trapped electrons,

given in the case of EPWs by xb=xpe ¼ kkDeðe/0=TeÞ1=2

¼ ðdN=NÞ1=2
. A “sudden” wave is typically generated con-

sidering an initial value problem, while an “adiabatic” wave

may be generated through an external drive which is suffi-

ciently weak such that the characteristic growth time of the

EPW remains small compared to x�1
b .

In the case of a two-dimensional finite-amplitude EPW

of the form (A1), i.e., with transverse Gaussian envelope, the

nonlinear frequency shift will vary together with the wave

amplitude for different transverse positions y. Neglecting the

linear diffraction effects discussed in Sec. A.1, in particular

the spreading over time of the envelope, as well as damping

effects, the evolution of the forward propagating wave

including nonlinear frequency shift effects is given by

/ðx; y; tÞ ¼ A0ðyÞ cos kx� xk þ DxnlðyÞ½ �tf g:

The corresponding wave fronts are thus all parallel to the

curve x¼ x(y) defined by

kx ¼ DxnlðyÞt:

The transverse varying frequency shift DxnlðyÞ is given by

Eq. (A6) with the factor ðdN=NÞ1=2
now being a function of

y which is also essentially Gaussian [according to Poisson’s

equation ð@2=@x2 þ @2=@y2Þ/ ¼ e dN=�0 and assuming

kDy
 1],

dNðyÞ
N

� �1=2

’ dN0

N

� �1=2

exp � 1

4

y

Dy

� �2
" #

’ dN0

N

� �1=2

1� 1

4

y

Dy

� �2
" #

;

where dN0 ¼ dNðy ¼ 0Þ and the last approximate equality is

obtained as a result of a second-order Taylor expansion in

y=Dy. The bowing of the wavefront resulting from the non-

linear frequency shift thus becomes

FIG. 12. (Color online) Time evolution of wave front curvature jClðtÞj
resulting from linear dispersion of EPWs.

FIG. 13. (Color online) Electrostatic field /ðx; yÞ at time tmax where the

negative curvature bowing resulting from the linear evolution is maximum.
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kx ¼ � 1

4

Dxnl;0

xpe

xpet
y

Dy

� �2

¼ CnlðtÞ
y

Dy

� �2

;

with the normalized curvature coefficient Cnl defined by

CnlðtÞ ¼ �
1

4

Dxnl;0

xpe

xpet; (A7)

where Dxnl;0 is given by Eq. (A6) evaluated for ðdN0=NÞ1=2
.

Note that, as the nonlinear frequency shift is negative, the

curvature Cnl is positive, i.e., of opposite sign to the curva-

ture Cl resulting from the linear diffraction effects. Further-

more, contrary to Cl(t), which vanished asymptotically in

time, Cnl(t) keeps on increasing linearly in time.

From relations (A5) and (A7), one may estimate for

which conditions the negative curvature Cl(t) of the wave-

fronts resulting from linear diffraction effects may be domi-

nant over the positive curvature Cnl(t) resulting from the

nonlinear frequency shift, at least for times t
 tmax during

which Cl(t) evolves linearly in time. The condition

jClðtÞj > CnlðtÞ for xpet
 ðDy=kDeÞ2 leads to

dN0

N

� �1=2 Dy

kDe

� �2

<
6
ffiffiffiffiffiffi
2p
p

a
ðkkDeÞ3

expðv2

2
Þ

ðv2 � 1Þ







v¼v/=vth;e

;

which separates the ðDy=kDe; dN0=NÞ plane into two

domains, as shown in Fig. 14: (1) A small-amplitude, nar-

row-transverse-width domain where the linear diffraction

effects dominate at early times and leading to negative cur-

vature of the wave front. (2) A large-amplitude, wide-trans-

verse-width domain where the nonlinear frequency shift

effects dominate at all times, leading to positive curvature.

Note that even in the linear regime region, the negative cur-

vature ultimately vanishes after a sufficiently long time

t� tmax, so that the positive curvature from the nonlinear

effects can end up dominating asymptotically in time.
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