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Abstract

We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the
governing temperature equations in different material domains are time-stepped in a implicit manner, but
where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat
transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions
using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the
optimization of a condition derived from a local stability analysis of the coupling scheme. The interface
treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together
with the interface jump conditions and additional compatibility jump conditions derived from the governing
equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps)
the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single
implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very
large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally
increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority
of practical problems.

The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the-
ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A
comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-
Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif-
fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with
uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme
with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT ex-
amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness
of the approach.

Keywords: conjugate heat transfer, optimized Schwarz method, domain decomposition, Dirichlet
Neumann method, overset grids.

1. Introduction

Conjugate heat transfer (CHT) concerns the coupled heat transfer between fluids and solids, and it plays
an important role in many scientific and engineering applications, including modeling heat exchangers or
nuclear reactor cores, cooling of micro-channels in electronic packaging, thermal effects in turbo machinery,
and more. Depending on the application, there can be any number of different fluid and/or solid domains,
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and the interfaces can be of fluid-fluid, fluid-solid, or solid-solid type. Thermal coupling generally imposes
continuity of temperature and heat flux along the interfaces, and this often plays an important role in the
overall dynamics of the system. From the perspective of numerical solvers, the discretization of the thermal
coupling conditions has a major impact on the overall performance of the solution approach, and this is one
of the significant challenges to be addressed in any approach to solving CHT problems.

The main objective of the current study is the design and analysis of partitioned4 approaches to solving
CHT problems where, in particular, we consider partitioned schemes in which the temperature in each sub-
domain is advanced with an implicit time-stepping method. In contrast to a monolithic approach where
a single numerical solver is developed to solve all domains at once, a partitioned approach uses different
numerical solvers in the different fluid and solid domains, and these solvers are coupled only at the interface
between domains. There are many practical benefits of partitioned methods, including the ability to use
specialized or highly optimized domain solvers and the ability to take advantage of disparate time scales in
different domains. Also, monolithic methods require the solution of a large system of equations at each time
step corresponding to the fully coupled system. Solving this large system can be challenging and costly,
and may require the development of specialized preconditioners that account for the eigenstructure of the
fully coupled problem. Partitioned methods, on the other hand, do not require the solution of this large
coupled system. However, ensuring both the stability and accuracy of partitioned methods for a wide range
of material parameters can be a significant challenge. Since the primary difficulty in partitioned approaches
for CHT problems concerns the coupling of the temperature in the different domains, in this work we
consider a simplified CHT problem where the governing equation in each domain is a heat equation for the
temperature alone. Furthermore, since heat equations are generally stiff, an implicit time-stepping scheme
is used to advance the temperature in each domain.

The traditional interface treatment for partitioned CHT is known as the Dirichlet-Neumann (DN) cou-
pling in which the temperature of the solid is used as a Dirichlet boundary condition on the fluid while
the fluid heat-flux is used as a Neumann boundary condition on the solid. In some regimes the opposite
Neumann-Dirichlet (ND) scheme is appropriate to use while in general Robin (mixed) conditions that weight
the Dirichlet and Neumann operators with appropriate coefficients may be useful. The development and
analysis of methods that make use of these different interface couplings has been the subject of much prior
work in the literature. Giles [1], for example, analyzed a discretization of a fluid-solid CHT problem using the
classical DN coupling and derived conditions on the material parameters such that the DN coupling would
be stable. For the case of explicit time-stepping, Roe et al. [2] considered an alternate discrete approxi-
mation to the temperature continuity equation which included a compatibility condition. This approached
reduced the time-stepping stability constraint to be the smaller of the stable time steps for the solver in
each subdomain in isolation. Henshaw and Chand [3] also considered explicit time-stepping schemes, and
they developed discrete interface conditions that are stable and second-order accurate for any values of the
thermal properties. For the case of implicit time-stepping, Henshaw and Chand analyzed the convergence
behavior of sub-time-step iterations for a two-dimensional problem. They found that either the DN coupling
or ND coupling converges rapidly when the thermal conductivities and diffusivities of adjacent domains
are vastly different, but that the iteration converges slowly when the thermal properties of the materials
are nearly identical. The analysis in [3] showed that coefficients can always be chosen for Robin interface
conditions so that the sub-time-step iterations converges, and they suggested how to choose these coeffi-
cients. Roux and Garaud [4] studied DN, Robin-Dirichlet and Robin-Robin conditions based on a matrix
analysis. They showed that the optimal coefficient in the Robin condition could be chosen based on the the
Dirichlet-to-Neumann mapping from the coupling domain; however, this mapping is non-local and expensive
to compute. Heselhaus [5] used mode analysis to study stability of a conjugate heat transfer problem for a
turbine blade calculation where the time-dependent fluid equations were coupled to steady-state equations
for the solid. Two different coupling schemes were analyzed and it was shown that a coupling based on heat
flux is unconditionally unstable while a coupling based on a virtual ambient temperature is stable within
certain stability constraints on the time step. Errera and Chemin [6] considered a CHT problem with a
one-dimensional unsteady fluid coupled to a quasi steady-state solid and determined optimal weightings for
which Robin interface conditions remain stable within a time-stepping scheme.

4Partitioned schemes are sometimes called segregated or weakly-coupled schemes.
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When there is no jump in material properties across the interface, the CHT problem reduces to a domain
decomposition (DD) problem, for which there is a large body of published work. Of particular interest is
the development of the Schwarz iteration [7] that uses mixed or Robin-type coupling conditions in order
to accelerate the convergence of the iteration. Recently there have been significant developments in the
determination of optimal coefficients for Robin-type interface conditions for DD. In [8], for example, Gander
developed an approach to determine optimal weights for a Robin condition in Schwarz domain-decomposition.
After Fourier-transforming in the tangential directions to the interface, the exact solution to a model problem
is used to determine optimal weights for the Robin conditions in this transformed space. However, upon
applying the inverse transform, a global operator in physical space is implied. In order to obtain a local
condition, the optimal weights in the transformed space are approximated, eventually leading to local Robin
and generalized Robin operators in physical space; the so-called “optimized Schwarz” method. Following
these developments, Gander and Dubois [9] extended Schwarz-like iterations to steady state CHT problems
with disparate materials. They introduced new mixed interface conditions with weightings determined to
optimize the convergence rate of the iteration for small mesh size, or similarly large jumps in the thermal
conductivities. One important aspect affecting the performance of Schwarz-type iterations is the use of
domain overlap. In particular, it has been known for decades that the inclusion of domain overlap yields
exponentially faster iteration convergence rates for increasing wave number in the transverse direction. For
the DD problem, including domain overlap is a straightforward proposition, and the resulting schemes have
ben extensively studied. However, for the CHT problem, increasing the domain overlap is less obvious, and
indeed in [9] only the non-overlapping Schwarz iteration is investigated. It is the purpose of the current
article to show one approach for incorporating domain overlap into the CHT problem.

For the case of time-dependent CHT problems where partitioned time-stepping is employed, an iteration
is generally performed at each time step. If this iteration is not executed to convergence, an accurate initial
guess, typically obtained through time extrapolation, is required at each time step in order to maintain
the desired order of accuracy. This issue was addressed in Peet and Fischer [10] who studied domain
decomposition for the heat equation. They analyzed the stability and accuracy of the time-stepping scheme,
which used implicit time-stepping for each domain and various choices of time extrapolation to initiate the
coupling iteration. They proved that their un-iterated time-stepping scheme is unconditionally stable for any
domain overlap size using first-order accurate interface extrapolation and first or second-order backward-
difference-formula time-stepping schemes; however, the resulting schemes remain only first-order accurate.
With higher-order accurate interface extrapolations or higher-order time integration methods, however, their
schemes may require increasing the number of sub-time-step iterations.

In the current work, we extend the existing work on Schwarz-like iterations to derive a generalized
Robin interface condition for partitioned CHT schemes that includes the beneficial effects of domain overlap.
The Dirichlet-like and Neumann-like components of the Robin condition are derived following ideas from
Henshaw and Chand [3], while their relative weighting is obtained following the discussion in Gander [8]. The
scheme can therefore be viewed as a hybrid of recent Robin coupling type conditions for FSI problems [11–17]
together with overlapping optimized Schwarz domain decomposition [8] extended to the case of disparate
thermal conductivities and diffusivities. This new scheme is called the Conjugate Heat transfer Advanced
Multi-domain Partitioned method, or CHAMP method for short. A key ingredient in the derivation of the
CHAMP method is the use of a Taylor expansion in space at a distance h from the interface along with
the interface conditions and governing equations to relate the solution and its derivatives on one side of
the interface to those on the other side. The resulting generalized Robin conditions contain higher-order
derivative information than traditional Robin conditions, and they embed an overlap of width h into the
conditions which improves the convergence rate of the iteration, particularly for high wave numbers in the
transverse direction to the boundary.

The CHAMP coupling conditions are analyzed first as fixed-point iteration (i.e. iterating at a fixed
time) and the convergence rate is found to be better than the traditional DN scheme for any choice of
the material parameters. For the special case when the properties are equal across a material interface
(i.e. traditional domain decomposition) the convergence rate is also found to be better than a typical form
of the optimized-Schwarz domain-decomposition method of Gander [8]. The corresponding CHAMP time-
stepping algorithm is analyzed next. This scheme employs an accurate initial guess for the CHAMP interface
conditions and uses a fixed number of iterations, without regard to any convergence criteria. With no
iterations, the CHAMP time-stepping scheme requires only one implicit PDE solve in each domain, and
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this un-iterated scheme is found to be stable for spatial and temporal grid spacings which encompass a
wide range of practically realizable simulations. Additional iterations may be required to ensure stability
for more difficult problems with large time-steps and finer mesh spacings where the beneficial effect of the
overlap, h, is reduced. However, the dimensionless parameters of the problem indicate that a single iteration
of the CHAMP interface conditions (requiring two PDE solves in each domain) would be sufficient for the
vast majority of two- and three-dimensional simulations of practical interest. Example problems in two
dimensions are used to evaluate the CHAMP method. To treat complex geometry, each solid domain is
discretized using a composite overlapping grid [18], also known as an overset or Chimera grid. This provides
an efficient means to generate a composite structured grid, with boundary conforming grids, for complex and
possibly moving geometries. The current paper restricts its attention to coupled heat transfer problems in
two dimensions. Extensions to problems in three dimensions and to CHT problems involving incompressible
and compressible fluid flow will be considered in future work.

An outline of the remainder of this paper is as follows. Section 2 defines the governing equations for the
coupled heat transfer problems under consideration. Section 3 then introduces a simple model problem that
will be used to discuss the performance of the traditional Dirichlet-Neumann scheme in Section 3.1 and the
overlapping optimized Schwarz method for domain decomposition in Section 3.2. The new CHAMP method
is developed in Section 3.3, and an analysis of the convergence rate when iterating is presented in that same
section. Extension and analysis of the CHAMP method to the case of time-stepping is presented in Section 4.
To treat complex geometrical situations, Section 5 presents the CHAMP method on curvilinear grids in the
context of composite overset grids. Results from numerical experiments are given in Section 6, and some
concluding remarks are given in Section 7. In Appendix A the accuracy of the un-iterated CHAMP scheme
is studied and the scheme is shown to be second-order accurate for a one-dimensional CHT problem.

2. Problem specification and governing equations

Heat source

Ω3

K3,D3

Ω2

K2,D2

Ω1

K1,D1

∂ΩE

I

Schematic Diagram Temperature Composite Grid

Figure 1: An example of a conjugate heat transfer problem with three different sub-domains, one square with material
properties (K1,D1) and two disks with material properties (K2,D2) and (K3,D3) respectively. The boundary at the
bottom of the square region is heated and a heat source is added in disk Ω3. At left is a schematic representation of
this problem, in middle is the computed temperature at one time, and at right is a coarse version of the composite
grid used for the calculations in Section 6.3.2.

Consider the simplified CHT problem of coupled heat transfer in different materials, an example of
which is depicted in Figure 1. The global domain, denoted by Ω, is the union of a set of M non-overlapping
subdomains Ωm, m = 1, 2, . . . ,M , that represent distinct regions of different material properties. The
interface between different subdomains is denoted I, and the exterior boundary of the domain is given by
∂ΩE . By convention, the unit normal n is chosen to point outward from the domain with higher index m,
and outward at exterior boundaries. Let

[
f
]
I denote the jump in f across the interface I. In this setting,
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the equations governing the temperature are given as (see, for example, Carslaw [19])

∂tT =
1

ρC
∇ · (K∇T ) + f(x, t), x ∈ Ω, (1)

a T + bn · ∇T = g(x, t), x ∈ ∂ΩE , (exterior BCs) (2)[
T
]
I = 0, x ∈ I, (interface temperature continuity) (3)[

Kn · ∇T
]
I = 0, x ∈ I, (interface heat flux continuity) (4)

T (x, 0) = T IC(x), x ∈ Ω (initial conditions) (5)

where T = T (x, t) is the temperature, K = K(x) the thermal conductivity, ρ = ρ(x) the density, C = C(x)
the specific heat, and f = f(x, t) is a heat source. Equation (2) denotes some appropriate mixed, Neumann
or Dirichlet boundary condition (BC) on the exterior of the domain with coefficients a(x, t), b(x, t) and
forcing g(x, t). For simplicity we assume that K, ρ and C are constant over each subdomain Ωm. Note that
we have used the notation ∂t to denote the partial derivative with respect to time, with spatial derivatives
similarly defined.

3. Model equations and analysis

As discussed in the introduction, the focus in this manuscript is the development and analysis of parti-
tioned solvers for CHT problems such as the one given in (1)–(5). To more clearly introduce and analyze
different approaches to interface coupling, we consider a simplified two-material model problem as shown in
Figure 2 consisting of planar interface, I = 0×[0, 2π), separating two materials without external forcing. The
domain to the left is ΩL = (−∞, 0)× [0, 2π), and to the right is ΩR = [0,∞)× [0, 2π). For this configuration
the system to be analyzed is

∂tTm = Dm∆Tm, for x ∈ Ωm, (6)[
T (0, y)

]
I = 0, for y ∈ (0, 2π), (7)[

K∂xT (0, y)
]
I = 0, for y ∈ (0, 2π), (8)

Tm(x, y + 2π, t) = Tm(x, y, t), for x ∈ Ωm, (9)

‖Tm‖2 <∞, (10)

Tm(x, 0) = T IC
m (x), for x ∈ Ωm, (11)

where m = L,R indicates the left or right domain, and Dm = Km/(ρmCm) is the constant thermal diffusivity
in each domain. The initial conditions, T IC

m (x), are assumed to be of compact support and we look for
solutions that are periodic in y and of bounded L2-norm which implies T → 0 as |x| → ∞.

x

y

ΩR: Tn
R, DR, KRΩL: Tn

L , DL, KL

(0, 0)

(0, 2π)

I

Figure 2: The geometry for the model problems. The solution is assumed to be 2π-periodic in the y-direction.

The equations (6)–(11) are discretized with a method-of-lines approach, discretizing in time, while keep-
ing space continuous (which clarifies the presentation). The second-order accurate backward-difference for-
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mula (BDF2) is used to advance the solution in time, and this gives

Tn+1
m − 4

3
Tnm +

1

3
Tn−1
m =

2∆t

3

(
Dm∆Tn+1

m

)
, for x ∈ Ωm, (12)[

Tn+1(0, y)
]
I

= 0, for y ∈ (0, 2π), (13)[
K∂xTn+1(0, y)

]
I

= 0, for y ∈ (0, 2π), (14)

Tn+1
L (−∞, y) = 0, Tn+1

R (∞, y) = 0, for y ∈ (0, 2π), (15)

where superscripts are used to indicate the time level as in Tnm ≈ Tm(x, tn) with tn = n∆t. Note that BDF2
was chosen because it has the stability property of stiff decay, but there are obviously other possible choices
for implicit time-stepping. Section 4 discusses why BDF2 was chosen by comparing with Crank-Nicolson
(implicit trapezoidal rule in time). Also note that as with all multistep methods, multiple past time levels
are required to execute a time step. At the initial time, these past time values can be evaluated using the
known solution (e.g. for manufactured solutions) or with a single-step method. The system in (12)–(15)
is monolithic and after discretizing in space would require the solution to a large globally coupled linear
system.

In a partitioned approach, approximate solutions to (12)–(15) are found by successively solving the
implicit equations on each domain separately using some appropriate interface condition, together with a
provisional choice for the solution on other domains. In a strongly-coupled partitioned approach this iteration
is repeated until the interface conditions are satisfied to a specified tolerance. In a weakly-coupled approach,
only a small fixed number of iterations are performed. The particular choice of discrete interface conditions
used to couple the sub-domains can have significant impact on the performance of the scheme (accuracy and
stability) and this is the subject of the analysis to follow. We will be concerned with both the convergence
of the iteration in isolation, and also the convergence of the time-stepping scheme when a fixed number of
iterations, even including the case of zero iterations, are taken per time-step.

Letting T
(j)
m , j = 0, 1, 2 . . . denote a sequence of iterates which approximate Tn+1

m , and letting

Fm(x) =
2

Dm∆t
Tnm −

1

2Dm∆t
Tn−1
m ,

then each stage of the iteration requires the solution to two Helmholtz boundary values problems,

1
2
3Dm∆t

T (j)
m −∆T (j)

m = Fm(x), for x ∈ Ωm, m = L,R, (16)

BL(T
(j)
L ) = BLR(T

(j−1)
R ), or BR(T

(j)
R ) = BRL(T

(j)
L ), for x ∈ I, (17)

T (j)
m → 0, for |x| → ∞. (18)

The operators BL, BLR, BR and BRL denote the partitioned interface conditions that are used with each
sub-domain solve. (These are often a linear combination of the original interface conditions (13)–(14).)

Three important non-dimensional parameters arise in the subsequent analysis; θ, the ratio of the thermal-
conductivities, β, the ratio of the thermal-diffusivities, and λd, the diffusive time-step parameter,

θ
def
=
KL
KR

, β
def
=
DL
DR

, λd
def
=

∆tDL
h2

. (19)

Here h will either denote the overlap width for an overlapping domain-decomposition method, or h will be
proportional to the spatial mesh size; for clarity h is taken to be the same in both domains. In practice, the
parameters θ and β can take on a wide range of positive values, with θ ≈ 1 often being the difficult case for
partitioned solvers. In typical computations λd will be large (treating the heat equations as stiff in time).

We will analyze three different discrete interface conditions defining BL, BLR, BR and BRL. The DN
interface conditions, given first, are the usual Dirichlet-Neumann interface conditions, with the left domain
specifying the heat flux in (20) and the right domain specifying the temperature in (21). Colors are used
in the presentation to indicate the Neumann-like and Dirichlet-like portions of the interface conditions,
respectively.
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DN Interface Conditions. Dirichlet-Neumann coupling for CHT

KL∂xT (j)
L (0, y) = KR∂xT (j−1)

R (0, y), (20)

T
(j)
R (0, y) = T

(j)
L (0, y). (21)

The OS interface conditions, given next, represent the overlapping optimized Schwarz scheme of [8],
which is applicable for positive overlap h > 0 when there is no jump in material properties, i.e. for the case
of domain decomposition (DD). Here a linear combination of the Neumann and Dirichlet conditions in (13)
and (14) is taken with relative weightings SL and SR. Importantly, this approach incorporates an overlap
width h which, when h > 0, significantly improves the convergence rate. However, when h > 0 the specified
approach is apparently not applicable to cases with a jump in material parameters.

OS Interface Conditions. Overlapping optimized Schwarz coupling for DD (applicable for h > 0 when
DL = DR and KL = KR)

∂xT
(j)
L (h, y) + SLT

(j)
L (h, y) = ∂xT

(j−1)
R (h, y) + SLT

(j−1)
R (h, y), (22)

∂xT
(j)
R (0, y)− SRT

(j)
R (0, y) = ∂xT

(j)
L (0, y)− SRT

(j)
L (0, y). (23)

Here h indicates the size of the domain overlap (typically related to the grid spacing), and SL and SR are
linear operators to be specified.

The CHAMP interface conditions, given last, represent the approximations used in the CHAMP method.
A detailed description of their derivation is presented in Section 3.3. However, at a high level one can think
of these as generalized mixed conditions consisting of a Neumann portion and a Dirichlet portion, which are
combined using the linear operators SL and SR. Both conditions (24) and (25) are applied at the interface
x = 0, and an effective grid overlap is achieved because the right-hand sides are evaluated at x = ±h.

CHAMP Interface Conditions. CHAMP coupling for CHT[
θ∂x + hLβ

]
T

(j)
L (0, y) + SL

[
I + θh∂x +

h2

2
Lβ
]
T

(j)
L (0, y) =

[
∂x + SL

]
T

(j−1)
R (h, y), (24)[1

θ
∂x − hL 1

β

]
T

(j)
R (0, y) − SR

[
I − 1

θ
h∂x +

h2

2
L 1
β

]
T

(j)
R (0, y) =

[
∂x − SR

]
T

(j)
L (−h, y), (25)

where
L γ

def
= γ ∂xx + (γ − 1) ∂yy. (26)

Here, h is a domain overlap size (typically the grid spacing), and SL and SR are linear operators to be
specified.

For all three interface conditions, the iteration is updated in a Gauss-Seidel-like procedure with T
(j)
L

solved first as a function of T
(j−1)
R , and the result of that computation then used to define T

(j)
R

5. All

three iteration schemes require a starting guess for T
(0)
R . The choice of starting guess is important, both to

reduce the number of iterations, but also to ensure second-order order accuracy when only a fixed number
of iterations are used; this is addressed in Section 4. Furthermore note that since all three schemes use a
small local stencil in applying the interface conditions, the cost to perform a single iteration is roughly the
same for the three approaches and is dominated by the solution to the heat equations in the domain interior.
The partitioned time-stepping scheme for the model problem (with any of the three interface conditions) is
represented by the pseudo-code in Algorithm 1.

We note that the analyses of the various interface conditions are performed at the space-continuous level
with an overlap of h. The value for h can be any positive value but it is natural to take h to be the grid
spacing in the direction normal to the interface; this is what is done in the numerical computations presented
later.

5Note that although we use a Gauss-Seidel-like procedure in this work, this is by no means required. In particular,
one might consider an “additive” procedure with potential advantages for parallel implementation. See also [20]
regarding parallel Schwarz methods.
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Algorithm 1 Partitioned conjugate heat transfer solver.

1: Heat-equation solver(Ω, tfinal)
2: t = 0, n = 0;
3: T 0

m(x, 0) = T IC
m (x), m = L,R; . Initial conditions

4: while t < tfinal do
5: Fm(x) = 2

Dm∆tT
n
m − 1

2Dm∆tT
n−1
m , m = L,R; . Assign RHS

6: T
(0)
R = Extrapolate(Tn

R, T
n−1
R , . . .); . Initial guess

7: for j = 1, · · · , Nsi do . Sub-time-step iterations

8: Solve for T
(j)
L given T

(j−1)
R :

9: 1
2
3
Dl∆t

T
(j)
L −∆T

(j)
L = FL, for x ∈ ΩL;

10: BL(T
(j)
L ) = BLR(T

(j−1)
R ), for x ∈ I; . Use (20), (22), or (24)

11: T
(j)
L (x)→ 0, for x→ −∞;

12: Solve for T
(j)
R given T

(j)
L :

13: 1
2
3
DR∆t

T
(j)
R −∆T

(j)
R = FR, for x ∈ ΩR;

14: BR(T
(j)
R ) = BRL(T

(j)
L ), for x ∈ I; . Use (21), (23), or (25)

15: T
(j)
R (x)→ 0 for x→ +∞;

16: error = maxI

{∣∣∣[T (j)
m

]
I

∣∣∣, ∣∣∣[K∂nT (j)
m

]
I

∣∣∣}; . Error in iteration

17: If error < tol then break;
18: end for
19: Tn+1

m = T
(j)
m , m = L,R; . Solution at new time

20: t = t+ ∆t, n = n+ 1;
21: end while

3.1. Analysis of the Dirichlet-Neumann iteration
We begin with a brief derivation the well-known properties of the DN iteration that consists of the inner

“for j” loop of Algorithm 1 together with the interface conditions (20)–(21). The equations to be solved
in each domain define a linear constant-coefficient initial-boundary-value problem, discrete in the time-like
iteration count j and continuous in space. The general solution is the sum of a homogeneous solution and a
particular solution. The convergence characteristics of the iteration, however, only depend on the solution
to the homogeneous problem, which we now analyze. Representing the solution using a Fourier series in y
yields

Tm(x, y) =

∞∑
k=−∞

T̂m(x, k)e−iky, (27)

where k is the wave number in the y-direction (i.e. along the interface). The super-imposed hat symbol is
used throughout the paper to denote the Fourier representation of a variable. Substitution of (27) into the
homogeneous equations leads to equations for each Fourier coefficient,

(ηm + k2 − ∂xx) T̂ (j)
m = 0, (28)

KL ∂xT̂ (j)
L (0, k) = KR ∂xT̂ (j−1)

R (0, k), (29)

T̂
(j)
R (0, k) = T̂

(j)
L (0, k), (30)

T̂
(j)
L (−∞, k) = 0, T̂

(j)
R (∞, k) = 0, (31)

where

ηm =
1

2
3Dm∆t

.

8



The solution of (28) subject to the far-field conditions (31) can be expressed as

T̂
(j)
L (x, k) = Cje

√
ηL+k2 x, (32)

T̂
(j)
R (x, k) = Bje

−
√
ηR+k2 x, (33)

where Cj and Bj are constants. Substituting (32) and (33) into the interface conditions (29) and (30) gives

CjKL
√
ηL + k2 = −Bj−1KR

√
ηR + k2, (34)

Bj = Cj . (35)

Therefore, Cj = AjDN C0 where ADN is given in the following theorem.

Theorem 1 (DN iteration). The amplification factor for the DN iteration is

ADN (θ, β, λd, κ) = −1

θ

zR
zL
. (36)

where (repeating definitions for λd, θ and β as an aid to the reader)

zL
def
=

√
3

2

1

λd
+ κ2, zR

def
=

√
3

2

β

λd
+ κ2, κ

def
= kh, λd =

∆tDL
h2

, θ =
KL
KR

, β =
DL
DR

. (37)

Note that the grid parameter h can be eliminated from (36), but we include it here via the definitions of λd
and κ for consistency with later results.

The DN iteration converges if |ADN | < 1, and necessary conditions for convergence can be obtained by

investigating the limits min
(

3
2

1
λd
, 3

2
β
λd

)
� κ2 and max

(
3
2

1
λd
, 3

2
β
λd

)
� κ2. It is found that

|ADN | ≈


1
θ

√
β = KR

KL

√
DL
DR if min

(
3
2

1
λd
, 3

2
β
λd

)
� κ2,

1
θ = KR

KL if max
(

3
2

1
λd
, 3

2
β
λd

)
� κ2.

(38)

In the first case of (38), corresponding to slow variations in y, when the wave number is small, the convergence
rate depends on the ratio of the thermal conductivities multiplied by the square root of the ratio of the
thermal diffusivities. On the other hand, for the second case of large wave numbers, corresponding to highly
oscillatory solutions, the convergence rate depends only on the ratio of the thermal conductivities. Note that
switching from the DN to the ND scheme corresponds to replacing θ by 1/θ and β by 1/β in equation (38)
and often either the DN or the ND scheme will be stable. However, it is apparent from the limits in (38)
that for some cases such as when 1

θ < 1 and 1
θ

√
β > 1, it may be that neither the DN nor the ND scheme

will be stable. Finally, note that ADN ≈ 1 when either 1
θ ≈ 1 or 1

θ

√
β ≈ 1. Thus, for these two cases the

DN algorithm either converges slowly or not at all.

3.2. Analysis of the optimized Schwarz iteration

As noted above in Section 3.1, one difficult case for the DN iteration is the case of a single material
when there is no jump in diffusivities or conductivities across the interface. This is identical to the question
of domain decomposition for which there is a well-established literature. In this case, the DN coupling is
problematic essentially because the interface conditions are artificially partitioned in a non-symmetric manner
(i.e. temperature comes from one side and the heat flux from the other), while the governing equations
treat the interface in a symmetric fashion. A more symmetric set of interface conditions can be obtained
by taking linear combinations of the two jump conditions in (7) and (8) to yield a pair of Robin-type
conditions. An obvious question in this approach is the choice of weighting, which is addressed, for example,
in Gander [8]. In addition, it is advantageous to include a domain overlap which is applicable to the
case of domain decomposition because the jump conditions hold everywhere in the domain, but which is
not obviously applicable to the case of two materials with different thermal properties. Nonetheless it is

9



useful to understand the optimized Schwarz (OS) iteration for the case of domain decomposition because it
ultimately sheds light on the discussion of the CHAMP method to come.

To perform the analysis we again seek solutions to the homogeneous system implied by Algorithm 3 as a
superposition of Fourier modes. This leads to a system similar to (28)–(31), but with the interface conditions
replaced by (

∂x + ŜL

)
T̂

(j)
L (h, k) =

(
∂x + ŜL

)
T̂

(j−1)
R (h, k), (39)(

∂x − ŜR

)
T̂

(j)
R (0, k) =

(
∂x − ŜR

)
T̂

(j)
L (0, k). (40)

It is important to discuss the effect of the domain overlap h in terms of the iteration behavior so that we can
compare against the performance of the CHAMP method to be presented below. Substituting the general
solution of (28) with physical boundary conditions (31) into the interface conditions (39) and (40) yields

Cj

(
ŜL +

√
η + k2

)
e
√
η+k2h = Bj−1

(
ŜL −

√
η + k2

)
e−
√
η+k2h, (41)

Bj

(
ŜR +

√
η + k2

)
= Cj

(
ŜR −

√
η + k2

)
, (42)

and whence

Theorem 2 (OS iteration). The amplification factor for the OS iteration is

AOS(λd, κ) =
S̃L − z
S̃L + z

· S̃R − z
S̃R + z

e−2z, (43)

where

z =

√
3

2

1

λd
+ κ2, S̃L

def
= ŜLh, S̃R

def
= ŜRh.

The exponential term in (43) is the amplification factor of the classical Schwarz iteration, and is in-
troduced from the domain overlap. The two factors preceding the exponential term have a tremendous
influence on the performance of the method, and they can be used to minimize |AOS | for a given problem

through the choice of the operators S̃m, m = L or R, which are functions of κ. For example, choosing
S̃L = S̃R = z causes the amplification factor to vanish identically, i.e. AOS = 0. The resulting algorithm
would converge in a single iteration independent of the initial guess, the choice of domain overlap h, and
the problem parameter η. This is an optimal result, but in practice one would need the inverse transform
of the transmission conditions involving S̃m from the Fourier domain into the physical domain in order to
obtain the transmission operators Sm. Because the optimal choice involves square roots, Sm would be global
operators in y and therefore difficult to wield in practice. On the other hand, if the symbols Ŝm are chosen to
be polynomials in k, then the operators Sm consist of only local derivative operators in y. This is the choice
made in Gander [8], which leads to a class of optimized Schwarz methods. In this approach S̃m are chosen
to minimize |AOS | for all possible wavenumbers κ with given λd. The first-order transmission conditions

take S̃m = pm, where pL and pR are constants, and are simple to analyze and implement. The second-order
transmission conditions take S̃m = pm + qmκ

2, where qL and qR are also constants, and are found to give
smaller amplification factors but at the cost of introducing the derivative operator ∂yy into Sm and therefore
introducing complexity into the solver. Finally, note that without domain overlap, the exponential term in
the amplification factor does not appear in (43), and the iteration does not damp the high wave-number
components of the solution very well as shown in Figure 5.

3.3. Development and analysis of the CHAMP iteration

In this section, we extend the optimized Schwarz method discussed in the previous section to a general
conjugate-heat-transfer problem where the thermal conductivities and diffusivities jump across the interface.
In the case of differing materials, the jump conditions (7) and (8) are applicable only on the interface, which
complicates the process of including domain overlap into the scheme. As seen in (43), domain overlap has
the important effect of introducing exponential decay for high wavenumber components of the solution. To
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I DR,KRDL,KL

TR(0, y) TR(h, y) TR(∞, y)

TL(−h, y) TL(0, y)TL(−∞, y)

Figure 3: When solving for the left domain TL, the interface approximation for the CHAMP scheme uses information
at an overlapping distance h into the right domain, TR(h, y), together with jump and compatibility conditions at I.
The situation is reversed when solving for the right domain TR. Incorporating overlapping information improves the
stability properties of the scheme.

achieve this effect while enforcing the jump conditions at the interface, we rely on a Taylor series expansion
normal to the interface. As presented in Algorithm 3, the new scheme uses a linear combination of generalized
Dirichlet and Neumann conditions, and selects the form of the weighting similar to the choice for the OS
iteration. The new approach is named the CHAMP (Conjugate Heat transfer Advanced Multi-domain
Partitioned) scheme. Broadly speaking, the CHAMP iteration will be shown to converge quickly for any
choice of material parameters. In fact the convergence rate is shown to be faster than the DN method even
in the limits where the DN scheme performs well, and faster than a typical OS method in the case of domain
decomposition.

Although the formulation and analysis is performed with continuous spatial operators, the effect of a
computational grid with grid spacing h is introduced by developing the scheme in terms of temperature
values TL(−h, y) and TR(h, y) that are located a distance h on either side of the interface x = 0, as shown in
Figure 3. To derive the Dirichlet-like portion of the CHAMP condition consider the Taylor series expansion
in the x-direction of TR(h, y) about the point x = 0:

TR(h, y) = TR(0, y) + h∂xTR(0, y) +
h2

2
∂xxTR(0, y) +O(h3). (44)

Note, that as usual when deriving higher-order accurate schemes, we formally assume that the solutions are
as smooth as required for the Taylor series expansions to be valid. Since the current work is concerned with
second-order-accurate schemes, the O(h3) term in (44) will be dropped6. This approximation will be justified
later in Section 4.2 and is related to the fact that this value will be used in approximations to derivatives of
the temperature. The interface conditions are now used to replace terms involving TR and its derivatives on
the right-hand side of (44) with terms involving TL and its derivatives. The first two terms can be addressed
using the primary interface conditions (7) and (8). To replace the third term involving ∂xxTR(0, y) we derive
an interface compatibility condition by first taking the time derivative of (7) and substituting into (6) to
yield [

D∆T (0, y)
]
I

= 0. (45)

Since the temperature continuity condition (7) applies for all y we also have[
∂yyT (0, y)

]
I

= 0. (46)

Using (45) and (46), equation (44) is rewritten as

Dθ,β,h [TL(0, y)]
def
= TL(0, y)+θh∂xTL(0, y) +

h2

2
Lβ TL(0, y) = TR(h, y), (47)

where Lβ is the operator (26) with β = DL
DR , and θ = KL

KR as before. The operator Dθ,β,h [TL(0, y)] in (47)
can be interpreted as a generalized Dirichlet condition for the left domain.

6For schemes with higher accuracy more terms in the expansion would need to be retained.
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A similar approach is used to derive a generalized Neumann condition for the left domain as follows.
First perform the Taylor expansion of ∂xTR(h, y) about the interface at x = 0 as

∂xTR(h, y) = ∂xTR(0, y) + h∂xxTR(0, y) +O(h2). (48)

Note that the Taylor expansion in (48) is truncated at O(h2) as opposed to O(h3) as in (44) because here we
are dealing directly with the derivative which we require to be second-order accurate (this approximation is
justified later in Section 4.2). Again replacing terms involving TR and its derivative on the right-hand-side
with terms involving TL and its derivatives by applying the interface conditions (7) and (8) along with
compatibility conditions (45) and (46) leads to

Nθ,β,h [TL(0, y)]
def
= θ∂xTL(0, y) + hLβ TL(0, y) = ∂xTR(h, y). (49)

The operator Nθ,β,h [TL(0, y)] defines a generalized Neumann condition for the left domain.
Following the approach used in optimized-Schwarz domain-decomposition schemes, (47) and (49) are

combined using the weighting operator SL to give the new CHAMP interface condition

(Nθ,β,h + SLDθ,β,h) [TL(0, y)] = (∂x + SL)TR(h, y), (50)

to be applied to the left domain. Analogously, the generalized Robin condition(
N 1

θ ,
1
β ,−h

− SRD 1
θ ,

1
β ,−h

)
[TR(0, y)] = (∂x − SR)TL(−h, y), (51)

is the CHAMP interface condition to be applied to the right domain.
The CHAMP conditions (50)–(51) can be used in Algorithm 1. The convergence of the inner iteration

loop can be analyzed as before by first Fourier transforming the equation in the y-direction then seeking
solutions to the transformed heat equation (28) together with the interface conditions(

N̂θ,β,h + ŜLD̂θ,β,h

) [
T̂

(j)
L (0, k)

]
=
(
∂x + ŜL

)
T̂

(j−1)
R (h, k), (52)(

N̂ 1
θ ,

1
β ,−h

− ŜRD̂ 1
θ ,

1
β ,−h

) [
T̂

(j)
R (0, k)

]
=
(
∂x − ŜR

)
T̂

(j)
L (−h, k), (53)

where the Fourier transformed CHAMP operators are

D̂θ,β,h

[
T̂L(0, k)

]
def
= T̂L(0, k) + θh∂xT̂L(0, k) +

h2

2
L̂β T̂L(0, k), (54)

N̂θ,β,h

[
T̂L(0, k)

]
def
= θ∂xT̂L(0, k) + h L̂β T̂L(0, k), (55)

with
L̂β

def
= β∂xx − (β − 1)k2.

Substituting the general solutions of the heat equations (28) and physical boundary conditions (31) into the
CHAMP interface conditions (52)–(53) gives(

θzL + z2
R + S̃L

(
1 + θzL +

1

2
z2
R

))
Cj =

(
−zR + S̃L

)
e−zRBj−1, (56)(

1

θ
zR + z2

L + S̃R

(
1 +

1

θ
zR +

1

2
z2
L

))
Bj =

(
−zL + S̃R

)
e−zLCj , (57)

where

zL =

√
3

2

1

λd
+ κ2, zR =

√
3

2

β

λd
+ κ2,

and S̃L = h ŜL and S̃R = h ŜR as before. This leads to the following
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Theorem 3 (CHAMP iteration). The amplification factor for the CHAMP iteration is

ACI(θ, β, λd, κ) =

(
−zR + S̃L

)
e−zR

θzL + z2
R + S̃L

(
1 + θzL + 1

2z
2
R

) ·
(
−zL + S̃R

)
e−zL

1
θ zR + z2

L + S̃R
(
1 + 1

θ zR + 1
2z

2
L

) , (58)

where

λd =
∆tDL
h2

, κ = kh, θ =
KL
KR

, β =
DL
DR

.

Note that ACI is a function of the four dimensionless parameters κ, λd, θ and β.

The exponential terms e−zR and e−zL in the numerator of ACI indicate that the CHAMP conditions
benefit from an effective overlap of width h, similar to OS schemes for DD problems with explicit overlap,
even though there is no overlap in the original formulation of the CHT interface conditions. Also similar
to OS, the factors multiplying the exponential terms have a significant influence on the performance of the
iteration. The amplification factor vanishes identically for the choice S̃m = zm, m = L,R, and thus the
scheme would converge in one iteration independent of the initial guess or problem parameters. As in OS,
however, this choice would yield a non-local operator in physical space after applying the inverse Fourier
transform. Seeking only local operators in physical space is akin to seeking S̃m as polynomials in κ, and to
simplify the analysis and implementation we consider S̃L = pL and S̃R = pR, where pL and pR are positive
constants.

Prior to discussing the determination of specific values for pL and pR, let begin by comparing properties of
the CHAMP iteration to those of the OS and DN iterations. First consider the case of domain decomposition
when DL = DR, KL = KR and θ = 1, which implies zL = zR = z. Let us also assume that the same
parameters S̃m, m = L,R, are used for both the OS and CHAMP schemes and that S̃L ≥ 0 and S̃R ≥ 0. In
this case (assuming an overlap width of h for the DN scheme)

|ADN | = e−2z, (59)

|AOS | =

∣∣∣∣∣ S̃L − zS̃L + z

∣∣∣∣∣
∣∣∣∣∣ S̃R − zS̃R + z

∣∣∣∣∣ e−2z, (60)

|ACI | =

∣∣∣∣∣ S̃L − z
S̃L + z + z2 + S̃L

(
z + 1

2z
2
) ∣∣∣∣∣
∣∣∣∣∣ S̃R − z
S̃R + z + z2 + S̃R

(
z + 1

2z
2
) ∣∣∣∣∣ e−2z. (61)

Since z > 0 and S̃m ≥ 0 it follows that

|ACI | < |AOS | < |ADN |.

Thus the convergence rate of the CHAMP iteration is faster than that for OS, and both converge faster than
DN.

Secondly, consider the usual CHT situation where material parameters jump across the interface. We
argue that there always exist some scalar values for the weights S̃L = pL and S̃R = pR so that the CHAMP
iteration converges. To see this, it is useful to separately consider the iteration amplification factors for the
CHAMP scheme with weightings chosen to yield only the Dirichlet or Neumann portions in (50) and (51).
We refer to these amplification factors as ACH,D and ACH,N respectively, and they can be expressed as

ACI,D =
e−(zR+zL)(

1 + θzL + 1
2z

2
R

) (
1 + 1

θ zR + 1
2z

2
L

) , (62)

ACI,N =
e−(zR+zL)

1 + θ
z2L
zR

+ 1
θ

z2R
zL

+ zLzR
. (63)

Note that e−zm < 1, since zm, m = L,R, are real and positive, and furthermore the denominators of ACI,D
and ACI,N are always greater than one. Therefore, it follows that |ACI,D| < 1 and |ACI,N | < 1. Thus,
there exists a set of weights, corresponding to either the pure Dirichlet or the pure Neumann portions of (50)
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CHAMP iteration: β = 1, λd = 106

θ pL pR A∗CI
1.00e-02 9.17e-02 1.18e-03 7.66e-03
4.64e-02 7.43e-02 1.76e-03 3.20e-02
2.15e-01 5.90e-02 1.81e-03 1.33e-01
1.00e+00 2.17e-03 3.31e-02 3.48e-01
4.64e+00 1.83e-03 5.89e-02 1.33e-01
2.15e+01 1.76e-03 7.43e-02 3.20e-02
1.00e+02 1.18e-03 9.17e-02 7.66e-03

CHAMP iteration: β = 1, θ = 1

λd pL pR A∗CI
2.00e+07 6.57e-04 1.94e-02 4.80e-01
1.00e+07 8.43e-04 2.09e-02 4.40e-01
5.00e+06 1.11e-03 2.40e-02 4.10e-01
2.50e+06 1.45e-03 2.77e-02 3.83e-01
1.25e+06 2.00e-03 3.20e-02 3.59e-01
6.25e+05 2.50e-03 3.59e-02 3.32e-01
3.12e+05 3.46e-03 4.22e-02 3.00e-01

CHAMP iteration: θ = 1, λd = 106

β pL pR A∗CI
1.00e-02 2.88e-02 1.68e-03 3.75e-01
4.64e-02 3.00e-02 1.75e-03 3.67e-01
2.15e-01 3.12e-02 1.89e-03 3.61e-01
1.00e+00 2.17e-03 3.31e-02 3.48e-01
4.64e+00 3.60e-03 4.32e-02 2.96e-01
2.15e+01 6.64e-03 5.76e-02 2.40e-01
1.00e+02 1.28e-02 8.16e-02 1.77e-01

Table 1: Optimized amplification factor A∗CI for the CHAMP iterations and corresponding values of pm for various
choices of the dimensionless parameters θ = KL

KR
, β = DL

DR
, and λd = ∆tDL

h2 .

and (51), such that the CHAMP iteration converges for any set of material parameters, grid spacings and
time step. In practice, however, more rapid convergence can be achieved through more careful selection of
pm. As an aside, the optimal choice of pm for rapid convergence is especially important in the context of the
CHAMP time-stepping scheme so that as few iterations per time-step as possible are required.

We now return the problem of determining optimal values for the coefficients pL and pR; these values
will depend on the problem parameters θ, β and λd. In general, we seek values for pL and pR to minimize
the magnitude of the amplification factor |ACI | for all κ. This can be expressed mathematically as finding
the solution to the minimax problem

A∗CI
def
= min

pL>0, pR>0

[
max

κmin≤κ≤κmax

|ACI |
]
, (64)

[pL, pR]
def
= argmin

pL>0, pR>0

[
max

κmin≤κ≤κmax

|ACI |
]
. (65)

The parameter κ = kh is restricted to the range [κmin, κmax] = [−π, π]. This restricts the Fourier modes
k under consideration to the range [−π/h, π/h], thus approximating the largest value for k that would
occur in a fully discrete approximation. Since the highest frequencies are strongly damped by the CHAMP
iteration, they do not strongly affect the choice of pm and thus this cutoff is a reasonable approximation
in practice. Furthermore, since ACI is only function of κ2, the search space may be further restricted to
κ ∈ [0, π]. In our implementation the solution to the minimax problem in (65) is first found using the
DIRECT algorithm for global optimization [21]. Those results are then used as initial conditions for the
local BOBYQA algorithm [22], where the objective function is maxκmin<κ<κmax

|ACI | subject to bounds
pm ∈ [zm(k = 0), zm(k = π)] for m = L,R where zm was defined in (37). This optimization procedure is
implemented with the software package NLopt [23]. Results obtained using this procedure are shown in
Tables 1 which give numerical values for the optimized amplification factor and associated pm for a range
of relevant values for the dimensionless parameters θ, β, and λd.

Figure 4 shows the behavior of the optimized iteration amplification factor for the CHAMP scheme,
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Figure 4: Magnitude of the optimized amplification factor, A∗CI , for CHAMP iterations, for various choices of
parameters θ = KL

KR
, β = DL

DR
, and λd = ∆tDL

h2 . Left: Optimized ACI as a function of θ for λd = 106 and β = 1.
Middle: Optimized ACI as a function of λd for β = 1 and θ = 1. Right: Optimized ACI as a function of β for
λd = 106 and θ = 1.

A∗CI , as the parameters λd, θ and β vary. The left plot shows A∗CI for varying θ between 10−2 and 102

with λd = 106 and β = 1 held fixed. We observe that the largest value of A∗CI occurs at θ = 1 where the
conductivities of the two domains are equal. Also, the rate of convergence improves (A∗CI decreases) as the
ratio of the thermal conductivities becomes large or small, similar to the behavior for the DN iteration. The
plot in the middle illustrates the behavior of A∗CI as λd varies with the other two parameters held fixed.
Here we see that A∗CI increases as λd increases. We note that increasing λd corresponds to increasing ∆t
(at fixed h) or decreasing h (at fixed ∆t); the converge rate thus degrades for a larger time-step or a smaller
overlap width h. The right plots shows the behavior of A∗CI as β varies. Since β appears in the formula for
ACI in (58) only as a scaling of λd through the definition of zR, the effect of varying β is similar to that of
varying λd. An increase in β, for example, amounts to a decrease in λd for the right domain, and we see
that A∗CI decreases as expected.

|A|

0

0.4

1

0 π
κ

Figure 5: A comparison of the convergence rates of different schemes for the iterative solution of the domain decom-
position problem (i.e. equal material properties). The magnitude of the amplification factor A for iterations, as a
function of the normalized wave-number κ, for the DN method, the OS method (with domain overlap 0, h and 2h),
and the CHAMP method with λd = ∆tDL

h2 = 106, β = DL
DR

= 1 and θ = KL
KR

= 1. The OS and CHAMP results use
their respective optimal values of pm. The overall convergence rate is determined by the worst case amplification
factor over all κ.

Amplification factors for the DN, OS and CHAMP schemes as functions of κ are shown in Figure 5 for a
domain decomposition problem to illustrate and compare the behaviors of the three schemes. The results are
shown for the difficult case λd = 106, β = 1 and θ = 1, and pL and pR are calculated from the optimization
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problem in (65) for the CHAMP method, and the corresponding optimization problem for the case of OS.
These results confirm that in the case of uniform materials the CHAMP iteration converges rapidly while
the traditional DN iteration converges very slowly (ignoring mode κ = 0). In addition, the convergence rate
for the CHAMP method (and OS with overlap) is slower at smaller wave numbers where the exponential
decay is not significant, while it is very fast at higher wave numbers where the exponential term leads to
very small values of the amplification factors for both OS with overlap and CHAMP. Finally note that the
CHAMP iteration is almost as good as the OS method with an overlap of width 2h. This behavior can be
partially explained by examining the forms (60) and (61) for AOS and ACI . For λd = 106, zL = zR ≈ κ,

while S̃L = εL and S̃R = εR for some small εL � 1 and εR � 1 (the values of AOS and ACI are zero when

z = S̃L or z = S̃R and this occurs very near κ = 0 as seen in the figure.). In the region where κ is small,
but not too small, i.e. for εm < κ < 1, the behaviors of the amplification factors are approximately given by

|AOS(h)| ≈ (εL − κ)(εR − κ)

(εL + κ)(εR + κ)
e−2κ ≈ e−2κ,

|AOS(2h)| ≈ e−4κ,

|ACI | ≈
κ2

κ2(1 + κ)2
e−2κ ≈ 1

(1 + κ)2
e−2κ ≈ 1

(eκ)2
e−2κ ≈ e−4κ.

We see that the extra terms in the denominator of (61) contribute to the decay of |ACI | as κ increases and
this decay is roughly similar to |AOS(2h)| which has twice the overlap.

One final note with respect to the behavior of the DN, OS and CHAMP iterations concerns the original
choice of time integration scheme. Changing the time integrator will indeed affect the iteration convergence
rates, but those effects are rather minor and easily analyzed. For example suppose the BDF integrator is
replaced by Crank-Nicolson (CN), another commonly-used time-integration method for this problem. The
iteration problem in this case replaces (16) with

1
1
2Dm∆t

T (j)
m −∆T (j)

m = F̃m, for x ∈ Ωm, (66)

where

F̃m
def
=

1
1
2Dm∆t

Tnm + ∆Tnm.

The amplification factors for the case of CN are therefore similar to those for BDF with a slight modifi-
cation to the definitions of zL and zR for DN and CHAMP, and z for OS, where λd is replaced by 4λd/3.

4. Analysis of the CHAMP time-stepping scheme

We now perform an analysis of the partitioned CHT solver given in Algorithm 1. The algorithm includes
the general operators, BL, BLR, BR and BRL, in the partitioned interface conditions (see steps 10 and 14)
which we take to be the CHAMP interface conditions in (24) and (25). These interface conditions are
applied iteratively in the “for j” loop of the partitioned CHT solver for each time step. Having considered
the convergence behavior of the CHAMP iteration in isolation in the previous section, our goal now is to
examine the stability and accuracy of the partitioned solver with the embedded CHAMP interface conditions.
There are two basic issues that require some attention. The first concerns choosing the appropriate number
of sub-time-step iterations, Nsi. If, on the one hand, the number of sub-time-step iterations given by Nsi is
taken to be large so that the CHAMP iteration converges (to some small tolerance), then the time-stepping
scheme effectively becomes a monolithic scheme for (12)–(15), and the stability and accuracy of scheme no
longer depend on the CHAMP iteration so long as it converges. For a partitioned scheme, on the other hand,
the objective is to take Nsi as small as possible, and perhaps even equal to one so that no sub-time-step
iterations are taken and the CHAMP interface conditions are used once for each subdomain. For this case,
the stability and accuracy of the scheme with a small and fixed number of sub-iterations becomes important.
Furthermore, when Nsi is taken to be small, a second important consideration is the initial guess for the
sub-iterations. A typical strategy, and the one employed here, is to extrapolate the necessary values near
the interface from the corresponding values at previous time steps. A sufficiently high-order extrapolation
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formula is needed to maintain accuracy of the time-stepping scheme, second-order accuracy for the present
scheme, but this approach can lead to instabilities as discussed in Peet and Fischer [10]. Additional sub-
time-step iterations can be used to suppress the instabilities, but the goal is to keep Nsi small for efficiency
of the partitioned solver.

4.1. Stability of the un-iterated CHAMP time-stepping scheme

Let us consider the behavior of the un-iterated CHAMP time-stepping scheme with Nsi = 1, and with
an appropriate extrapolation formula for second-order accuracy. The scheme is given by

T̃n+1
R = 3TnR − 3Tn−1

R + Tn−2
R , for x ∈ ΩR, (67)

Tn+1
m − 4

3
Tnm +

1

3
Tn−1
m =

2∆t

3
Dm∆Tn+1

m , for x ∈ Ωm, (68)

(Nθ,β,h + SLDθ,β,h)
[
Tn+1
L (0, y)

]
= (∂x + SL) T̃n+1

R (h, y), for y ∈ [0, 2π] (69)(
N 1

θ ,
1
β ,−h

− SRD 1
θ ,

1
β ,−h

) [
Tn+1
R (0, y)

]
= (∂x − SR)Tn+1

L (−h, y), for y ∈ [0, 2π] (70)

Tn+1
L (−∞, y) = 0, Tn+1

R (∞, y) = 0, for y ∈ [0, 2π] (71)

along with 2π periodicity in y.
The time-step begins with an application of a third-order extrapolation in time given in (67) for the

domain on the right. This extrapolation provides the necessary values for the right-hand side of the CHAMP
interface condition in (69), which can then be used with the far-field boundary conditions in (71) to solve
the Helmholtz equation in (68) with m = L. The solution in the left domain can now be used to compute
the right-hand side of the CHAMP interface conditions in (70), and the solution in the right domain can
by found by solving (68) with m = R. This procedure completes a time step of the un-iterated CHAMP
scheme.

To analyze the time-stepping scheme given by (67)–(71), we again perform a Fourier expansion in y to
give

̂̃
T
n+1

R = 3T̂nR − 3T̂n−1
R + T̂n−2

R , (72)

T̂n+1
m − 4

3
T̂nm +

1

3
T̂n−1
m =

2∆t

3
Dm

(
∂xxT̂

n+1
m − k2T̂n+1

m

)
, (73)(

N̂θ,β,h + ŜLD̂θ,β,h

) [
T̂n+1
L (0, k)

]
=
(
∂x + ŜL

) ̂̃
T
n+1

R (h, k), (74)(
N̂ 1

θ ,
1
β ,−h

− ŜRD̂ 1
θ ,

1
β ,−h

) [
T̂n+1
R (0, k)

]
=
(
∂x − ŜR

)
T̂n+1
L (−h, k), (75)

T̂n+1
L (−∞, k) = 0, T̂n+1

R (∞, k) = 0. (76)

These differential-difference equations can be solved by seeking solutions in the form of normal modes

T̂nL = AneζLx, T̂nR = Ane−ζRx,

where A is the amplification factor of the time-stepping scheme. The scheme is stable in the sense of
Godunov-Ryabenkii provided there are no nontrivial solutions to the homogeneous equations (72)–(76) with
|A| > 1. Substitution of the normal-mode ansatz into (73) results in two possible roots for both ζL and ζR
given by

ζm = ±

√
1

Dm∆t

3A2 − 4A+ 1

2A2
+ k2, m = L or R. (77)

The fact that a scheme based on (73) solved in a single domain with periodic boundary conditions in x
is stable is encompassed in the following lemma.

Lemma 1. Consider ζm and A satisfying (77). If ζm is pure imaginary, then |A| ≤ 1. Furthermore |A| = 1
only when ζm = 0 and k = 0, in which case A = 1 is a simple root.
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Proof. Let ζm be pure imaginary, ζm = iα, α ∈ R. Equation (77) can be written as a polynomial of degree
two in A,

(3− c)A2 − 4A+ 1 = 0,

with
c = −2(α2 + k2)Dm∆t.

It follows that c ≤ 0 and c = 0 iff α = k = 0, in which case A = 1 or A = 1/3. Otherwise if c < 0, then we
want to show |A| < 1. From the theory of von Neumann polynomials, Chapter 4.3 in [24], |A| < 1 if and
only if

4 < |4− c| and 1 < |3− c| . (78)

These two conditions do hold when c < 0 and thus |A| < 1.

Lemma 1 shows that all solutions to (72)–(76) corresponding to pure imaginary values of ζm are stable.
Let us therefore reduce the analysis to the situation when ζm has a nonzero real part. For this case one
solution ζm from (77) has a positive real part and the other has a negative real part. To satisfy the far-field
boundary conditions in (76), only one of the two roots in (77) is retained for each domain, leading to the
solutions of the form

T̂nL = cLA
neζLx, T̂nR = cRA

ne−ζRx, (79)

where the principal branch of the square root in (77) has been chosen so that the sign of the real part of
ζm is positive. Substituting the solutions in (79) back into the CHAMP interface conditions (74)–(75), and
using the extrapolation formula (72) yields

cLA
3

(
θζL + h

(
βζ2
L − (β − 1) k2

)
+ ŜL

(
1 + θhζL +

h2

2

(
βζ2
L − (β − 1) k2

)))
= cR

(
3A2 − 3A+ 1

) (
−ζR + ŜL

)
e−ζRh,

cR

(
1

θ
ζR + h

(
1

β
ζ2
R −

(
1

β
− 1

)
k2

)
+ ŜR

(
1 +

1

θ
hζR +

h2

2

(
1

β
ζ2
R −

(
1

β
− 1

)
k2

)))
= cL

(
−ζL + ŜR

)
e−ζLh.

The two equations above can be written as a homogeneous system of equations for cL and cR. Nontrivial
solutions of the system exist only if the determinant of the coefficient matrix is zero. This leads to:

Theorem 4 (CHAMP time-stepping stability condition). The un-iterated CHAMP time-stepping algorithm
given by (67)–(71) is stable in the sense of Godunov-Ryabenkii provided there are no roots A with |A| > 1 to

G(A) ≡ A3

3A2 − 3A+ 1
−

(
−ζ̃R + S̃L

)
e−ζ̃R

θζ̃L + ζ̃2
R + S̃L

(
1 + θζ̃L + 1

2 ζ̃
2
R

) ·
(
−ζ̃L + S̃R

)
e−ζ̃L

1
θ ζ̃R + ζ̃2

L + S̃R

(
1 + 1

θ ζ̃R + 1
2 ζ̃

2
L

) = 0, (80)

where

ζ̃L = hζL =

√
1

λd

3A2 − 4A+ 1

2A2
+ κ2, ζ̃R = hζR =

√
β

λd

3A2 − 4A+ 1

2A2
+ κ2, (81)

and S̃L = h ŜL and S̃R = h ŜR. The non-dimensional quantities θ, β, λd and κ are given in Theorem 3.

Theorem 4 provides a condition for which the time-stepping algorithm is stable. The problem becomes
specifying the operators S̃m such that this condition is met, i.e. that (80) has no solutions with |A| > 1. As

before, we consider the simple forms S̃L = pL and S̃R = pR with pm > 0, and in principle we only need to
find values for pL and pR such that all roots of G(A) have |A| < 1. In practice, however, we choose to find
pL and pR that minimize the largest value of |A|, where A is a solution of (80). The motivation is to obtain
values for pL and pR that make the stability of the time-stepping algorithm more robust to perturbations
(e.g. when applied later to problems on curvilinear grids where the theory only applies approximately).
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The problem of finding pL and pR that minimize the largest value of |A| is difficult since G(A) is a
transcendental function of A. There appears to be no closed-form solution of (80) for A as a function of θ, β,
κ and λd. In addition, root-finding methods cannot be guaranteed to find all solutions to (80), and therefore
unstable roots could potentially be missed in the optimization procedure. Indeed, even the number roots
of G(A) is unknown.

To address these difficulties, we consider instead the minimization problem for a nearby function whose
roots can be found unambiguously. Using quadratic Taylor polynomial approximations for the exponential
terms in G(A) assuming |ζ̃m| � 17, and setting S̃m = pm gives

G̃(A) ≡ A3

3A2 − 3A+ 1
−

(
−ζ̃R + pL

)(
1− ζ̃R + 1

2 ζ̃
2
R

)
θζ̃L + ζ̃2

R + pL

(
1 + θζ̃L + 1

2 ζ̃
2
R

) ·
(
−ζ̃L + pR

)(
1− ζ̃L + 1

2 ζ̃
2
L

)
1
θ ζ̃R + ζ̃2

L + pR

(
1 + 1

θ ζ̃R + 1
2 ζ̃

2
L

) = 0. (82)

The function G̃(A) can be readily manipulated into a polynomial in the variables A, ζ̃L and ζ̃R. This

polynomial can be combined with polynomials obtained by squaring the definitions for ζ̃L and ζ̃R in (81)
to obtain a polynomial system. The roots of this polynomial system can be found for given values of λd,
θ and β using classical techniques such as determining the eigenvalues of a companion matrix. Note that
the validity of these roots must be checked in the original equations since spurious roots may have been
introduced when the expressions for ζ̃L and ζ̃R in (81) were squared.

Let ACT (θ, β, λd, κ) denote the valid roots to the polynomial system determined from (81) and (82). As
for the case of the CHAMP iteration in isolation, we wish to find values for pL and pR to minimize |ACT |
over a range of κ. Let A∗CT denote this optimal value, i.e.

A∗CT
def
= min

pL>0, pR>0

[
max

κmin≤κ≤κmax

|ACT |
]
,

[pL, pR]
def
= argmin

pL>0, pR>0

[
max

κmin≤κ≤κmax

|ACT |
]
. (83)

The objective function for the optimization solver DIRECT, whose minimum we seek, is thus the maximum
of |ACT | for κ ∈ [κmin, κmax]. To speed up the optimization process, the following modification is adopted
in our code. Instead of solving for the eigenvalues of the corresponding companion matrix of the polynomial
system for each κ, this matrix problem is only solved for κ = h (which corresponds to the smoothest non-
constant mode) and then homotopy continuation is applied to determine the roots for the other values of κ.
Since the number of roots are different between the cases with κ = 0 and κ 6= 0, we treat κ = 0 separately
in the homotopy continuation solver. Both cases have been implemented using PHCPack [25].

Once the values of pm are found using the optimization procedure, the stability of the CHAMP time-
stepping scheme can be confirmed by applying the argument principle to the complex function G(1/A) for
the unit circle |A| = 1. Let

P =
1

2πi

∫ 2π

0

G′(e−iφ)

G(e−iφ)
dφ. (84)

We note that there are no branch cuts of G(1/A) for |A| < 1, and that there is only one simple pole of
G(1/A) at the origin. Therefore P = N − 1, where N is the number roots of G(A) with |A| > 1 [26]. The
calculation of P provides an independent check of the stability of the CHAMP time-stepping algorithm for
given values of pm. If P = −1, then we conclude that there no unstable roots of G(A) and thus the algorithm
is stable. If this check indicates that unstable roots exist for the values of pm, then more sub-iterations can
be taken. Normally each additional sub-iteration increases the stable range of parameters (e.g. range of λd)
quite dramatically and thus zero or one iteration will likely suffice for almost all problems of interest.

7The assumption, |ζ̃m| � 1, is a valid assumption when λd � 1 (typically true when time-stepping with an implicit

solver such as BDF), β = O(1) and |A| = O(1). If |A| is close to zero, then |ζ̃m| may not be small, but this case is
not important since it does not correspond to instability.
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CHAMP time-stepping: β = 1, λd = 106

θ pL pR A∗CT
1.00e-02 4.13e-02 6.19e-03 2.73e-01
4.64e-02 5.36e-02 3.77e-03 3.97e-01
2.15e-01 3.65e-02 4.86e-03 6.88e-01
1.00e+00 6.27e-03 2.69e-02 8.86e-01
4.64e+00 4.86e-03 3.65e-02 6.88e-01
2.15e+01 3.77e-03 5.36e-02 3.97e-01
1.00e+02 6.19e-03 4.13e-02 2.73e-01

CHAMP time-stepping: β = 1, θ = 1

λd pL pR A∗CT
2.00e+07 2.58e-03 1.24e-02 1.00e+00
1.00e+07 3.35e-03 1.62e-02 9.68e-01
5.00e+06 4.49e-03 1.66e-02 9.56e-01
2.50e+06 2.10e-02 4.94e-03 9.25e-01
1.25e+06 5.98e-03 2.58e-02 8.99e-01
6.25e+05 3.28e-02 6.73e-03 8.58e-01
3.12e+05 3.58e-02 8.78e-03 8.32e-01

CHAMP time-stepping: θ = 1, λd = 106

β pL pR A∗CT
1.00e-02 2.11e-02 4.81e-03 9.26e-01
4.64e-02 2.19e-02 5.01e-03 9.20e-01
2.15e-01 2.38e-02 5.42e-03 9.08e-01
1.00e+00 6.27e-03 2.69e-02 8.86e-01
4.64e+00 8.66e-03 3.38e-02 8.42e-01
2.15e+01 1.30e-02 4.39e-02 7.86e-01
1.00e+02 6.43e-02 1.37e-02 7.18e-01

Table 2: Optimized amplification factor, A∗CT , for the uniterated CHAMP time-stepping scheme and corresponding
values for pm for various choices of the dimensionless parameters θ = KL/KR, β = DL/DR, and λd = (∆tDL)/h2.
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Figure 6: Magnitude of the uniterated CHAMP time-stepping amplification factor A∗CT (of possible unstable modes)
with approximately optimal pL and pR. Left: A∗CT as a function of θ for λd = 106 and β = 1. Middle: A∗CT as a
function of λd for β = 1 and θ = 1. Right: A∗CT as a function of β for λd = 106 and θ = 1. Note that θ = KL/Kr,
β = Dl/DR and λd = (∆tDL)/h2.

Values for A∗CT and the corresponding values for the parameters pL and pR obtained using the opti-
mization procedure are given in Table 2 for a number of relevant combinations of parameters θ, β and λd.
In addition, Figure 6 shows the behavior of A∗CT for a number of different parameter combinations8. The
left plot shows the time-stepping amplification factor A∗CT with θ varying between 10−2 and 102 and with
λd = 106 and β = 1. As in the iteration case (see Figure 4), the amplification factor peaks at θ = 1, and
then decreases as the ratio of the thermal conductivities becomes large or small. The middle plot shows
the behavior of A∗CT as λd varies with θ and β held fixed. As before, we observe that A∗CT increases as λd

8Values of A∗CT in Table 2 and Figure 6 correspond to the roots of G̃(A) for which ζm has a non-zero real part.
These are the roots of interest following the result in Lemma 1. We note, however, that there may be roots of G̃(A)
for which ζm is pure imaginary and for which |A| > A∗CT , but these roots do not correspond to modes that can
become unstable, and thus they are omitted.
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∆y ∆t
un-iterated CHAMP with EXT2 un-iterated CHAMP with EXT3

Domain 0 Domain 1 Domain 0 Domain 1
eT,0 ratio eT,1 ratio eT,0 ratio eT,1 ratio

1/160 1/160 2.02e-3 - 1.81e-3 - 5.52e-4 - 5.53e-4 -
1/320 1/320 7.13e-4 2.83 6.58e-4 2.75 1.28e-4 4.31 1.28e-4 4.31
1/640 1/640 2.65e-4 2.69 2.51e-4 2.62 3.14e-5 4.08 3.14e-5 4.08
1/1280 1/1280 1.03e-4 2.57 9.79e-5 2.56 7.77e-6 4.04 7.77e-6 4.04

rate 1.4 1.4 2.0 2.0

Table 3: Adjacent squares with θ = 1, β = 1: maximum errors and estimated convergence rates with the un-iterated
CHAMP scheme with second/third order time extrapolation. The material parameters are D1 = 1, D2 = 1 , K1 = 1
and K2 = 1, giving θ = 1 and β = 1.

increases. We note that A∗CT = 1 for log10 λd ≈ 7.3 which is the stability limit of the un-iterated CHAMP
scheme (for θ = β = 1). Sub-time-step iterations of the CHAMP interface conditions are required for sta-
bility of the time-stepping scheme if λd is larger than this limiting value. Finally, the plot on the right of
Figure 6 shows the behavior of A∗CT as β varies. Here we see a similar behavior to that of the CHAMP
iteration case with A∗CT decreasing as β increases.

We remark that the stability of the CHAMP time-stepping scheme can also be considered for the case
of Crank-Nicolson (CN) time integration. The analysis proceeds as before and the amplification factor still

satisfies (80), but with the definitions of ζ̃m changes to

ζ̃L =

√
2

λd

A− 1

A+ 1
+ κ2, ζ̃R =

√
2β

λd

A− 1

A+ 1
+ κ2.

This change, however, creates a difficulty for the optimization problem since when A ≈ −1, the values of
|ζ̃m| are not small regardless of the size of λd and λd/β. This difference between CN and BDF2 is tied to
the fact that BDF2 has stiff decay while CN does not. An implication of this for the optimization approach
we have adopted is that the Taylor polynomial approximation used to obtain G̃(A) is no longer appropriate.
In addition, we have observed that for the CN case there are solutions to G(A) = 0 with A ≈ −1 which
correspond to nearly undamped spurious oscillations in time. This mode is often found to be the first to
become unstable as the problem becomes more difficult, for example as λd becomes large. However, we recall
the CHAMP iteration converges rapidly, and thus the time-stepping instability for CN could be suppressed
by increasing the number of sub-time-step iterations.

4.2. Numerical confirmation of the accuracy of the un-iterated CHAMP time-stepping scheme

In Appendix A the accuracy of the un-iterated CHAMP time-stepping scheme is analyzed for a one-
dimensional CHT problem. The analysis shows that, in terms of accuracy, the CHAMP scheme is a second-
order accurate approximation to the related scheme that imposes the original interface jump conditions on
the tempertaaure and heat-flux. L2-norm energy arguments then establish the accuracy of the solution. The
analysis indicates why the initial guess at each time-step requires third-order accurate extrapolation in time
in equation (67), and also why the Taylor expansion leading to the CHAMP Neumann operator, Nθ,β,h, is
truncated at O(h2) in equation (48), and why the CHAMP Dirichlet operator, Dθ,β,h, is truncated at O(h3)
in equation (44). The reason has to do with the fact that the parameter SL generally scales as h−p for
p ∈ [.5, 1] and thus SL increases in size as h decreases. The details of the analysis are given in Appendix A.
Here we present some numerical results to confirm the results of the theory, in particular that third-order
extrapolation in time is generally required.

Table 3 presents grid convergence results from the un-iterated CHAMP scheme using either a second-
order (EXT2) or third-order (EXT3) extrapolation in time as the initial guess for the interface conditions
at each time-step. The grid setup consists of two adjacent squares as described in Section 6.1. The exact
solution is defined through a manufactured solution, also described in Section 6.1, using the trigonometric
function in (101) with fx = 0, gx = 0, fy = 3.1, gy = 0, ft = 1.1 and gt = 0. The results in Table 3
for the maximum-norm errors provide strong evidence that the un-iterated CHAMP scheme with EXT3 is
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∆y ∆t
CHAMP with EXT2 and 10 iterations CHAMP with EXT3 and 10 iterations

Domain 0 Domain 1 Domain 0 Domain 1
eT,0 ratio eT,1 ratio eT,0 ratio eT,1 ratio

1/160 1/160 5.38e-4 - 5.38e-4 - 5.38e-4 - 5.38e-4 -
1/320 1/320 1.26e-4 4.27 1.26e-4 4.27 1.26e-4 4.27 1.26e-4 4.27
1/640 1/640 3.10e-5 4.06 3.10e-5 4.06 3.10e-5 4.06 3.10e-5 4.06
1/1280 1/1280 7.73e-6 4.01 7.73e-6 4.01 7.73e-6 4.01 7.73e-6 4.01

rate 2.0 2.0 2.0 2.0

Table 4: Adjacent squares with θ = 1, β = 1: maximum errors and estimated convergence rates with the CHAMP
scheme with 10 iterations per time-step and second/third order time extrapolation. The material parameters are
D1 = 1, D2 = 1 , K1 = 1 and K2 = 1, giving θ = 1 and β = 1.

second-order accurate while EXT2 is not. Additional numerical experiments in Section 6 provide further
confirmation that the un-iterated scheme with EXT3 is second-order accurate. For completeness, Table 4
gives the corresponding results when 10 sub-iterations are used at each time-step. In this case both EXT2
and EXT3 result in second-order accurate convergence since the order of the initial extrapolation does not
matter if the equations have been iterated to a small enough tolerance.

5. Solution approach and discretization on composite grids

Having developed and analyzed the CHAMP iteration and time-stepping scheme for the model problem
in (6)–(11), we return to the more general two-dimensional CHT problem defined in (1)–(5) and depicted
in Figure 1. The discretization of the CHT problem uses composite overset grids as discussed, for example,
in [3, 18, 27], and illustrated in the right plot of Figure 1. The CHT problem is defined for a domain Ω which
is the union of a set of non-overlapping subdomains {Ωm}. The heat equation in (1) for each subdomain
Ωm with interface conditions in (3) and (4), and possibly with boundary conditions in (2), is discretized on
a composite grid. The composite grid for Ωm consists of a collection of component grids Gg, g ∈ [g1, g2],
that cover Ωm and overlap where they meet9. Each component grid is logically rectangular and defined by a
smooth mapping, x = Gg(r), from computational space r = (r1, r2), e.g. the unit-square in two dimensions,
to physical space x = (x, y) = (x1, x2). Interpolation formulas are used to communicate the solution at the
overlap between component grids (see [18]). Figure 7 illustrates a simple composite grid consisting of an
annular grid in green, a Cartesian grid in blue, and interpolation points for each component grid marked with
solid circles. We note that the composite grid for each subdomain conforms to the interfaces and boundaries
so that the interface conditions and boundary conditions can be simply approximated in a smooth and
accurate manner. Finally, we let G = {Gg}, g ∈ [1,N ], denote the multi-domain composite grid that consist
of the full set of all component grids covering the entire problem domain Ω.

5.1. Discretization of the governing equations on overlapping grids

In preparation for a discretization using overlapping grids, the governing equations and the boundary and
interface conditions for a subdomain Ωm are transformed from physical space coordinates to computational
space coordinates for a given mapping x = Gg(r). This transformation is accomplished using the chain rule,
e.g.

∂Tm
∂xi

=
∂rj
∂xi

∂Tm
∂rj

, (85)

where the summation convection is assumed for repeated indices. The metrics, ∂rj/∂xi, i, j = 1 or 2, for
the mapping x = Gg(r) depend on the component grid number g, but this dependency is suppressed when

9The overlap for a composite grid is introduced for flexibility in handling complex, and possibly moving, geometries
and should not be confused with the domain overlap as in OS.
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Figure 7: Left: an overlapping grid consisting of two structured curvilinear component grids, x = G1(r) and x =
G2(r). Middle and right: component grids for the square and annular grids in the unit square parameter space r.
Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to
apply boundary conditions.

possible for notational convenience. Since the material properties are constant on each component grid, the
heat equation transforms to

∂tTm =
Km
ρmCm

∆Tm + f(x(r), t), (86)

where

∆ = Aij
∂2

∂ri∂rj
+ ci

∂

∂ri
, Aij

def
=

∂ri
∂xk

∂rj
∂xk

, ci
def
=

∂

∂xk

∂ri
∂xk

. (87)

Alternatively, the Laplacian operator can be approximated in a discrete self-adjoint form, if desired, see [28].
Note that the unit normal along a coordinate curve ri(x, y) = constant is

ni =
∇xri
‖∇xri‖

, ∇xri =

[
∂ri
∂x
∂ri
∂y

]
, (88)

so that the normal derivative is given by

ni · ∇xTm =
1

‖∇xri‖
∂ri
∂xk

∂rj
∂xk

∂Tm
∂rj

def
= Bij

∂Tm
∂rj

. (89)

For an external boundary along a curve r1(x, y) = constant, for example, the boundary condition in (2)
becomes

a Tm + bn1 · ∇xTm = gm(r2, t), r1 = constant, (90)

where the normal derivative of Tm is defined in (88) and (89). We note that if the coordinates in the
computational domain are orthogonal, i.e. if n1 · n2 = 0, then the matrix Bij in (89) becomes diagonal and
the formula for the normal derivative simplifies.

The interface conditions in (3) and (4) involve the continuity of temperature and heat flux at the
interface separating two subdomains. Let m = L denote the “left” subdomain and m = R denote the
“right” subdomain, and suppose the interface along a common boundary of the subdomains is given by
r1(x, y) = constant. For this configuration, the interface conditions become

TL = TR, KL
(
n1 · ∇x

)∣∣
gL
TL = KR

(
n1 · ∇x

)∣∣
gR
TR, r1 = constant. (91)

Here, we note that the normal derivative operators involve metrics of a mapping, x = Gg(r), for component
grids g = gL or gR in each subdomain.

The mapped equations in (86) are discretized on a uniform grid with mesh spacings ∆r1 and ∆r2 in
the computational domain. Spatial derivatives of Tm are approximated using second-order accurate central
differences. The metrics ∂ri/∂xj are assumed known from the mapping while derivatives of the metrics, such
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as those found in ci in (87) are determined with finite difference. Ghost points are introduced to facilitate
a second-order accurate approximation of the boundary conditions in (90). The interface conditions in (91)
are manipulated into the CHAMP conditions, as we describe next, and then discretized using second-order
accurate approximations.

5.2. The CHAMP conditions on a curvilinear grid

In this section the form of the CHAMP Dirichlet (47) and Neumann (49) interface operators for curvilin-
ear grids are derived. To simplify the presentation, we assume that the coordinates of the mapped domains
on each side of the interface are orthogonal. Further, we consider an interface given by r1(x, y) = 0 for
each domain. With these assumptions, continuity of heat flux at the interface from the mapped interface
conditions in (91) becomes

KLBL11

∂TL
∂r1

= KRBR11

∂TR
∂r1

, for r1 = 0, (92)

where BL11 and BR11 are defined in (89) for grids gL and gR, respectively. The compatibility interface condition[
D∆T

]
I = 0, derived from the continuity of temperature in (91) and the mapped equations in (86), implies

DL∆TL = DR
(
AR11

∂2TR
∂r2

1

+AR22

∂2TR
∂r2

2

+ cR1
∂TR
∂r1

+ cR2
∂TR
∂r2

)
TR, for r1 = 0, (93)

where the ∆ operator has been written out explicitly for the right domain in terms of ARij and cRi defined
in (87) for grid gR. As in the Cartesian case discussed previously in Section 3.3, the CHAMP conditions for
the left domain use a Taylor expansion of the solution on the right domain at an overlap distance of hR,

TR(hR, r2) = TR(0, r2) + hR
∂TR
∂r1

(0, r2) +
h2
R

2

∂2TR
∂r2

1

(0, r2) +O(h3
R). (94)

Equations (92) and (93) are used to replace the “normal derivatives” ∂r1TR and ∂2
r1TR in (94) in terms

of “tangential” derivatives in the r2-direction and normal derivatives of TL. After dropping O(h3
R) terms

and higher in (94) we arrive at the CHAMP Dirichlet-like condition for the left domain about the interface
r1 = 0,

DL [TL(0, r2)]
def
= TL(0, r2) + θ̃ hR ∂r1TL(0, r2) +

h2
R

2
LLTL(0, r2) = TR(hR, r2), (95)

where

LL
def
=

1

AR11

[
β∆ −AR22∂

2
r2 − θ̃ c

R
1 ∂r1 − cR2 ∂r2

]
, θ̃

def
=
KL
KR

BL11

BR11

= θ
BL11

BR11

, β =
DL
DR

.

The CHAMP Dirichlet-like condition in (95) for a curvilinear grid corresponds to (47) for a Cartesian grid.
Similarly, a Taylor expansion for ∂r1TR(hR, r2) about r1 = 0 and the heat flux condition in (92) leads to the
CHAMP generalized-Neumann condition,

NL [TL(0, r2)]
def
= θ̃ ∂r1T (0, r2) + hR LLTL(0, r2) = ∂r1TR(hR, r2), (96)

which is the curvilinear version of the CHAMP Neumann-like condition in (49). Summing the Dirichlet and
Neumann conditions in (95) and (96), respectively, with weighting SL, gives the extension of the CHAMP
interface condition for the left domain in (50) for a curvilinear grid. The extension of the CHAMP interface
condition for the right domain in (51) can be derived following an analogous procedure.

For the case of curvilinear grids, the determination of optimal weights is complicated by the fact that
the mapped heat equation in (86) and the CHAMP conditions in (95) and (96) have variable coefficients and
terms involving lower-order derivatives. These complications are avoided by considering a local analysis with
frozen coefficients and with lower-order terms dropped. Values for SL = pL and SR = pR are determined
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following a similar procedure as that described in Section 4 for a polynomial system involving G̃(A) defined

in (82), but with the polynomial equations for ζ̃L and ζ̃R replaced by

(
ζ̃L
)2

=
1

λ̃d

3A2 − 4A+ 1

2A2
+ κ̃2,

(
ζ̃R
)2

= γ

(
β

λ̃d

3A2 − 4A+ 1

2A2
+ κ̃2

)
, (97)

where

λ̃d
def
= AL11

DL∆t

h2
L

, κ̃
def
= khL

√
AL22

AL11

, γ
def
=

h2
R

h2
L

AL11

AR11

. (98)

This is nearly identical to the system used for optimization in Section 4 but with modified definitions for non-
dimensional quantities λd and κ, and the inclusion of γ which represents the ratio of the normal grid spacings
between the two domains. Owing to the similarities with the Cartesian grid case, the same optimization
procedure is used. We note that, in general, the optimal values of pL and pR may vary along a given interface
due to changes in the grid spacing, but in the examples considered in this paper, constant values of pL and
pR are used at each interface as there is little variation due to the grid.

6. Numerical experiments

We now present computational results which demonstrate the convergence and accuracy properties of
the CHAMP time-stepping scheme. First, the convergence rate of the CHAMP iteration is verified in
Section 6.1 for two geometric configurations, one involving two adjacent squares and the other involving
two concentric annular regions, each with various combinations of thermal properties. These two geometries
are used in Section 6.2 to demonstrate second-order spatial accuracy of the CHAMP time-stepping scheme
for the approximation of steady state solutions where the exact solutions are known. In Sections 6.3.1,
the annulus-annulus geometry is used to verify second-order spatial and temporal accuracy for the un-
iterated CHAMP scheme using the method of manufactured solutions for a specified solution consisting of
trigonometric functions. This test case is also used to explore the time-stepping stability constraints for the
un-iterated scheme, and we demonstrate that for a wide range of problems no sub-time-step iterations are
needed. For some severe cases involving very large times with respect to the chosen grid size in space, we
show that the un-iterated scheme can be unstable (as predicted by the analysis in Section 4.1). We also show
results for the CHAMP scheme with one sub-time-step iteration and observe, as expected, that stability is
regained and second-order accuracy is achieved.

Two final examples are provided that illustrate the behavior of the CHAMP scheme for problems with
more complex geometric configurations involving multiple subdomains. In Section 6.3.2, numerical solutions
are computed for a domain consisting of two disks in a square. As before, an exact solution is constructed
for this problem using the method of manufactured solutions so that errors in the numerical solution can
be assessed. In Section 6.4, an hexagonal-shaped fuel assembly with heated fuel pins is simulated and a
self-convergence grid-refinement study is performed to confirm second-order accuracy. For both cases, we
are able to show that the un-iterated scheme is stable and second-order accurate for problems involving more
complicated domains.

Note that all test cases are solved using the CHAMP time-stepping scheme with a second-order BDF
method in time, second-order accurate centered finite-differences in space, and the CHAMP conditions
applied at the interface between the subdomains. In the convergence tests for the CHAMP iteration, the
weights pm are determined by solving the optimization problem described in Section 3.3.

For cases involving the un-iterated CHAMP time-stepping scheme, values for pm are determined by
approximate solutions to the optimization problem as discussed in Section 4.1 with appropriate modifications
to parameters as indicated in (98). In either case, it is important to note that globally optimal values for
the weights pm are not found, in general, for three reasons. Firstly, the model problem analysis only
approximately applies to the curvlinear case. Secondly, for curvilinear grids the optimal coefficients may
vary along a given interface due to changes in the grid spacing, but in this manuscript constant values are
used. Thirdly, only suitable local minima (i.e. resulting in a stable scheme) to the minimax problem based
on (80) are found. Despite these approximations, the numerical results in this section demonstrate good
agreement with the results of the model problem analyses.
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6.1. Verification of the convergence rate for the CHAMP iteration
We begin by presenting computational results to confirm the analysis of the convergence rate for the

CHAMP iteration discussed in Section 3.3. As a first case, we consider a domain consisting of two adjacent
squares, Ω = Ω1 ∪ Ω2, where Ω1 = [xa, xb] × [ya, yI ] and Ω2 = [xa, xb] × [yI , yb]. Here, the bottom (left)
domain is denoted by L = 1 and the top (right) domain by R = 2. Dirichlet boundary conditions with
T1 = Ta = 0 and T2 = Tb = 0 are applied at y = ya and y = yb, respectively, and periodic boundary
conditions are applied at x = xa and x = xb. A computational grid G with component grids G1 and G2 for
the subdomains Ω1 and Ω2, respectively, are defined using Cartesian grids with spacings ∆x and ∆y in the
x and y-directions respectively. (No mappings are needed for this simple geometry.) For this problem, we
take xa = 0, xb = 1, ya = −1, yI = 0 and yb = 1, and grid spacings ∆x = ∆y = 10−3. The computational
setup is illustrated on the left in Figure 8 and we note that the grid has been coarsened for presentation
purposes.

The convergence rate of the CHAMP iteration is determined by taking one time-step of the partitioned
CHT solver with ∆t = 1, and using a sufficient number of sub-time-step iterations until convergence of the
iteration is achieved. The initial state of the temperatures T1 and T2 for the subdomains Ω1 and Ω2 are
taken from the function

T (x, y, t) =

(
10∑
k=0

cos (πk(x− gx)) cos (πk(y − gy))

)
cos (ft(t− gt)), (99)

evaluated at t = 0 and for x = (x, y) in each subdomain. Here, we use gx = 0.5, gy = 0, ft = 0.1, gt = 0.
A third-order extrapolation in time is used to obtain an initial guess for the CHAMP interface conditions
(see Step 6 in Algorithm 1) and this extrapolation uses temperatures obtained from (99) at t = −∆t and
t = −2∆t (see (67) with n = 0).

ya

yI

yb

xa T1 = Ta

T2 = Tb

xb

Ω1

Ω2
∆tD1

∆y2 = λd
K1

K2
= θ D1

D2
= β A∗CI Acomp

106 1 1 0.36 0.35

106 10 1 0.069 0.062

106 1 0.1 0.37 0.31

106 0.5 0.2 0.25 0.21

Figure 8: Left: computational domain and grid for the square-square test case. Right: A comparison of the CHAMP
iteration convergence rate for the square-square test for a variety of relevant physical and computational parameters.
Good agreement is found between the theoretical convergence rate A∗CI , and the rate estimated from computations,
Acomp.

Figure 8 presents computed convergence rates for the case D1 = K1 = 1, and for a range of values for
D2 and K2 as specified by the dimensionless parameters θ and β. The residual of the interface conditions at
the jth iteration is defined by

R(j) = max
xi∈Ih

{∣∣T (j)
1,i − T

(j)
2,i

∣∣ , ∣∣K1DnT
(j)
1,i −K2DnT

(j)
2,i

∣∣},
where Dn is a second-order accurate central divided-difference operator in the normal direction and the
maximum is taken over all grid points, xi = (xi, yj), on the discrete interface denoted by Ih. The convergence
rate, Acomp, is computed from the decrease in the residual of the interface equations over N iterations using

Acomp =

(
R(N)

R(1)

)1/(N−1)

,
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where N is determined from the convergence condition∣∣R(N) −R(N−1)
∣∣ < 10−10. (100)

The table on the right of Figure 8 compares the computed convergence rate and the theoretical value A∗CI
obtained for the model problem discussed in Section 3.3. We observe that the computed convergence rates
for the CHAMP iteration are slightly smaller than, but very close to, the theoretical value. We note also
that the initial state for the temperature given by (99) involves a range of wave numbers, including small
wave numbers for which the convergence rate of the iteration is slowest (see Figure 5). This is done to give
a good estimate of a “worst case” value for Acomp.

As a second test of the CHAMP iteration, we consider a CHT problem involving the two concentric
annular subdomains shown in Figure 9. Each subdomain is discretized using curvilinear grids, and we perform
a similar set of calculations as was done for the previous square-square geometry. The inner subdomain Ω1

has radial bounds [ra, rI ] and the outer subdomain Ω2 has radial bounds [rI , rb], where ra = 0.5, rI = 1 and
rb = 1.5. A computational grid G is defined for Ω with computational space (unit square) grid spacings of ∆r1

and ∆r2 corresponding to the radial and circumferential directions, respectively, where ∆r1 = ∆r2 = 2×10−3.
The initial state of the temperature in each subdomain is determined from the function given in (99), and
one time-step is taken as before, but with ∆t = 0.25.

Ω1 Ω2

Champ iteration convergence rates

AL11
D1∆t
∆r21

= λ̃d
K1

K2

BL11
BR11

= θ̃ D1

D2
= β A∗CI Acomp

106 1 1 0.36 0.26

106 10 1 0.069 0.051

106 1 0.1 0.37 0.32

106 0.5 0.2 0.25 0.23

Figure 9: Left: grid for the annulus-annulus test case (coarsened). Right: Comparison of the CHAMP iteration
convergence rate for a variety of relevant physical and computational parameters. Reasonably good agreement is
shown between the theoretical rate A∗CI (derived for the rectangular-domain model problem) and the computed rate
Acomp.

The table in Figure 9 compares the computed convergence rate, Acomp, of the CHAMP iteration for the
annulus-annulus problem to the theoretical rate, A∗CI . The latter convergence rate is determined following
the extension to curvilinear grids discussed in Section 5.2. As before, we set D1 = K1 = 1 and vary D2 and K2.
The results in the table indicate that A∗CI provides a very good approximation to the computed convergence
rates. This is despite a number of simplifying assumptions used in the analysis (e.g. using infinite domains
and spatially exact operators). We note that the convergence rate at each iteration, A(j) = R(j)/R(j−1),
can vary considerably with the iteration step j, with A(j) tending to be smaller at smaller values of j before
increasing towards the reported value of Acomp. We attribute this behavior to the fact that, as seen from
Figure 5, modes with larger wave number tend to converge much faster than those with smaller wave numbers
and thus the ultimate convergence rate is dominated by the modes with lower wave number.

6.2. Verification of the spatial accuracy for two steady state problems
In this section, the spatial accuracy of the un-iterated CHAMP scheme is examined by computing steady

state solutions and comparing them to exact solutions [3]. We first consider a steady CHT problem with the
square-square geometry illustrated in Figure 8. As before, periodic boundary conditions are applied in the
x-direction, and constant temperatures T = Ta and T = Tb are specified at y = ya and y = yb, respectively.
The steady state solution is computed by time-stepping the solution from a constant initial state given by

T1(x, y, 0) = T2(x, y, 0) =
1

2
(Ta + Tb) ,
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for T1 and T2 in the two subdomains. The exact steady solution for this problem depends only on the vertical
coordinate y and is given by

T̄1(y) = Ta +
y − ya
yI − ya

(TI − Ta) , T̄2(y) = TI +
y − yI
yb − yI

(Tb − TI) ,

where the temperature at the interface is given by

TI =
K1Tb +K2Ta
K1 +K2

.

Simulations are performed using the square-square configuration defined by xa = −1, xb = 1, ya = −1,
yI = 0 and yb = 1, and with grid spacings ∆x = ∆y = 0.025. The temperatures at the boundaries are taken
to be Ta = 5 and Tb = 1, and the material parameters are D1 = 1, D2 = 0.5, K1 = 0.1 and K2 = 0.2. The
un-iterated CHAMP time-stepping scheme is run with ∆t = 1 to a final time tfinal = 100, which is sufficient
for the solution to settle to steady state with a residual of the interface conditions equal to 1.78 × 10−13

approximately. Since the approximation of the governing equations and interface conditions is second-order
accurate and since the exact solution is linear in each domain, we expect the numerical solution to be exact
to within round-off errors. We find that the maximum error in the computed solution is 1.51× 10−13, which
is in agreement with our expectation for double-precision arithmetic.

We next consider the CHT problem on the annulus-annulus geometry as illustrated in Figure 9. The
temperature at the inner boundary is taken to be T1 = Ta, while the temperature at the outer boundary is
T2 = Tb. The initial temperature in the two subdomains is given by the average value

T1(x, y, 0) = T2(x, y, 0) =
1

2
(Ta + Tb) .

The steady state solution depends only on the radial distance r and is given by

T̄1(r) = Ta +
ln (r/ra)

ln (rI/ra)
(TI − Ta) , T̄2(r) = TI +

ln (r/rI)

ln (rb/rI)
(Tb − TI) ,

where

TI =
K1 ln (rI/ra)Tb +K2 ln (rb/rI)Ta
K1 ln (rI/ra) +K2 ln (rb/rI)

.

Simulations are carried out using ra = 0.2, rI = 0.4 and rb = 0.6. The boundary temperatures are
taken as Ta = 5 and Tb = 1, and the material parameters are taken to be D1 = 1, D2 = 0.5, K1 = 0.1
and K2 = 0.2. As before, we integrate the equations to steady state at a final time tfinal = 100 using the
un-iterated CHAMP time-stepping algorithm with ∆t = 1. The plot on the left of Figure 10 shows the
exact steady state solution (solid curves) and the numerical solution (marks) for a calculation on curvilinear
grids with physical-space grid spacings hr = .0025 in the radial direction and hφ = .0052 in circumferential
direction (along r = rI). We observe excellent agreement of the two solutions. A quantitative assessment of
the error in the numerical solution at steady state can be made by computing the max-norm errors in the
solution for different grid resolutions. The table on the right of Figure 10 gives the results of a convergence
study of this numerical error in the solution. Max-norm errors in the temperature are computed for three
different grid resolutions given by hr and hφ. The values in the table show that the ratio of the errors is
approximately equal to four as the grid spacings are reduced by half indicating second-order accuracy. The
estimated convergence rate given in the table is computed using a least-squares fit to the logarithm of the
errors versus the logarithm of the grid spacings, and this estimate also confirms second-order accuracy of the
approximation. Note that temporal accuracy is not assessed in this convergence study since the numerical
error is computed at steady state.

6.3. Convergence analysis using the method of manufactured solutions

In the previous section, the spatial accuracy of the CHAMP time-stepping scheme was verified for two
steady state problems. In this section, the spatial and temporal accuracy of the CHAMP time-stepping
scheme is investigated using the method of manufactured solutions, a name coined by Roache [29], but earlier
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Annulus-annulus, θ = K1

K2
= 1

2 , β = D1

D2
= 2

hr hφ max error ratio

1.0e-02 2.1e-02 1.10e-03 -
5.0e-03 1.1e-02 2.64e-04 4.17
2.5e-03 5.2e-03 6.44e-04 4.10

rate 2.03

Figure 10: Results of a convergence study for the annulus-annulus problem using an exact steady state solution.
An estimated convergence rate is determined from the max-norm errors of the temperature computed for the entire
domain. The estimate indicates second-order accuracy.

referred to as twilight zone forcing by D. Brown [30, 31] in reference to its use in [32]. In the method of
manufactured solutions, an exact solution is constructed by adding forcing terms to the governing equations
(PDEs, initial conditions, boundary conditions, and interface conditions) so that the chosen function for the
temperature becomes the exact solution to the forced equations. For detailed information on the construction
of forcing functions for CHT problems refer to [3]. The focus here is on illustrating the behavior of the
CHAMP scheme, and for this purpose we choose two problem configurations. The first problem is defined
for a quarter-section of the previous annulus-annulus geometry, and it is used to demonstrate second-order
accuracy in space and time, as well as to illustrate the stability limitations of the un-iterated scheme for very
large time steps. For the case where the un-iterated scheme is unstable, an extended CHAMP scheme using
one sub-time-step iteration is shown to regain stability, and therefore second-order accuracy under mesh
refinement. The second test returns to the two-disks-in-a-square geometry illustrated in Figure 1. This test
is used to demonstrate second-order accuracy of the CHAMP scheme for the case when overlapping grids
are used in the discretization of the equations on the subdomains.

6.3.1. Quarter annulus-annulus geometry
Consider a quarter-section of the annulus-annulus geometry from Figure 9 with ra = 0.5, rI = 1 and

rb = 1.5, and with opening angle φ ∈ [0, π/2]10. Dirichlet boundary conditions are imposed along the sides
φ = 0 and φ = π/2, and on the inner and outer boundaries at r = ra and r = rb. For this configuration, Ω1

is the inner quarter annulus and Ω2 is the outer quarter annulus. Appropriate forcing functions are obtained
so that the exact solution is given by

Te(x, y, t) = cos(fx(x− gx)) cos(fy(y − gy)) cos(ft(t− gt)), (101)

with fx = 2, gx = 0.5, fy = 2, gy = 0, ft = 0.013 and gt = 0. The numerical solution is computed
on a sequence of grids with increasing resolution for three different combinations of thermal diffusivities
and conductivities, and max-norm errors of the temperature in each subdomain are determined at a final
time, tfinal = 40.

In the first test, we set D1 = D2 = 1 and K1 = K2 = 1 so that θ = K1

K2
= 1 and β = D1

D2
= 1. Table 5

reports max-norm errors for the un-iterated CHAMP scheme and the CHAMP scheme with one sub-time-
step iteration as a function of the physical-space grid spacings hr and hφ. In the table, Em denotes the
max-norm error in the temperature for the domain Ωm, m = 1 and 2, the grid spacing hr is listed and hφ is
chosen as hφ = 6.25π×hr. For these computations the time-step, ∆t, is chosen to scale in proportion to the

grid size, and so λ̃d = D1∆t/h2
r increases as the grid spacings decrease. The optimization used in Section 5.2,

based on the model problem analysis, indicates that the un-iterated scheme is stable for λ̃d . 107. As shown

10The quarter section is considered for convenience to speed up the computation of all the results needed to estimate
convergence rates.
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Quarter annulus-annulus: θ = K1

K2
= 1 and β = D1

D2
= 1

hr ∆t λ̃d = D1∆t
h2
r

un-iterated CHAMP CHAMP with 1 iteration
Domain Ω1 Domain Ω2 Domain Ω1 Domain Ω2

E1 ratio E2 ratio E1 ratio E2 ratio

1.6e-3 0.8 1.25e+6 2.61e-4 – 3.23e-4 – 2.34e-4 – 3.26e-4 –
8.0e-4 0.4 2.5e+6 6.11e-5 4.27 8.10e-5 3.98 5.85e-5 4.00 8.11e-5 4.02
4.0e-4 0.2 5.0e+6 1.50e-5 4.07 2.02e-5 4.01 1.46e-5 4.01 2.03e-5 4.00
2.0e-4 0.1 1.0e+7 unstable – unstable – 3.65e-6 4.00 5.07e-6 4.00

rate 2.0 2.0 2.0 2.0

Table 5: Quarter annulus-annulus with θ = 1 and β = 1: Maximum errors and estimated convergence rates for the
un-iterated CHAMP time-stepping scheme and the CHAMP scheme with one sub-time-step iteration. The inner
quarter-annulus is the domain Ω1, while the outer quarter-annulus is Ω2. See also Fig. 11 for graphs of this data.

Quarter annulus-annulus: θ = K1

K2
= 1 and β = D1

D2
= 10−2

hr ∆t λ̃d = D1∆t
h2
r

un-iterated CHAMP CHAMP with 1 iteration
Domain Ω1 Domain Ω2 Domain Ω1 Domain Ω2

E1 ratio E2 ratio E1 ratio E2 ratio

1.6e-3 0.8 1.25e+6 2.08e-4 – 3.30e-4 – 2.35e-4 – 3.27e-4 –
8.0e-4 0.4 2.5e+6 6.46e-5 3.23 8.10e-5 4.07 5.90e-5 3.98 8.15e-5 4.01
4.0e-4 0.2 5.0e+6 1.51e-5 4.27 2.02e-5 4.01 1.49e-5 3.96 2.03e-5 4.01
2.0e-4 0.1 1.0e+7 unstable – unstable – 3.66e-6 4.07 5.10e-6 3.98

rate 1.9 2.0 2.0 2.0

Table 6: Quarter annulus-annulus with θ = 1 and β = 10−2: Maximum errors and estimated convergence rates for
the un-iterated CHAMP time-stepping scheme and the CHAMP scheme with one sub-time-step iteration. The inner
quarter-annulus is the domain Ω1, while the outer quarter-annulus is Ω2. See also Fig. 11 for graphs of this data.

Quarter annulus-annulus: θ = K1

K2
= 10−2 and β = D1

D2
= 1

hr ∆t λ̃d = D1∆t
h2
r

un-iterated CHAMP CHAMP with 1 iteration
Domain Ω1 Domain Ω2 Domain Ω1 Domain Ω2

E1 ratio E2 ratio E1 ratio E2 ratio

1.6e-3 0.8 1.25e+6 2.87e-4 – 3.33e-4 – 2.79e-4 – 3.33e-4 –
8.0e-4 0.4 2.5e+6 6.96e-5 4.12 8.29e-5 4.02 6.95e-5 4.01 8.30e-5 4.01
4.0e-4 0.2 5.0e+6 1.74e-5 4.00 2.07e-5 4.00 1.74e-5 3.99 2.07e-5 4.01
2.0e-4 0.1 1.0e+7 4.34e-6 4.01 5.18e-6 4.00 4.34e-6 4.01 5.18e-6 4.00

rate 2.0 2.0 2.0 2.0

Table 7: Quarter annulus-annulus with θ = 10−2 and β = 1: Maximum errors and estimated convergence rates for
the un-iterated CHAMP time-stepping scheme and the CHAMP scheme with one sub-time-step iteration. The inner
quarter-annulus is the domain Ω1, while the outer quarter-annulus is Ω2. See also Fig. 11 for graphs of this data.

in Table 5, the un-iterated CHAMP scheme converges at close to second-order accuracy for all but the finest
grid where the scheme becomes unstable. For this finest grid, λ̃d ≈ 5×106 which is very close to the stability
limit predicted by the analysis. We observe that the CHAMP time-stepping scheme with one sub-time-step
is second-order accurate and stable for all grids tested, including the finest grid. Note that the values for ∆t
chosen in Table 5 are, for many purposes, quite large so that this convergence study is a severe test of the
un-iterated scheme. In practice, for accuracy reasons, the size of the time-step is often chosen proportional
to the grid spacing (e.g. the time-step based on the advection terms in the Navier-Stokes equations for a full
CHT problem). If ∆t ≈ hr and D1 ≈ 1, for example, then the stability limit λ̃d ≈ 107 corresponds to a grid
spacing of hr ≈ 10−7, which is a very fine grid. Thus, the un-iterated CHAMP scheme would be stable for
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most problems considered in practice.
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Figure 11: Quarter annulus-annulus: Max-norm errors of temperature along with the jump in heat flux δF,k, and
temperature, δT,k, at the interface for the Champ scheme with one-iteration at tfinal = 40 as the grid is refined: Top
left: θ = 1 and β = 1. Top right: θ = 1 and β = 0.01. Bottom: θ = 0.01 and β = 1. These plots correspond to the
data in Tables 5–7.

For the next test, the thermal diffusivities and conductivities are chosen as D1 = 1, D2 = 100 and
K1 = K2 = 1, which gives θ = 1 and β = 10−2. Forcing functions are specified so that Te(x, y, t) in (101)
is the exact solution, and a grid convergence study is performed as before. Results are reported in Table 6.
As before we observe second-order accuracy for the un-iterated CHAMP scheme and the scheme with one
sub-time-step iteration, and we note that the un-iterated scheme becomes unstable at the finest grid level in
agreement with the theoretical stability limit.

For the last test, the thermal properties are chosen as D1 = D2 = 1, K1 = 1 and K2 = 100 so that
θ = 10−2 and β = 1, and the convergence results are reported in Table 7. Here, we note second-order
accuracy for both versions of the CHAMP time-stepping scheme, and the un-iterated scheme is stable for all
grid resolutions. The theory indicates that with θ substantially different from one, as is the case here, the
un-iterated scheme is stable for larger values of the parameter λ̃d. Thus, the results given in the table are in
agreement with the theory.

The convergence graphs in Fig. 11 illustrate the behavior of the errors as a function of hr in log-log
plots. Since, when the scheme is stable, the errors in the un-iterated and one-iteration schemes are almost
identical, only results for the one-iteration scheme are presented. Note that some data is missing on the
finest grid since the scheme was unstable. As expected from values presented in the corresponding tables,
the errors are seen to converge at close to second-order.

To investigate the numerical accuracy of the interface jump conditions, equations (3), and (4), we also
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plot, in Fig. 11, the residuals in these equations, δT,k and δF,k, defined by

δT,k = max
x∈I

∣∣[T ]I∣∣ , δF,k = max
x∈I

∣∣[Kn · ∇T
]
I

∣∣ ,
where k = 0 denotes results from the un-iterated scheme, and k = 1 denotes results using one sub-iteration
per time-step. In accordance with the theory of Appendix A, the jump in temperature at the interface, δT,k,
is seen to converge at close to third-order accuracy. The jump in the heat-flux, δF,k, which is a measure of
the accuracy of the energy transfer between the domains is seen to converge at close to second-order, again
consistent with the theory.

To investigate how the results are affected by taking unoptimized values for the coefficients pm, the
optimized coefficients were scaled by a factor of 1.1, and the examples in this section were recomputed.
Results are reported in Table 8 for the most challenging (in terms of stability) of the three test cases when
D1 = 1, D2 = 100 and K1 = K2 = 1. As before, we observe second-order accuracy for the CHAMP

Quarter annulus-annulus: θ = K1

K2
= 1 and β = D1

D2
= 10−2

hr ∆t λ̃d = D1∆t
h2
r

un-iterated CHAMP CHAMP with 1 iteration
Domain Ω1 Domain Ω2 Domain Ω1 Domain Ω2

E1 ratio E2 ratio E1 ratio E2 ratio

1.6e-3 0.8 1.25e+6 2.63e-4 – 3.24e-4 – 2.36e-4 – 3.27e-4 –
8.0e-4 0.4 2.5e+6 unstable – unstable – 5.91e-5 4.00 8.15e-5 4.01
4.0e-4 0.2 5.0e+6 unstable – unstable – 1.49e-5 3.97 2.04e-5 4.00
2.0e-4 0.1 1.0e+7 unstable – unstable – 3.69e-6 4.04 5.09e-6 4.01

rate – – 2.0 2.0

Table 8: Non-optimal weights for the Quarter annulus-annulus with θ = 1 and β = 10−2: Maximum errors and
estimated convergence rates for the un-iterated CHAMP time-stepping scheme and the CHAMP scheme with one
sub-time-step iteration. The inner quarter-annulus is the domain Ω1, while the outer quarter-annulus is Ω2. These
results are computed using non-optimal weights (obtained by artificially scaling the optimized weights by a factor of
1.1) in the CHAMP interface conditions. Compare these results to those in Table 6.

scheme with one sub-time-step iteration for all the mesh spacings considered. Also, the errors in these
tests are essentially the same as the previous ones. We note that the un-iterated scheme with non-optimal
weights becomes unstable at two additional mesh spacings compared to the case when using the optimized
coefficients. This is, however, quite a severe test of the un-iterated scheme, since the time steps ∆t chosen in
Table 8 are very large, corresponding to very large values of the parameter λ̃d. For example, λ̃d = 1.25×106

for the coarse grid case that did still converge. If we instead were to choose ∆t ≈ hr, as is more usual in
practice, then the stability limit λ̃d ≈ 106 would correspond to a grid spacing of hr ≈ 10−6, which is a very
fine grid.

For the test with D1 = D2 = 1, K1 = 1 and K2 = 1, it is also observed (although no table is given)
that the un-iterated scheme with non-optimal weights becomes unstable at two additional mesh spacings,
while the CHAMP scheme with one sub-time-step iteration is stable in all cases. For the last test with
D1 = D2 = 1, K1 = 1 and K2 = 100, both the un-iterated and one-iteration CHAMP schemes remain stable
for all the test cases; this last test is easier, in accordance with the theory, since θ is substantially different
from one. Note that when the scheme is stable it is observed that the errors with non-optimal weights are
nearly the same as the errors computed with the optimized parameters.

6.3.2. Two-disks-in-a-square geometry
To verify second-order accuracy of the CHAMP time-stepping scheme for a problem using a more general

overlapping grid, we consider the geometry shown in Figure 1 consisting of two disks embedded in a square.
For this geometry, domain Ω1 represents the square with the two disks removed, Ω2 is the disk at the bottom
left, and Ω3 is the disk at the top right. Domain Ω1 is bounded by the square [0, 2] × [0, 2] and is covered
by a Cartesian grid with two overlapping annular grids that represent the two circular cut-outs regions (see
the right plot in Figure 1). The disk Ω2 is centered at (x, y) = (0.65, 0.65) and has a radius equal to 0.35.
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Two disks in a square: K1
K2

= 10, D1
D2

= 1, K1
K3

= 1, D1
D3

= 10.

h
(j)
s ∆t(j)

Domain Ω1 Domain Ω2 Domain Ω3

E(j)
1 ratio E(j)

2 ratio E(j)
3 ratio

1/40 1/40 6.89e-3 – 6.00e-3 – 6.55e-3 –

1/80 1/80 8.02e-4 8.59 1.21e-3 4.96 1.47e-3 4.45

1/160 1/160 2.97e-4 2.70 3.83e-4 3.16 5.17e-4 2.84

1/320 1/320 9.40e-5 3.16 8.79e-5 4.36 1.34e-4 3.86

1/640 1/640 2.36e-5 3.98 1.71e-5 5.13 3.04e-5 4.41

rate 1.95 2.07 1.89

Table 9: Two disks in a square: Maximum errors and estimated convergence rates at tfinal = 1 for the problem
configuration shown in Figure 1. Domain Ω2 is the lower left disk, Ω3 the upper right disk, and Ω1 is the square with
the two disks removed.

This domain is covered by a composite grid consisting of a Cartesian grid covering the central portion of the
disk and an overlapping interface-fitted annular grid near the interface with the domain Ω1. The disk Ω3 is
centered at (x, y) = (1.35, 1.35) and has a radius equal to 0.35. This domain has a similar composite grid

configuration to that of Ω2. All annular grids have a fixed radial width equal to 0.04375. Let G(j)
tds denote the

multi-domain composite grid, with resolution index j, consisting of all the component grids for all domains.
The number of grid points in each coordinate direction for a grid with resolution index j is chosen so that

the grid spacing is approximately h
(j)
s = 1/(40j). The grid shown in Figure 1 is a coarse version of the grid

used in the calculations of this section, and the annular grids in the figure have a wider radial width for
illustrative purposes.

Forcing functions are applied so that the exact manufactured solution is Te(x, y, t) given in (101). The
initial conditions and the Dirichlet boundary conditions on the perimeter of the square are evaluated from
the exact solution. The material coefficients for the three domains are taken as

D1 = 10, K1 = 1, D2 = 10, K2 = 0.1, D3 = 1, K3 = 1.

In this problem there are two different material interfaces, one for each disk. The weighting coefficients pm in
the CHAMP conditions are chosen for each interface independently based on the optimization procedure for
the CHAMP time-stepping algorithm described in Section 4.1 and extended to curvilinear grids in Section 5.2.
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Figure 12: Two disks in a square: Left: max-norm errors in the temperatures E(j)
m on domain Ωm at tfinal = 1 for a

grid with mesh spacing h
(j)
s as the grid is refined. The reference line with slope equal to two indicates second-order

accuracy. Right: contours of the error in the temperature at tfinal = 1 for the composite grid G(3)
tds.

Solutions are computed to tfinal = 1, and a convergence study is carried out for a sequence of grids with
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increasing resolution given by G(j)
tds, j = 1, 2, 4, 8, 16. The maximum errors, E(j)

m , for domain Ωm with grid
resolution index j are listed in Table 9. The ratio of successive errors and least-squares estimated convergence
rates for each domain are reported as well and indicate second-order accuracy in both space and time. The

left plot of Figure 12 illustrates the behavior of the errors as a function of h
(j)
s in a log-log plot, and the slope

of the curves agree with the reference line for second-order accuracy. The contour plot of the error in the

temperature at tfinal calculated using grid G(4)
tds is shown in the right plot of Figure 12. The error is seen to

be smooth in each of the three subdomains, which is a good indication that the solution is well represented
on the composite grid. At the interface between subdomains, the error in temperature is small, but not zero
as it would be for a scheme with the traditional DN coupling, for example. For the CHAMP scheme, the
results here confirm that temperature continuity at the interface is satisfied at the level of the truncation
error.

6.4. Self-convergence study for a hexagonal fuel assembly with heat sources
As a final example we consider the solution to a conjugate heat transfer problem that arises when a fluid

coolant flows pass an array of hot fuel pins in an hexagonal shaped fuel assembly. This problem is based
on the three-dimensional problem considered in Henshaw and Chand [3], but simplified here to two space
dimensions and by solving for the temperature alone in the fluid region. The computational domain and a
coarse version of the composite grid are plotted in Figure 13. The problem is divided into three different
domains which we now describe in turn. Domain Ω1 consists of the seven cylindrical fuel pins, each of
radius 0.5. The fuel pins are located so that the minimum separation distance between the pins and the duct
is 0.3. The composite grid for the region interior to each fuel pin is defined using an annular interface-fitted
grid together with an inner Cartesian grid (as was done for the disks in Section 6.3.2). The outer solid
hexagonal-shaped duct defines domain Ω2. Its computational domain is defined by an extruded smooth-
polygon curve with a fixed normal distance of 0.15. The smooth-polygon is defined in terms of logarithms
of hyperbolic cosine functions, see [33] for details. Domain Ω3 is the fluid channel that occupies the region
between the fuel pins and the outer duct. The grids for this domain consists of annular grids next to each

fuel pin, a smooth-polygon grid next to the solid duct and a background Cartesian grid. Let G(j)
ha denote the

multi-domain composite grid for this geometry, where j is the resolution index. The grid spacings for the

component grids of G(j)
ha are chosen to be approximately h

(j)
s = 1/(80j).

fuel pin

fluid channel

duct

Schematic Diagram Composite Grid Temperature

4.7

0

Figure 13: Hexagonal fuel assembly. Left: schematic showing the three sub-domains: solid pins, fluid channel and
duct. Middle: a coarse version of the composite grid. Right: computed temperature at t = 10 that results from heat
sources placed at the center of each pin.

The initial conditions for the temperature in all domains is taken as T = 0. The outer hexagonal-shaped
boundary of the region is taken as an iso-thermal wall with T = 0. A volume heat source, f(x, t) in (1), is
used to heat the region within the fuel pins. The heat source in pin number i is zero at the t = 0 and has a
smooth representation in space given by

fi(x, t) =
1

2

[
1 + erf

(
12
(
t− 1

2

))] (
tanh

(
40(ri + 0.38)

)
+ tanh

(
− 40(ri − 0.38)

))
,
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where ri = |x − ci| is the distance of the point x = (x, y) from the center of the fuel pin at ci. The
total forcing f(x, t) is set to the sum of the seven individual forcing functions, fi(x, t), i = 1, . . . , 7. The
parameters for the problem, taken from [3], are

D1 = 0.1, K1 = 0.5, D2 = 0.1, K2 = 1, D3 = 0.0694, K3 = 0.05,

and the equations are integrated to a final time tfinal = 10.

Hexagonal fuel assembly

h
(j)
s ∆t(j) E(j)

2 ratio E(j)
∞ ratio

1/80 1/10 6.5e-4 – 1.7e-3 –
1/160 1/20 1.5e-4 4.4 3.9e-4 4.4
1/320 1/40 3.3e-5 4.4 8.7e-5 4.5

rate 2.15 2.15

Table 10: Hexagonal fuel assembly: Estimated errors and convergence rates from a self-convergence study. The
discrete L2 and maximum-norm errors for a grid with resolution index j are denoted by E(j)

2 and E(j)
∞ , respectively.

Numerical solutions are computed for three different grid resolutions using the composite grid G(j)
ha ,

j = 1, 2, 4. The numerical solution for the temperature on the finest grid G(4)
ha is plotted of the right of

Figure 13. Due to the heat sources in each fuel pin, a higher temperature is reached at the center of each
pin. Due to the effect of the iso-thermal wall on the perimeter of the duct, heat is leaving the domain
through the outer wall and the highest temperature is observed in the central fuel pin. The temperature
in the fluid coolant domain is seen to be higher in the interior region located between the ring of six fuel
pins and the central pin. Table 10 gives the results of a self-convergence study for this problem. Even
though the exact solution is not available for this problem, discrete L2-norm11 and maximum-norm errors
of the numerical solution for each grid resolution can be estimated using Richardson extrapolation using the
procedure described in [34]. These estimated errors are listed in Table 10. The estimated convergence rate
is close to two, which again indicates that the CHAMP method is second-order accurate in space and time.

7. Conclusions

We have described a new partitioned algorithm for solving conjugate heat transfer (CHT) problems. The
solutions in different material domains are time-stepped in an implicit fashion but coupled at interfaces in an
explicit way. This new CHAMP scheme uses generalized Robin (mixed) interface conditions together with a
backward differentiation formula in time for the governing PDEs. The new interface treatment combines the
usual interface jump conditions for the temperature and heat flux with additional compatibility conditions
derived from the governing PDEs; thus extending the optimized-Schwarz method for domain decomposition
problems to general CHT problems with material properties that jump at interfaces.

The CHAMP interface conditions can be used as part of an iteration at each time-step as a means to the
solve the coupled problem to some error tolerance. A model problem analysis using normal-mode theory was
used to understand the convergence properties of the CHAMP iteration and to define an optimization problem
that can be solved to determine the optimal weights on the Dirichlet and Neumann-like components in the
CHAMP scheme. It was shown that parameters always exist so that the CHAMP iteration will converge
for any material properties, grid spacings or time-steps. For domain decomposition problems (i.e. equal
material properties) the CHAMP iteration was shown to be better than a typical optimized Schwarz method
with overlap width h. When material properties differ, the CHAMP scheme clearly outperforms the classical
Dirichlet-Neumann scheme.

11The discrete L2-norm of a grid function Ti is defined by ‖Ti‖2 =
{∑

i |Ti|2/N
}1/2

, where the sum is taken over
all valid grid points on the composite grid and N is the total number of entries in the sum.
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The CHAMP interface conditions were incorporated into a partitioned time-stepping algorithm where
a fixed number of iterations (perhaps zero iterations) are used at each time-step. In this case the initial
guess used in the iteration is important as it affects the accuracy and stability of the scheme; an initial
guess based on a third-order accurate extrapolation in time was found to be appropriate for second-order
accuracy, in agreement with an error analysis of the scheme. Normal-mode theory was used to analyze the un-
iterated CHAMP time-stepping scheme (i.e. one implicit-solve per domain per time-step) and an optimization
problem was defined to determine the optimal weights. It was shown that the un-iterated scheme is accurate
and stable for a wide range of material properties, grid spacings and time-steps. Including one-additional
iteration per time-step greatly enhances the range of stability to likely encompass most practical problems
currently of interest.

The CHAMP interface conditions, originally developed for a rectangular geometry, were extended to
the case of curvilinear grids. These conditions were implemented in a simulation code for treating general
multi-domain problems in two dimensions using composite overlapping grids12. A number of test cases were
carried out that demonstrated the stability and second-order accuracy of the CHAMP scheme. In addition,
the simulations confirmed the results of the model problem analysis and showed that the theory carried over
to more complex geometries.

There are a variety of future directions for this work. For example, to address more complex physical
situations, the CHAMP scheme could be incorporated into a code for solving true conjugate heat transfer
problems involving incompressible flow and heated solids. From the perspective of algorithm development,
the CHAMP scheme could be extended to higher-order accuracy and to the cases when the grids on either
side of the interface do not match. In addition, one might consider the derivation and implementation of
a CHAMP scheme for CHT using other discretization techniques, for example finite elements. Finally, one
might consider moving beyond the Gauss-Seidel-like procedure discussed here, for example using an additive
Schwarz type method, which may have advantages in terms of algorithmic parallelization.

Appendix A. Accuracy of un-iterated CHAMP time-stepping scheme

In this section we discuss the accuracy of the un-iterated CHAMP time-stepping scheme. The aim is to
show that the scheme is second-order accurate. To achieve this, the analysis verifies that the initial guess
at each time-step must use third-order accurate extrapolation in time in equation (67). The analysis also
shows why the Taylor expansion leading to the CHAMP Neumann operator, Nθ,β,h, is truncated at O(h2)
in equation (48), and why the CHAMP Dirichlet operator, Dθ,β,h, is truncated at O(h3) in equation (44).
For simplicity and clarity we consider a one-dimensional conjugate heat transfer (CHT) problem; a two-
dimensional half-plane problem is also straightforward to treat but with additional complexity that serves
no great purpose here. We start by deriving an L2-norm energy estimate for the CHT problem that shows
the well-posedness of the problem and provides an estimate for the norm of the solution in terms of norms
of the forcings and initial data. This estimate is subsequently used to derive a bound on the error in the
modified equation for the discrete scheme that shows the second-order accuracy of the approximation.

The one-dimensional CHT problem under consideration is

∂tTm −
1

ρmCm
∂x
(
Km∂xTm

)
= fm(x, t), for x ∈ Ωm, t > 0, (A.1a)

TL(0, t)− TR(0, t) = 0, for t > 0, (A.1b)

KL∂xTL(0, t)−KR∂xTR(0, t) = 0, for t > 0, (A.1c)

TL(−1, t) = 0, TR(1, t) = 0, for t > 0, (A.1d)

Tm(x, 0) = T IC
m (x), for x ∈ Ωm, (A.1e)

for m = L,R, where ΩL = [aL, bL] = [−1, 0] and ΩR = [aR, bR] = [0, 1], while ρm, Cm, and Km are assumed
to be positive constants. Here we assume that fm(x, t) and T IC

m (x) are smooth functions of x and t in which

12Using the Overture framework, overtureFramework.org.
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case Tm(x, t) is also smooth. To derive an L2-energy estimate, we begin by taking the inner product of
ρmCmTm with (A.1a) over the domain Ωm which gives(

ρmCmTm , ∂tTm
)
m
−
(
Tm , ∂x(Km∂xTm)

)
m

=
(
ρmCmTm , fm

)
m
,

where (·, ·)m denotes the L2 inner product over Ωm. Integration by parts on the second term and rearranging
gives

1

2

d

dt
‖
√
ρmCm Tm‖2m + ‖

√
Km ∂xTm‖2m −

[
TmKm∂xTm

]bm
am

=
(
ρmCmTm , fm

)
m
, (A.2)

where ‖·‖m is the L2-norm over Ωm. Let T = T (x, t) denote the piecewise smooth temperature on the entire
domain, being equal to TL(x, t) on ΩL and TR(x, t) on ΩR. Similarly define ρC, K, f(x, t) and T IC(x) on
the entire domain. Adding the estimates in (A.2) for the left and right domains and using the homogeneous
boundary conditions at x = −1 and x = 1 gives

1

2

d

dt
‖
√
ρC T‖2 + ‖

√
K ∂xT‖2 +

(
TRKR∂xTR − TLKL∂xTL

)∣∣∣
x=0

=
(
ρCT , f

)
, (A.3)

where (·, ·) and ‖·‖ denote the L2 inner product and norm over the entire domain, x ∈ [−1, 1]. The difference
of interface terms in (A.3) vanishes due to (A.1b) and (A.1c). Furthermore, since the second term on the
left-hand side of (A.3) is positive it follows that

‖
√
ρC T‖ d

dt
‖
√
ρC T‖ =

1

2

d

dt
‖
√
ρC T‖2 ≤

(
ρCT , f

)
≤ ‖
√
ρC T‖ ‖

√
ρC f‖, (A.4)

where we have made use of the Cauchy-Schwarz inequality. Assuming ‖
√
ρC T‖ 6= 0 we can divide both

sides of (A.4) by this quantity to give

d

dt
‖
√
ρCT‖ ≤ ‖

√
ρC f‖. (A.5)

Integrating (A.5) in time from 0 to t gives the required energy estimate.

Lemma 2. The solution to the CHT problem (A.1a)–(A.1e) satsifies

‖
√
ρC T (·, t)‖ ≤ ‖

√
ρC T IC‖+

∫ t

0

‖
√
ρC f(·, ξ)‖ dξ. (A.6)

The result in (A.6) shows that the weighted L2-norm of T (x, t) is bounded in terms of norms of the
initial conditions and forcing.

We next describe the fully discrete un-iterated CHAMP time-stepping scheme and then derive a modified-
equation CHT problem corresponding to the scheme. We consider a computational domain in space with
grid spacing h, and discretize in time using a time step ∆t. Let xj = jh denote the grid points on either
side of the interface with j ∈ [−N,−N + 1, . . . , 0] = ΩL,h and j ∈ [0, 1, . . . , N ] = ΩR,h. The discrete solution
is denoted by T̄nm,j , m = L,R, which is an approximation of Tm(xj , t

n). The heat equations and CHAMP
interface conditions are discretized in space using standard second-order difference operators [35]

D+T̄
n
m,j

def
=

T̄nm,j+1 − T̄nm,j
h

, D−T̄
n
m,j

def
=

T̄nm,j − T̄nm,j−1

h
, D0T̄

n
m,j

def
=

T̄nm,j+1 − T̄nm,j−1

2h
.

In order to understand the size of the truncation errors in the CHAMP scheme, an estimate is needed for
the size of the coupling parameters Sm, assumed here to be positive, Sm > 0. Note that Sm ∈ 1

h [zm(κ =
0), zm(κ = π)], where zm is given by (37). Typically, ∆t is chosen to be proportional to h for accuracy

reasons, and therefore it is expected that Sm ∈ [O(h−
1
2 ),O(h−1)]. We thus assume (the somewhat more

general condition)
Sm = O(h−p), 0 ≤ p ≤ 1.
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The initial guess for the CHAMP interface condition at each step uses extrapolation in time of order q, given
by the formulae

E(q)
−t (T̄n+1

R,1 ) =

{
2T̄nR,1 − T̄

n−1
R,1 for q = 2,

3T̄nR,1 − 3T̄n−1
R,1 + T̄n−2

R,1 , for q = 3.

We consider q = 2 or q = 3 and show that for second-order accuracy q should be 3 when Sm = O(h−p), with
0 < p ≤ 1. The fully discrete un-iterated CHAMP time-stepping scheme using BDF2 in time is given by

3T̄n+1
m,j − 4T̄nm,j + T̄n−1

m,j

2∆t
−DmD+D−T̄

n+1
m,j = fm(xj , t

n+1), for j ∈ Ωm,h, n ≥ 0, (A.7a)(
Ñθ,β,h + SLD̃θ,β,h

)
T̄n+1
L,0 − (D0 + SL)

(
E(q)
−t (T̄n+1

R,1 )
)

= 0, for n ≥ 0 (A.7b)(
Ñ 1

θ ,
1
β ,−h

− SRD̃ 1
θ ,

1
β ,−h

)
T̄n+1
R,0 − (D0 − SR) T̄n+1

L,−1 = 0, for n ≥ 0 (A.7c)

T̄n+1
L,−N = 0, T̄n+1

R,N = 0, for n ≥ 0 (A.7d)

T̄ 0
m,j = T IC

m (xj), j ∈ Ω̃m,h, (A.7e)

where Dm = Km/(ρmCm), m = L,R are thermal diffusivities and Ω̃m,h is an extended grid that includes

ghost points, e.g. Ω̃L,h = [−N,−N + 1, . . . , 0, 1]. The difference approximations of the CHAMP operators,

denoted by D̃θ,β,h and Ñθ,β,h, are

D̃θ,β,h
def
= 1 + θhD0 +

h2

2
βD+D−, Ñθ,β,h

def
= θD0 + hβD+D−.

Past time values needed to start the scheme are assumed to have been determined accurately. We assume that
fm is zero at the interface or else the CHAMP interface conditions would need to be adjusted accordingly.
Henceforth we assume that ∆t = O(h), which is the usual situation. The scheme also remains second-order
accurate if ∆t = O(h2).

We now assume that the discrete approximation (A.7a)–(A.7e) is stable and consistent and thus con-
vergent as h → 0. The formal accuracy of the approximation (A.7a)–(A.7e) can then be accessed from

the modified equation approach [36] in which a nearby CHT problem is found for a smooth function T̃ (x, t)
which describes well-resolved solutions to the discrete scheme. To leading order, the modified-equation CHT
problem corresponding to the discretization in (A.7a)–(A.7e) is

∂tT̃m −Dm∂2
xT̃m = fm(x, t) + τ (2), for x ∈ Ωm, t > 0, (A.8a)

(Nθ,β,h + SLDθ,β,h) T̃L(0, t)− (∂x + SL) T̃R(h, t) = τ (2) + SLτ
(3,q), for t > 0, (A.8b)(

N 1
θ ,

1
β ,−h

− SRD 1
θ ,

1
β ,−h

)
T̃R(0, t)− (∂x − SR) T̃L(−h, t) = τ (2) + SRτ

(3), for t > 0, (A.8c)

T̃L(−1, t) = 0, T̃R(1, t) = 0, for t > 0, (A.8d)

T̃m(x, 0) = T IC
m (x), for x ∈ Ωm, (A.8e)

where Dθ,β,h and Nθ,β,h are the usual CHAMP operators

Dθ,β,h
def
= 1 + θh∂x +

h2

2
β∂2

x, Nθ,β,h
def
= θ∂x + hβ∂2

x.

The modified equations in (A.8a) and in the CHAMP interface conditions in (A.8b) and (A.8c) include
truncation error terms denoted by τ (2), τ (3) and τ (3,q). The precise form of these errors involve various
derivatives of T̃m(x, t), but our focus here is on their asymptotic behaviors in the limit h→ 0 with ∆t = O(h).
Accordingly, we introduce the definitions

τ (2) def
= O(h2 + ∆t2) = O(h2),

τ (3) def
= O(h3),

τ (3,q) def
= O(h3 + ∆tq) = O(h3 + hq).
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It should be noted that terms represented by τ (2) in different equations may have different functional forms,
but the asymptotic behavior for each is O(h2). The truncation error terms appearing in (A.8b) and (A.8c)

arise from the discrete approximations to the CHAMP Neumann and Dirichlet operators. Note that Ñθ,β,h

is an O(h2) approximation to Nθ,β,h, while due to the extra factors of h that appear in the definition of

D̃θ,β,h,

D̃θ,β,hT̃L = Dθ,β,hT̃L + θh
h2

6
∂3
xT̃L(0, t) +

h2

2
β
h2

12
∂4
xT̃L(0, t) +O(h5),

= Dθ,β,hT̃L +O(h3),

and thus D̃θ,β,h is a third-order approximation to Dθ,β,h even though D0 and D+D− are only second-order
accurate approximations to ∂x and ∂2

x, respectively. Here we have used the truncation error formulae

D+D−T (xj) = ∂2
xT (xj) +

h2

12
∂4
xT (xj) +O(h4), D0T (xj) = ∂xT (xj) +

h2

6
∂3
xT (xj) +O(h4),

which are valid for a sufficiently smooth function T (x).

The CHAMP interface conditions (A.8b)–(A.8c) can be rearranged using Taylor series for T̃R(h, t) and

T̃L(−h, t) about x = 0 along with equation (A.8a) to form13

(1 + SLh)

KR
[
σ̃
]
I + SL

[
T̃
]
I + h(1 + SL

h

2
)

1

DR
∂t
[
T̃
]
I = τ (2) + SLτ

(3,q), (A.9a)

(1 + SRh)

KL
[
σ̃
]
I − SR

[
T̃
]
I − h(1 + SR

h

2
)

1

DL
∂t
[
T̃
]
I = τ (2) + SRτ

(3), (A.9b)

where [
T̃
]
I

def
= T̃R(0, t)− T̃L(0, t),

[
σ̃
]
I

def
= KRT̃R(0, t)−KLT̃L(0, t),

denote the jumps in the temperature and heat flux at the interface, respectively, both functions of time t.
Eliminating

[
σ̃
]
I from (A.9a)–(A.9b) leads to an ODE in time for

[
T̃
]
I ,

(αLSL + αRSR)
[
T̃
]
I + γ h

d

dt

[
T̃
]
I = τ (2) + αLSLτ

(3,q) + αRSRτ
(3), (A.10)

where

αL =
KR

(1 + SLh)
, αR =

KL
(1 + SRh)

, γ =

(
1 + SL

h

2

)
αL
DR

+

(
1 + SR

h

2

)
αR
DL

.

Since Sm > 0 and Sm = O(h−p), 0 ≤ p ≤ 1, it follows that αL, αR and γ are all O(1). The ODE in (A.10)
can be written in the form

d

dt

[
T̃
]
I + c

[
T̃
]
I = g(t), (A.11)

where

c =
(αLSL + αRSR)

γh
> 0, g(t) =

τ (2) + αLSLτ
(3,q) + αRSRτ

(3)

γh
.

The solution of (A.11) is

[
T̃
]
I = [T̃ ]I,0 e

−ct +

∫ t

0

g(ξ) e−c(t−ξ) dξ, (A.12)

13Recall that we have assumed fm(0, t) = 0. When fm(0, t) 6= 0 the CHAMP interface conditions would need
to account for this. The steps leading to (A.9a)–(A.9b) would incorporate these changes but the terms involving
fm(0, t), m = L,R, would cancel and thus (A.9a)–(A.9b) would remain unchanged.
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where [T̃ ]I,0 denotes the value of
[
T̃
]
I at t = 0. Note that c = O(h−(1+p))� 1, so that

[
T̃
]
I decays rapidly

onto g(t)/c for small h. This can be seen from (A.12) upon two applications of integration by parts in time:

[
T̃
]
I =

(
[T̃ ]I,0 −

1

c
g(0) +

1

c2
g′(0)

)
e−ct +

1

c
g(t)− 1

c2
g′(t) +

1

c2

∫ t

0

g′′(ξ)e−c(t−ξ) dξ. (A.13)

If t is greater than a small time t0 = 1/c = O(h(1+p)), i.e. t� t0, then the exponential term, e−ct, is small
so that (A.13) gives the estimate14

[
T̃
]
I =

g(t)

c
=

1

(αLSL + αRSR)

(
τ (2) + αLSLτ

(3,q) + αRSRτ
(3)
)
. (A.14)

Given (A.14), it then follows from (A.9a) and (A.9b) that the jump in the heat flux at the interface satisfies[
σ̃
]
I = τ (2) + αLSLτ

(3,q) + αRSRτ
(3). (A.15)

Lemma 3. The jump in the heat flux
[
σ̃
]
I given in (A.15) is O(h2 + ∆t2) provided

SL τ
(3,q) = O(h2 + ∆t2).

Assuming SL = O(h−p), 0 ≤ p ≤ 1, we require

3− p ≥ 2 and q − p ≥ 2. (A.16)

The first condition in (A.16) is based on the third-order accurate approximation to the CHAMP Dirichlet
operator and thus third order accuracy is required for the case 0 < p ≤ 1. The second condition in (A.16)
arises from the q-th order time extrapolation, and again if 0 < p ≤ 1 we require q = 3 since the order of
extrapolation in time must be a positive integer.

Furthermore, from (A.14), the jump in temperature at the interface is expected to be[
T̃
]
I = τ (2+p) def

= O(h2+p), 0 ≤ p ≤ 1, (A.17)

and thus for p = 1, i.e. Sm = O(h−1), then this jump would be third-order accurate.

Under the assumptions that 0 ≤ p ≤ 1 and q = 3, the CHAMP interface conditions in (A.7b) and (A.7c)
are equivalent to the original jump conditions on temperature and heat flux perturbed by truncation errors,
that is [

T̃
]
I = τ (2+p), (A.18a)[

σ̃
]
I = τ (2). (A.18b)

Equations for the errors Em = Tm − T̃m, m = L,R, can be formed by subtracting the CHT problem for

T̃m(x, t) formed by (A.8a), (A.18a), (A.18b), (A.8d) and (A.8e) from the original CHT problem for Tm(x, t)
in (A.1a)–(A.1e). The resulting CHT problem for the error Em(x, t) has forcing functions proportional to
the truncation errors:

∂tEm −Dm∂2
xEm = τ (2), for x ∈ Ωm, t > 0, (A.19a)

EL(0, t)− ER(0, t) = τ (2+p), for t > 0, (A.19b)

KL∂xER(0, t)−KR∂xEL(0, t) = τ (2), for t > 0, (A.19c)

EL(−1, t) = 0, ER(1, t) = 0, for t > 0, (A.19d)

Em(x, 0) = 0, for x ∈ Ωm. (A.19e)

14Note that this argument shows that even if the jump in the temperature is not small at t = 0, it will quickly
become small after a short time. The fully discrete CHAMP scheme will likely have a similar behavior.
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The nonhomogeneous terms on the right-hand sides of the interface conditions in (A.19b) and (A.19c)
can be eliminated by constructing a function W (x, t), which is piecewise linear in x and that satisfies the
homogeneous boundary conditions at x = ±1 and the nonhomogeneous interface conditions. This function
is O(h2 + ∆t2) owing to the size of the error terms in (A.19b) and (A.19c). Upon subtracting W (x, t) from
Em(x, t), a new error equation for Ẽm = Em −W (x, t) results which satisfies the CHT problem

∂tẼm −Dm∂2
xẼm = τ (2), for x ∈ Ωm, t > 0, (A.20a)

ẼL(0, t)− ẼR(0, t) = 0, for t > 0, (A.20b)

KL∂xẼR(0, t)−KR∂xẼL(0, t) = 0, for t > 0, (A.20c)

ẼL(−1, t) = 0, ẼR(1, t) = 0, for t > 0 (A.20d)

Ẽm(x, 0) = τ (2), for x ∈ Ωm. (A.20e)

The energy estimate in (A.6) can now be applied to the CHT problem for the error in (A.20a)–(A.20e) to
give

‖
√
ρC Ẽ(·, t)‖ ≤ ‖

√
ρC Ẽ(·, 0)‖+

∫ t

0

‖
√
ρC τ (2)(·, ξ)‖ dξ = O(h2 + ∆t2). (A.21)

We conclude that the CHAMP scheme is second-order accurate when Sm = O(h−p), 0 ≤ p ≤ 1, provided
third-order accurate time-extrapolation is used for (A.7b) when p > 0. The analysis also indicates why the
CHAMP Dirichlet operator is approximated to third-order in h while the Neumann part can be extrapolated
to second-order.
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