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Abstract: We discuss fourth-order accurate difference approximations for parabolic systems and for the incom-
pressible Navier-Stokes equations. A general principle for deriving numerical boundary conditions for higher-order
accurate difference schemes is described. Some difference approximations for parabolic systems are analyzed for
stability and accuracy. The principle is used to derive stable and accurate numerical boundary conditions for the
incompressible Navier-Stokes equations. Numerical results are given from a fourth-order accurate scheme for the
incompressible Navier-Stokes equations on overlapping grids in two and three-space dimensions.
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1 Introduction

The advantages of using higher-order accurate methods for the numerical solution of partial differential equations are
by now well known. For problems with periodic boundary conditions, for example, spectral methods are widely used.
Higher-order difference methods, such as the fourth-order methods discussed here, also offer significant advantages
over lower-order schemes.

Applying a high-order method on a complicated region is a difficult task. One major difficulty is the generation
of a grid for the region. The grid must be smooth enough so that errors associated with variations in the grid do not
over-whelm the errors in the method. To generate a grid we advocate the method of overlapping grids, [1], whereby
a smooth grid can be created on a complicated region.

A second difficulty associated with applying higher-order difference methods is the choice of numerical boundary
conditions. Some care is required in differencing the equations near the boundary so that the resulting scheme
remains accurate and stable. Fortunately, with an overlapping grid, the mesh can be constructed so that the grid
lines follow the boundary. This feature, which is clearly useful from a practical point of view is also important
for theoretical reasons because this means that the stability and accuracy analysis can be reduced to the study of
a constant coefficient half-plane problem. With recent advances and simplifications in the stability and accuracy
analysis one may say that the treatment of this latter problem is quite well understood.

In this paper we discuss a general principle for deriving numerical boundary conditions for fourth-order difference
methods. The basic idea is (1) use the interior equation on the boundary and (2) apply the boundary condition
operator to the interior equation and use the resulting equation to lower order on the boundary. We use this principle
to derive boundary conditions for parabolic systems and for the incompressible Navier-Stokes equations. We describe
a computer program that has been written to solve the incompressible Navier-Stokes equations in general two and
three dimensional domains using overlapping grids.

We begin, in Section 2, by discussing well-posed problems. The concept of well-posedness of a continuous problem
is closely related to the stability of the corresponding discrete problem. In Section 3 we consider the stability and
accuracy of fourth-order accurate difference approximations of parabolic systems and present a principle for deriving
extra numerical boundary conditions. In Section 4 we study the incompressible Navier-Stokes equations. We analyze
the well-posedness of a half plane problem and the stability of a fourth-order accurate difference approximation.
Finally in Section 5 we present some results from the numerical solution of the incompressible equations on overlapping
grids that demonstrate the accuracy of the method.

2 Well-posed problems

In this section we review some results concerning well-posed initial boundary value problems. The interested reader
should refer to [4][6], for example, for further details. Consider the initial boundary value problem for a quasilinear
parabolic system of partial differential equations on a general time-space domain [0,7] x Q :

uw = Px,t,u,d/0x)u+F(x,t), xe€
B(u) = g, x € 092
u(x,0) = f(x), y
P = ZV AV(X, t’u)azl{laiaz:s .

In Kreiss and Lorenz [4] it was shown how to reduce this problem to a half-space problem for systems with constant
coefficients. We therefore consider a parabolic system in two-space dimensions

u = Anum + Alelyy + Alollw + Aozuy + A()()ll +F:=Lu+F (].)

of n equations with constant coefficients on the halfspace 0 < z < 00, —00 <y < 00, t > 0. At t = 0 we give initial
conditions

u(z,y,0) =f(z,y), (2)
and at ¢ = 0 we give n linearly independent boundary conditions

BO“(O;yat) + Blum(oa:%t) = g(yat)' (3)

We also assume that all functions are 27-periodic in y. Define

u=(u,...,u,)" | (u,v):Zu;vu , |u? = (u,u) ,
"



and let o o
()= [ [ tavidady, Jjull = (a0
o Jo
denote the usual Ly-scalar product and norm.

Definition 1 The problem (1)—(3) is well-posed in the generalized sense if there are constants a, K such that, for
all 1 > a, the solutions of (1)—(3) satisfy the estimate

/0 e"t(||u||2+||uz||2>dtszc(/ <||F||2+|g|%)dt+||f||2>, (1)
0

where

2
i = [ lew.0Fdy.
Two important results in the theory, which we state but do not prove here, are contained in the following two
theorems
Theorem 1 The general estimate (4) holds, if and only if, it holds for the particular case where F = f = 0.

Theorem 2 The lower order terms Aijou, + Agauy + Agou have no influence on the well-posedness and can be
neglected.

Thus, we need only consider the following constant coeflicient parabolic problem,

w = Aiug, + A2uyy
u(z,y,0) =0 (5)
B()ll(o, Y, t) + Blua)(oa Y, t) = g(y7 t) -

Recall that the Fourier transform and inverse of a 27-periodic function f(y) = f(y + 2x) are defined by

1

o} 2w
fo) = X Fwer | fw) =g [ e iy L wn=n

n=—oo

while the Laplace transform and inverse of a function f(t), (where |f(t)|]<e?* as t — o) are

N oo Y+ioco N
F(s) = / e, f(t) = - / ¢ f(s)ds.

0 27 Jy oo

We solve the problem (5) by Fourier transforming it in y and Laplace transforming it in ¢, obtaining the following
equation for the transformed variable & = 1(z,w, s),

sti= Ay, —w?doti, 0<z < oo, (6)
Boi + Byii, = &. (7)

o0
142 = / a2dz

Define

By Parseval’s relation it follows that

Theorem 3 The problem is well-posed in the generalized sense (that is an estimate of the form (4) holds), if and
only if, the solutions of (6),(7) satisfy the estimate

a7 + . |l7 < K1gl*

for all w and all Re(s) > a.



Equation (6) is a system of ordinary differential equations. Its general solution, belonging to Lo, is of the form
n
u= ZO’j@Aszj, (8)
i=1

where Re()\;) < 0 for Re(s) > 0. Here A\; = A\j(w, s) and w; = w;(w, s) are solutions of
((SI + szg) - Al/\z)W = 0,

with ||w||; = 1. It can be shown that there are exactly n linearly independent solutions.
Substituting (8) into the boundary conditions gives us a linear system of equations for & = (o1, ...,0,

Bo =g. 9)
Therefore, we have

Theorem 4 The problem (5) is well-posed in the generalized sense if, and only if, there is are constants K; and a,
such that, for all w and all s with Re(s) > a,
lo | < Kilg|- (10)

Theorem 4 defines a condition for well-posedness that can be more easily verified than the condition that appears
in the original definition. In the next section we determine the analogous result for the the discretized form of the
equations.

3 Stability and numerical boundary conditions

We now study the discrete version of the problem. Since all difficulties occur in the direction normal to the boundary,
it will simplify the presentation if we only discretize in the z-direction and keep the y-direction continuous. We
introduce a mesh spacing h and a grid in the x-direction, G = {z, = vh , v = —2,-1,0,1,2,...}. The grid
will include two extra fictitous (ghost) points outside the computation domain. Let v, (y,t) denote the discrete
approximation to u(z,,y,t).

We approximate the parabolic system (1)—(3) by a semi-discrete difference method of the form

Ov, = Lpv, + F(2,,y,1), v=1,23,...,
Vy(y,O) = f(.’L',,,y), v= _2a_1a071:273a" . (11)
Bovo(y,t) + BiDpvo(y,t) = g'(y,t)

Barvo = g'(y,1) .

Here Ly, is a difference approximation for L, Dy, is a difference approximation for 8/8x while Bapve = g!! are
additional numerical boundary conditions. We will discuss the choice of these conditions shortly. We abuse the
notation by writing Bovg to mean Byv, evaluated at v = 0.

Instead of the Ly-norm, we now use a discrete norm ||v(-,¢)||, (for our purposes here it will not be necessary to
explicity define this discrete norm). We now define

Definition 2 The problem (11) is stable if there are constants a, K and hg, such that, for allm > o and all h < hy,
the solutions of (11) satisfy the estimate ({) where the Ly-norms are replaced by discrete norms.

Theorems 1-3 are also valid in the discrete case. Therefore, we need only consider approximations for the parabolic
system (5), where the lower order terms have been dropped. Let Ev, = v, 1 denote the translation operator in the
z-direction. Define the difference operators

WDy = E—-1I, hD_=I-FE"
h2
WD,D_ = E-2I+E7', Ap=DyD_(I- 5Dy D),
2
2nDy = E-—E7!, thDo(I—%D+D_).



Dy and Dy, are the usual second and fourth-order accurate difference approximations to 8/9x, while Dy D_ and A,
approximate 0% /0z? to second and fourth-order accuracy, respectively. The semi-discrete approximation is

Ov, = A1 Apv, + Ag@jv,,, v=1,2,3,... (12)
v, (y,0) = 0, v=-2-1,0,1,2,... (13)
Bovo(y,t) + BiDyvo(y,t) = g’ (y,1), (14)
Bopvo = gll(y, ). (15)

To completely specify the approximation we need to define the scheme near the boundary. We require 2n conditions
to express v_5(y,t) and v_1(y,t) in terms of vo(y,t), v1(y,t),...

A principle for deriving numerical boundary conditions: The basic idea for deriving numerical boundary
conditions is as follows. The continuous problem is of the form

{ w=Lu+F forz >0 (16)
Bu(0,y,t) := Bou(0,y,t) + B1us(0,y,1) = g(y, )
Applying the boundary condition operator B to the equation gives
(Bu)¢ = (BL)u+ BF ,
and thus the following equation holds on the boundary:
(BL)u(0,y,t) = gi(y,t) — BF(0,y,1) . (17)

For a fourth-order accurate difference approximation we will need two extra numerical boundary conditions. Our
principles for deriving these two conditions are as follows:

Principle 1: Apply the interior equation (12) on the boundary, v = 0.

Principle 2: Apply equation (17) to second-order accuracy on the boundary; thus we choose

thV = BO <A1 (D+D_)V0 + AZBZVO) + Bl (AlD()(D+D_)V0 + A26§DOV0)
gII = 6tg(y7t) - BF(07y7t) -

Thus our discrete scheme is defined by

vy = A1 Apv, + A0 v, v=0,1,2,...,
vu(y,0) =0, v=-2,-1,01,2,...,
B()VO(y,t) + BthVO(y,t) = gI7

B2hV0 = gII .

(18)

We now proceed, as in the continuous case, to determine an equivalent condition for stability. We Fourier and
Laplace transform (18) with respect to y and ¢, respectively, and obtain

59, = A1 AV, — w2 Ag¥,, (19)
BoVo + Bi1Dp¥o = g', Bopvo =g’ (20)

Corresponding to the continuous case, the general solution of (19) belonging to Loy is of the form
2n
\Af,, = Zajm;gj. (21)
i=1

where |k;| < 1 for Re(s) > 0. There will be n roots x; that approximate the continuous problem, for hv/s + w? <
1, along with n spurious roots. Substituting this expression into (20) gives us again a system of the form (9).
Corresponding to Theorem 4 we have

Theorem 5 The problem (18) is stable if, and only if, there are constants K1 and a such that, for all w and all s
with Re(s) > a, a discrete estimate of type (10) holds.



3.1 Stability of a scalar parabolic problem

We now consider the model problem of the heat equation in one-space dimension on the half line z > 0 for which we
analyze the stability and accuracy in some detail. The function u = u(z,t) satisfies

Up = Upy + F forx >0
bou(0,t) + brug (0,t) = g(t) . (22)
u(z,0) = f(z) forz >0

We take the real constants by and b1 to have opposite sign and not both zero so that the problem is well-posed.
Using our principle we apply the equation on the boundary and we approximate equation (17) to second-order
accuracy. Thus we have the following scheme:
%v,,zAhv,,—f—F(w,,,t) forv=20,1,2,3,...
bovo + Drvo = g(t)
bo(D+D_)U0 + by (DOD+D_)’Uo = gt(t) - {boF(O,t) + b F, (O,t)}
v, (0) = f(z,) for v=-2,-1,0,1,...

(23)

The extra boundary condition has only been approximated to second-order; we will see that the overall accuracy is
none-the-less fourth-order.
We first analyze the Dirichlet problem, bg = 1 and b; = 0. Note that in this case the scheme (23) is equivalent to

the following method

%v,, = Apvy, + F(zy,t) forv=0,1,2,3,...

Vo = g(t) - F(Ovt)

(DyD_)v =0

v,(0) = f(=z,) forv=-2,-1,0,1,2,3,...

where the second numerical boundary condition has been replaced by an extrapolation condition, (DD _)?vy =
(Dy)*v 5 =0.

By subtracting out a solution to the Cauchy problem we can assume that F = f = 0. An equation for the error
wy(t) = u(zy,t) — v, (t) can be formed. The error equation is

%w,,zAhw,, forv=0,1,2,3,...

e (29
(D D_)wo = h?gs(t)

w,(0) =0 forv=-2,-1,0,1,2,3,...

Here g1 and g2 come from the truncation error and will be O(1) for smooth solutions (although g; would normally
be zero in the Dirichlet case we keep this more general form for later use). If we Laplace transform in time and look
for a solution of the form w, = ok” then we obtain the characteristic equation

1
sh2=(n—2+n’1)(1—ﬁ(n—2+m’1)) . (25)
There are four roots to this equation, &;, j = 1,2,3,4. For Re(s) > 0 there are exactly two roots with x; < 1. Let
k1 and k2 be the two (distinct) roots with |k, | < 1 (we treat the case k1 = kg later). The general solution in Loy, is
thus of the form

Wy, = 01K] + 02K5.

Applying the boundary conditions gives

o1+0y = R,
(k1 —2+ mfl)al + (k2 — 2+ 551)02 = h'G,
with solution
Ul:(@—?"‘ﬂz_l)ﬁl—gzhz; 02:!72—(f€1—2+“1_1)91h4_
(k2 — k1) (1 - =) ’ (k2 —k1)(1 - =)

1

s )_1. Since k1 and ks both satisfy the characteristic

Since k1 # k2, to show stability we need an estimate for (1 —
equation it follows that

1 1
(k1 = 24w ) (1= (1 — 24 w7 1) = (2 — 24 15 ) (1= (2 =215 1))



and thus 1

K1K2

(k1 = f2)(1 = ——)(12 = (k1 =2+ K7 ') = (k2 =2+ K; ) =0 .

Therefore k; and ko satisfy k1 — 2+ K71 + Ky — 2+ k3 = 12 or (k1 + k2)(1 + mlm) = 16. This implies (using
|k, < 1) that

- —|>6.

K1k —

Thus the scheme is stable. For |sh?| < 1, k1 ~ 1 —/sh and ks ~ 7 — 4,/(3) ~ .0718 and thus o; = O(g;h*). This
proves that the scheme is fourth-order accurate. In the case k1 = k2 there is a double root with Kk = 4 — +/15 and
the analysis must be altered. In this situation the general solution is

U, = o1KY + oavK” .
and the solution is

_ §2_(5_2+“71)§1h4
= — }
k—K

01=01 h* ) 02
The required estimate follows. Thus we have shown that the scheme with Dirichlet boundary conditions is stable.

We now consider the case of Neumann boundary conditions, by = 1 and by = 0.

4y, = Apv, + F(zy) forv=0,1,2,3,...

DhUO = g(t) (26)
Do(D+D-)vo = gt(t) — Fz(0,1)

vy = f(zy) forv=-2,-1,0,1,2,3,...

The analysis for this equation proceeds in the same way as the Dirichlet case. This can be seen by writing down
the equations satisfied by w, = Dgv, which are the same form as the equations in the Dirichlet case. Given w,,
v, is determined up to a constant from Dgv, = w,. Note that the solution to (26) is also only determined up to a
constant.

In the general situation by # 0 and by # 0 the equations defining o; and o, are

bo + %Aol’il(l — %Aﬂl) bo + %AOKQ(:[ — %AKZQ) o1 | _ h4g1
boAk1 + %AoﬂlAKJl boAko + %Aol’igAK,g 02 - h1g2

where

Ak; = K; — 2+ fci_l and Agk; = (ki — "‘“i_l)-

DN =

Let 6 > 0 be a small parameter, independent of h, but sufficiently small, 0 < h < §. We consider the two cases
of [/sh| < § and |\/sh| > 4.

Case 1: |\/sh| < ¢ In this case k; and k2 are close to there values at v/sh =0,
k1 =1—ad where |a| <1, Re(a)>0

and
Ko = po + K62 where g =7 — V48 .

Here K denotes a generic constant independent of § and h. Under these conditions

Ak; = o282+ K6
thjl = —a(5 + K52
Aky = (po+py't —2)+K§* =12+ K§*
1
A0[432 = §(M0—Mal)+K(52 = 02 +K62 y CQ%—693

and thus the equations determining oy and oy are

bo + 2 (—ad + K6?) bo + 2 (-Cs + K§?) o] _ [ h'gr
hbo(a262 + K(53) + bl(—a363 + K(54) hb0(12 + K&Z) + b1(602 + K(52) 02 - h592 ’



To leading order the above matrix is given by

bo + 2L (—ad) b+ L(—Co)
0 b1(6C2)

Since Re(a) > 0 and boby < 0 it follows that we can obtain an estimate for oy and o3. This shows that the scheme
is stable for v/sh < 8. If § = O(h) then the scheme is also fourth-order accurate since o1 = O(h*) and o2 = O(h%).

Case 2: /sh > ¢ In this case both k; and ks are bounded away from 1,
k1 =1 > Kd§ , |ke—1| > K6

and thus
|AOK,1| Z Ké 5 |AOKJ2| Z K¢ .
The system can be written in the form
hbo(Aol’\Zl)il + %(1 — %Alﬂ) th(AOHQ)il + b71(1 — %AKQ) Agk101 N hsgl
hboAky (Aol‘.’/l)_l + %Alﬁll hboAl‘éQ(AoK/Q)_l + %AI‘.‘,Q Agkaos | hsgg
To leading order this matrix is

A= 2 2

bl( - %Alil) bl( — %AKQ)
%Al’{,l b2—1AK,2

with

b
det(A) = (kg — k1)(1 —
et(A) = 5 (k2 — k1)( P,
The value of det(A) can be estimated using the results from the case of Dirichlet boundary conditions and thus we
can get an estimate for oy and o3. This shows that the scheme is fourth-order accurate and stable in the case of
mixed boundary conditions, by # 0 and b; # 0.

3.2 A simplified approach to local stability

In the general case it may be difficult to determine analytically whether a particular scheme is stable. However, it is
much easier, especially with the aid of a symbolic algebra package, to determine whether a scheme is locally stable
and accurate. In our context a scheme is locally stable if it is stable for hv/s + w? < 1. In this limit the roots of
the characteristic equation are well defined and can be divided into a set of roots that approximate the solution
to the continuous problem and a set of roots that belong to the spurious part of the solution. We now return to
the two-dimensional parabolic system and discuss how the question of local stability can be simplified to a question
about the spurious solution. We also show why, in general, the extra numerical boundary condition (17), need only
be applied to second-order accuracy. Thus we consider (19)-(20) for hv/s + w? < 1. The general solution of (19)
belonging to Loy, is of the form
V(zy) ~a(x,) + Vs(z).

Here i(z,) represents the general solution of the continuous problem and
2n
Vs(zy) = Z 0K W;
j=n

is the so called spurious part of the solution. The eigenvalue k; and eigenfunction w; are the solutions of

2 272\ _ (“_1)2_i("€_1)4
(sh +A2wh)w_A1( . T )w.

The spurious eigenvalues satisfy x; ~ 7 —41/3 ~ .072 as h — 0. We introduce this representation into the boundary
conditions and obtain
Boti + By Dyt + Bovg + B1Dpvs = gt (27)
Bopit + Bap¥s = g''. (28)



For simplicity we assume that both By and B; are diagonal so that the boundary conditions decouple and are either
of Dirichlet type or of mixed type. Let o { = (041,...,0,)", @ 11 = (041,...,02,)7, denote the coefficients of 4, Vs,
respectively. We regard the numerical boundary condition (28) as a system of equations for @ /. We assume that
it is nonsingular. Since 1 corresponds to the accurate part of the solution it follows that Byptt = O(1). However,
since the k’s come from the spurious part of the solution we expect that Bypk” = O(h™P)k” where p = 2 if the
boundary conditions are Dirichlet and p = 3 if the boundary conditions are mixed. This comes from the fact that
(D.D_ )" = O(h=2)k" and Do(DyD_)k¥ = O(h~3)k”. With these assumptions

o 1] < const. (h?|g"!| + h?|o 1))
Introducing this expression into the true boundary conditions (27) gives us a perturbation of (9), that is,
B+O)e ' =g' + O(h*?lo 1)) = g' + O(W?g" + h*|e 1)) (29)
If the continuous problem is well-posed, then (29) is nonsingular and
|o 7| < const. |gT| + O(R?|g"1]).
Therefore, the solution of (19)-(20) is uniquely determined and we obtain the estimate
a2 + IDaull2 < const. (g’ + A*g'2). (30)

Thus we have shown that if the the continuous problem is well-posed and if the spurious solution is uniquely
determined by the extra boundary condition, then the approximation is locally stable (that is for v's + w?h < 1).

For accuracy we consider the error equation in which case g’ = O(h*) and g'T = O(h?) (because the extra
numerical boundary condition is only approximated to second order). From the estimate (30), however, we see that
the overall accuracy is still fourth-order.

Remark. The local stability and the accuracy can, in most cases, be determined. However, the global stability
can be difficult to verify analytically. Numerically, however, a scheme that is locally stable but not globally stable
will be easy to see since the numerical solution will have high-frequency components in space and/or time since
they will occur for hv/s + w? = O(1). Thus one can be fairly confident that if a locally stable scheme behaves itself
numerically, even for short times, then it is stable in the global sense as well.

4 The Incompressible Navier-Stokes Equations

In this section we consider the initial boundary value problem for the incompressible Navier-Stokes equations,

w+(u-V)u+Vp = vAu+F forz e
Veu = 0 forz € Q (31)
B(u,p) = 0 for z € 00
u(x,0) = f(x) att=20

We require the initial conditions to be divergence free, V-f = 0. There are n boundary conditions B(u, p) = 0, where
n is equal to the number of space dimensions. For example, on a stationary no-slip wall the boundary condition is
u = 0. For numerical reasons it is easier to solve a different set of equations replacing the condition V -u = 0 by an
equation for the pressure:

w+ (u-V)u+Vp = vAu+F forze
Ap— (Vu-uz +Vv-uyy+Vw-u,)-V-F = 0 for z € Q
B(u,p) = 0 for z € 6Q (32)
V-u = 0 for z € 0Q
u(x,0) = f(x) att=0

In addition to the standard boundary conditions B(u,p) = 0 the boundary condition V -u = 0 is added. This latter
condition is an essential boundary condition for this formulation and ensures that (32) is equivalent to the original
formulation (31). There has been much discussion in the literature as to the proper boundary condition for the
pressure equation, see for example [2]. From this simple argument we see that the correct boundary condition for
the pressure is V - u = 0. For further discussion of this point see [3].



We now proceed, by mode analysis, to consider the well-posedness of of (31), or rather a simplified version of
this problem for the Stokes equations. It is well known that (31) is well-posed, see for example Ladyzhenskaya [5].
However, it is instructive to present the the mode analysis of the continuous problem since it resembles the stability
analysis of the discretized problem.

After dropping the lower-order terms and setting the kinematic-viscosity ¥ = 1 we are led to consider the following
model problem for the Stokes equations on the half space H = {(z,y,t) : 2 >0, —oo <y < 400, t >0}

Ug + Pz — (Ugz + Uyy) —F1 =0 for xe H
Vi + Py — (Vgz +0yy) —Fo=0 for x€H
uzp+vy,=0 for xeH (33)
(u,v) = (gl (yat)ag2(y7t)) , Uz + Uy = 0 for z=0
(U($,y,0),1}($,y,0) = (fl(may)LfZ(w:y)) ) v'(u07v0)=0 at t=20

To be definite we have chosen Dirichlet boundary conditions for u and v. By subtracting out functions that satisfy
the forced equations and the initial conditions (but not the boundary conditions) one may assume that (Fy, F) =0
and (f1, f2) = 0. We look for solutions in Ly that are 27 periodic in y. The functions ¢ (y,t) and g2(y,t) are thus
assumed to be periodic in y. By taking the divergence of the momentum equation it follows that the divergence
satisfies the equation

(ug +vy)e = Alug +vy) — Ap .

where A = §2/9z% + 8% /0y®. Observing the boundary condition u, + v, = 0, it follows that the divergence remains
identically zero if and only if

Ug +vy =0 att =0,
Ap=0 for all times.
Thus we have essentially shown the equivalence of systems (31) and (32).
Remark: In numerical computations one often replaces Ap = 0 by
Ap = a(uy + vy) (34)
in which case
(us +vy)e = Alug +vy) — a(ug +vy) -

This term acts as a damping on the divergence provided a > 0. This damping may be helpful if u, + v, is not zero
due to errors in the initial conditions or truncation errors.

The analysis proceeds by first Fourier transforming the equations in y and Laplace transforming in ¢. Let 4(z,w, s)
denote the transformed velocity. Then

80+ Pg — (llgy — w?0) =0
80 + iwp — (Dge — w?D) =0
ﬁwz - wzp = 0
(0, w,s) = g1(w,s) , 9(0,w,s) = ga(w,s) , Uz (0,w,s) +iwd(0,w,s) =0
The general solution in L, is given by
p(z,w,s) = Pw,s)e” "
W(z,w,s) = U(w,s)e Veteis 4 lw|P(w,s) (e lwle — g=Vstwizy (35)
bz, w,s) = V(sz)e*mz _ szwa,S) (e—\w\z _ efmm)

The free coefficients U, V, and P are determined by the boundary conditions,

U(w,s) = gl(was)
V(w,s) gz(w,s)
W(\/s+w2 — |w)) Vs + w?g1(w, s) —iwga(w, ).

We can solve for P provided Re(s) > 0, s # 0 and w # 0. When w = 0 we are free to choose P(0, s) since the
mean value of the pressure does not change the solution for (u,v). Given a value for P(0,s) we can invert the
transformation and obtain a unique solution.
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Remark: Note that

1
hrnM(\/s+w2—w) = -
s—=0 S 2
lim M(e_‘w‘w) _e_"s+w2$) lze_‘w‘w
s—0 § 2

and therefore the solution to (35) is also well defined at s = 0.

5 Discrete boundary conditions for the Incompressible Navier-Stokes
Equations

We now apply our principle to derive numerical boundary conditions for a fourth-order accurate difference approx-
imation to the incompressible Navier-Stokes equations. From the point of view of stability we may drop the lower
order terms in the equations. Thus we are led to study the Stokes equations. The velocity-pressure formulation for
these equations in two-space dimensions on the half plane > 0 is

Ut +DPr = Ugp + Uyy forz >0
Ve Dy = Vs + Uy forz >0
Prz +Pyy = 0 forz >0 (36)
(w(0,9,1),v(0,y,8)) = (9u(y,1),90(y,1))
ug(0,y,t) +vy(0,y,¢) = 0

The extra boundary condition u, + v, = 0 is required to ensure that this system is equivalent to the original
velocity-divergence formulation. We look for solutions that are 27 periodic in y.

We discretize to fourth-order in the x-direction, keeping y and ¢ continuous. Letting U, (y, t), V, (y,t) and P, (y,t)
be the discrete approximation, the semi-discrete system is

%U,, +DyP, = AU, +0,U, forv=0,1,2...
4y, +0,P, = AV, +0,V, forv=0,1,2.
ApP, +0yyP, = 0 forv=0,1,2... (37)
(U0, Vo) = (9u(y:1),90(y, 1))
DUy + 83/% = 0.

The system (36) is an incomplete parabolic system since there is no time dependence in the pressure equation.
However, we still use our principles to guide us in deriving appropriate boundary conditions. We must then check
the accuracy and stability of the resulting scheme. In accordance with our first principle we have applied the interior
equations on the boundary. Three extra numerical boundary conditions are required to determine the solution at
two lines of fictitious points.

The divergence boundary condition u; 4+ vy = 0 is a condition on u,, since v and thus vy is given on the boundary.
This boundary condition on u, takes priority over the Dirichlet boundary condition on u. Thus we form a numerical
boundary condition from the x derivative of the u momentum equation:

(uz)t + Doz = Uggg + Ugyy -

This equation, which can be rewritten as Ugzze + Pyy = —(Vy)t + Vyyy, is discretized to second-order accuracy on the
boundary:
(DoD4.D_)Up + 82Py = —0y0gv + (8y)%gv :=g2 - (38)

The Dirichlet boundary condition for v suggests that we apply the v momentum equation on the boundary to second
order:
(D+D_)Vo — 0y Py = Orgy = g3 - (39)

The pressure equation is a not a parabolic equation and so does not fit with our analysis. Motivated by the desire
to keep the pressure boundary conditions, as much as possible, independent of the velocity we choose

(DyD_)Py+8;Py =0 . (40)

We now show that these numerical boundary conditions are appropriate.

11



Lemma 1 The solution to (37)-(40) is locally stable and fourth-order accurate.

A locally stable scheme is one that is stable for v/'s + w?h < 1. It is easier to show local stability since the roots
of the characteristic equation can be approximated for small v/s + w2h.

To analyze the stability and accuracy we Laplace transform in time and Fourier transform in y. Let [)’,,(w, s),
V,(w, s) and P,(w,s) denote the transformed variables. The equation for the error is

( sU, + DoP, = AU, —w?U, forv=0,1,2..
sV, +iwP = ARV, —w?V, forv= 0,1,2...
AP, —w?P, = 0 forv=0,1,2...
~ Dwlo = h'g
(D0D+D,)U0 - w2P0 = h2g2
(DyD_)Vy —iwPy = h’gs
{  (D4D )Ry —w?Py = h’g
A solution to these equations, satisfying (Us, Vo) = (0,0), can be written in the form
Q'v = wu[k] — K] — (7'1 )pr[r — "{1] th(Tz )p2[Ty — K5
Yu = wu[k] - “2] ?Pl[Tl — k7] — z?172[7'2 — k5] (42)
P, = pmt +pry

where 71, T2, k1 and k9 are roots of

(I‘G—2+I€_1)<1—%(l€—2+l€_l)) = h’(s+w?)
(r—2+71" )<1—%(T—2+T )) = h%w?

with |k;] < 1, |5| < 1,4 = 1,2 for Re(s) > 0. For |(s +cuz)|h2 <1

\/s+w2h+ (s + w?)h% + O((s + w?)*/2h%)

K1 =
Ky = 7—4\/_+(’)((s+w Yh?)
1
o= l—|wh+ §|w|2h2 + O(w*h?)

n = T—4V/3+0Wh?)

Note that k; ~ e~V5t9?h L O(h*), 7y ~ e~ 19" L O(h*), and kg ~ 72 ~ 7 — 4v/3 ~ .0718. Define

(k= rTh 1 .
Ak = k—2+k1
1
Aok = 5(& -k .

Substituting the equations (42) into the divergence boundary condition and the numerical boundary conditions
(38)-(40) gives

D D
u1[Dk1 — Dka) —pll['Dﬁ — Dky] — p2h—T2[DT2 —Dry] = h°g (43)

Dr Dry hiw? h?
UI[AO"JI — AOKQ] —plh—sl[AoTl —_ AOHJI] P2— h [A()TQ - Aoﬁz] 6 (p1 +p2) = h5gl + 392 (44)
vi[Aky — Ako] + pi[—iwh? — %"(Aﬁ — A1)+ pa[—iwh? — %‘*’(Am —Am)] = h'gs (45)
pi[AT = W’H] + po[Amy —W?H?] = h'gs (46)

Equation (44) is formed by combining (38) with the divergence boundary condition. Equations (43),(44),(46) will
determine uy,p1,p2. After solving for uq,p1,pe the remaining unknown, v; is obtained from (45). In matrix form
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the equations for uy, p1,ps are

Uy h g
Al p | =| hg

D2 h*ga

where
[’Dl-’il - DK,Q] DTI [DTl Dﬂl] DTZ [DTQ - DKQ]
A = AOK/I — A0n2 ——[A()Tl Aonl] — % —D? [A()Tg Aoli]g] hs 2
0 ATl - w2h2 ATZ - th
For hv/s + w? < 1 the solution to these equations is
U = (—4g1 + 4d> — 594)h5 +0({(vVs+ w2h

32\/’
144ggh4+(9 (Vs + w2h)®)

_ 2
o= g+ 3+ 200 IS o

1
P2 = Eg4h4 + O((V s+ wzh)5)

and thus the scheme is locally stable and fourth-order accurate.

v =

5.1 Alternative boundary conditions

For historical reasons we present a second set of numerical boundary conditions. These conditions are the ones that
are used in the numerical results presented in the final section. They were devised before we had fully developed our
principle for choosing numerical boundary conditions, although they follow a similar idea.

The conditions we use are to approximate the z-derivative of the divergence equation

(Ug +Vy)g = Ugg +Vgy =0
(instead of the z derivative of the v momentum equation). This equation is approximated to fourth-order accuracy,
AwUp +iwDpVo =0 . (47)

We also apply the equations on the boundary although they are approximated to higher than second-order accuracy.
(Using second-order accuracy here does not result in a fourth-order scheme). The equation to fourth-order is given
on the boundary and the values for v and p at the second fictitious point are extrapolated as follows:

(D+)5V_, 0 (48)
(D+)°P_, = 0. (49)
This is like approximating the equation on the boundary with a one-sided difference scheme.
Thus we replace boundary conditions (38)-(40) by the boundary conditions (47)-(49).

We can analyze this scheme to show that it is locally stable. The unknown coefficients in the solution for the
error are determined from

DyU, = h'g

Ahﬁo + ith% = hig,
(D+)Voe = g3

(D+)°P_y = ga.

Following the argument presented previously leads to

u;y =

1 w—Vs+w? , go (2+V3)g5 ;5 27\5
{- 50+, )(m* s I+ 05 +hy)

v = (7+4\/_) g3h® + O((V's + w2h)?

T 9633
o= (—g— %Qs)éh‘i + O((V's + w2h)®)
mo= O _2:?,;[) 94h® + O((V/s + w?h)°
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Thus this scheme is fourth-order accurate and locally stable.

6 Numerical results for the Incompressible Navier-Stokes Equations

In this section we present some results from a computer program that has been written to solve the incompressible
Navier-Stokes equations in complicated geometries in two and three-space dimensions. The grid construction program
CMPGRD [1] is used to generate an overlapping grid for the region of interest. We solve the system of equations
(32), discretized to fourth-order accuracy, together with the numerical boundary conditions (47)-(49). We also add
a damping term to the pressure equation (cf. equation (34)). The solution is advanced in time by a method of
lines approach. The velocity is advanced explicitly (with a Runge-Kutta method, for example) and at each stage in
the time step the pressure is computed from the elliptic equation for the pressure. The pressure equation is solved
either with sparse direct solvers, sparse iterative solvers (such as bi-conjugate gradient squared) or the multigrid
algorithm. Details on the discretization and solution procedure, as well as more extensive convergence studies can
be found in [3]. Readers interested in obtaining a copy of the programs should make enquiries to the first author
(whensha@watson.ibm.com).

To illustrate the fourth-order accuracy of the method we present some convergence studies. We force the equations
so that the true solution is known. In two space dimensions the equations are forced so that the exact solution will
be

Ugrue(T,9,t) = ( sin®(fx) sin(2fy) cos(2nt) , — sin(2fz)sin®(fy) cos(2nt) ) ,

sin(fz) sin(fy) cos(2nt) .
In table 1 we give results for the flow in a unit square with walls for boundaries. Indicated are the maximum
errors in u, p and V - u. The divergence is calculated as V4 - U; at all interior and boundary points. The estimated

convergence rate o, error < h?, is also shown. ¢ is estimated by a least squares fit to the maximum errors given in
the table.

Dtrue (.’E, Y, t) =

Error in Error in Maximum in
Grid u P V-u
20x20 [ 1.2x 1073 [ 41x10° | 1.2x1072
30x30[25x107* | 6.8x10~* 1.2 x 1073
40x40 [ 79x107° [ 21 x107F | 24x 1077
o 3.9 4.0 5.6

Table 1: Errors for flow in a square at ¢t = 1., and estimated convergence rate, e < h?, (f =1, v = .05)
In table 2 we give results for the flow in a unit circle. The solution and grid are shown in figure 1.
Error in Error in Maximum in
Grid u p V-u
35x35Ub5x11 | 3.1x1073 [ 1.0x 1072 | 1.7x1072
69 x690U109x 21 | 1.9x 10~* | 6.4 x 10~* 8.8 x 1074
o 4.0 4.0 4.3

Table 2: Errors for flow in a circle at ¢ = 1., and estimated convergence rate, e o< h?, (f = 1, v = .05)

As an example in three dimensions we show results for the flow between two spheres. In three-space dimensions
the equations are forced so that the true solution is known and equal to

Wrne(Z, Y, 2,t) = ( sin(fz) cos(fy) cos(fz) cos(2nt) ,
cos(fz) sin(fy) cos(fz) cos(2nt) ,
—2cos(fz) cos(fy) sin(fz) cos(2mt) ) ,
Dtrue(T,y,2,t) = sin(fzx)sin(fy)sin(fz) cos(2nt) .
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The spherical shell is the domain outside a sphere of radius Ry = % and inside a a concentric sphere of radius Ry = 1.
The grid for this region was created using two component grids; one component grid covers the top half of the domain
and the second grid covers the bottom half. In table 3 results are shown for computations in this spherical shell.

Error in Error in Maximum in
Grid u p V-u
252 x TU25% x 7 1.1 x1073 | 3.8 x 103 2.6 x 1073
372 x10U3T? x10 | 22x107* [ 7.0x10~* | 48x10°*
492 x 13U492 x13 | 7.3 x10°° [ 22x 10°* 1.7x10°%
o 4.0 4.2 4.2

Table 3: Errors for flow in a spherical shell at ¢ = .5, and estimated convergence rate, e < h?, (f = %, v =.05)

As a final example results are shown from the computation of the two-dimensional flow past a cylinder. The
cylinder is located at the origin and has radius . The computational domain is [z, 5] X [ya,ys] = [—2.5,15] x
[—3.5,3.5]. The kinematic viscosity is 155. The top and bottom boundaries are slip walls (n - u = 0,9,(t - u) = 0).
Here n is the inward facing unit normal vector and t is the unit tangent vector. The left boundary is inflow (n-u =1,
t-u = 0), and the right boundary outflow (8,p = —2v/(3(ys — ya))?, 82(n-u) = 0, &2(t - u) = 0). The cylinder
has no-slip boundary conditions (u = 0). The Reynolds number based on the cylinder diameter and a velocity of
11is R, = 100. At this Reynolds number the steady symmetric solution is unstable and an unsteady flow develops.
The unsteady flow takes a long time to develop — it is not until time ¢ = 40 that the Karméan vortex street is clearly
visible. See figures (2-4). The ratio of the maximum divergence to the maximum vorticity was always less than about

3 x 1078,
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Incompressible Navier—Stokes , u
t = 1.00 dt = 0.42E-02 nu =.05000
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Figure 1: Flow in a circle, overlapping grid and computed solution
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Incompressible Navier—Stokes , u
t = 50.00 dt = 0.36E—-02 nu =.01000

LO= —-0.24E+00 HI= 0.15E+01 INC= 0.86E-01

Figure 2: Flow past a cylinder, horizontal velocity
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Incompressible Navier—Stokes , vorz
t = 50.00 dt = 0.36E—02 nu =.01000
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Figure 3: Flow past a cylinder, vorticity, max=26, min=—26.

18



= =~

=
SN = 1}

b SeaNSe e
=T BRSS oS
===o. NN =
SENSNS N

z
Z9% EEEas

Figure 4: Overlapping grid near the cylinder with contours of u
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