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Outline

1 Background: overlapping grids, Overture and CG.
2 Deforming Composite Grids (DCG) for fluid structure interactions.
3 The elastic-piston problem and the fluid-solid Riemann problem.
4 Stable interface conditions for coupling the Euler equations and

the elastic wave equation.
5 Verification problems.

1 super-seismic shock
2 deforming diffuser.
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The Overture project is developing PDE solvers for a
wide class of continuum mechanics applications.

Overture is a toolkit for solving PDE’s on overlapping grids and includes CAD,
grid generation, numerical approximations, AMR and graphics.

The CG (Composite Grid) suite of PDE solvers (cgcns, cgins, cgmx, cgsm,
cgad, cgmp) provide algorithms for modeling gases, fluids, solids and E&M.

Overture and CG are available from www.llnl.gov/CASC/Overture.

We are looking at a variety of applications:

wind turbines, building flows (cgins),

explosives modeling (cgcns),

fluid-structure interactions (e.g. blast effects) (cgmp+cgcns+cgsm),

conjugate heat transfer (e.g. NIF holhraum) (cgmp+cgins+cgad),

damage mitigation in NIF laser optics (cgmx).
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Previous work: shock hitting rigid cylinders with AMR

(Shock hitting rigid cylinders with AMR)

randomCylRhoWithGrids.mpg
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Current work: shock hitting elastic cylinders

(Shock hitting elastic cylinders)

shockMultiDisk.mpg
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What are overlapping grids and why are they useful?

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be
rapidly generated as bodies
move.

High quality grids under large
displacements.

Cartesian grids for efficiency.

Efficient for high-order
accurate methods.
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Deforming composite grids (DCG) for Fluid-Structure
Interactions (FSI)

Goal: To perform coupled simulations of compressible fluids and
deforming solids.

A mixed Eulerian-Lagrangian approach:

Fluids: general moving coordinate system with overlapping grids.

Solids : fixed reference frame with overlapping-grids (later:
unstructured-grids, or beam/plate models).

Boundary fitted deforming grids for fluid-solid interfaces.

Strengths of the approach:

maintains high quality grids for large deformations/displacements.

efficient structured grid methods (AMR) optimized for Cartesian grids.
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A sample FSI-DCG simulation

Gas

Solid

Mach 2 shock in a gas hitting two elastic cylinders.

Solve Euler equations in the fluid domains on moving grids.

Solve equations of linear elasticity in the solid domains.

Fluid grids at the interface deform over time (hyperbolic grid generator).

Adaptive mesh refinement (in progress).
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Fluid and Solid Solvers

Fluid solver: we solve the inviscid Euler equations with a second-order
extension of Godunov’s method (cgcns).

• WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using
Overlapping Grids with Adaptive Mesh Refinement, J. Comp. Phys. 227 (2008).
• WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed
Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
• WDH., DWS, An adaptive numerical scheme for high-speed reactive flow on overlapping grids,
J. Comp. Phys. 191 (2003).

Solid solver: we solve the elastic wave equation as a first order system
with a second-order upwind characteristic scheme (cgsm).

• Daniel Appelö, JWB, WDH, DWS, "Numerical Methods for Solid Mechanics on Overlapping
Grids: Linear Elasticity, LLNL-JRNL-422223, submitted (2010).
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The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance
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The elastic piston
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t
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The governing equations for the solid and fluid are

8

>

<

>

:

ūt − v̄ = 0

v̄t − σ̄x̄/ρ̄ = 0

σ̄t − ρ̄c2
p v̄x̄ = 0

, for x̄ < 0,

8

>

<

>

:

ρt + (ρv)x = 0

(ρv)t + (ρv2 + p)x = 0

(ρE)t + (ρEv + pv)x = 0

, for x > F (t),

where ρE = p/(γ − 1) + ρv2/2. The interface conditions are

v̄(0, t) = v(F (t), t),

σ̄(0, t) = σ(F (t), t) ≡ −p(F (t), t) + pe.
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An exact solution to the elastic piston problem
For a given x = F (t), and constant ρ0, p0 , v0 = 0, the solution in the fluid region F (t) < x < a0t is (assuming no shocks)

v(x, t) = Ḟ (τ(x, t)),
a(x, t)

a0
= 1 +

γ − 1

2

 

v(x, t)

a0

!

,
p(x, t)

p0
=

 

ρ(x, t)

ρ0

!γ

=

 

a(x, t)

a0

!2γ/(γ−1)

,

x − F (τ) =

»

a0 +
γ + 1

2
Ḟ (τ)

–

(t − τ).

The general solution for the solid follows from the d’Alembert solution,

ū(x̄, t) = f (x̄ − cp t) + g(x̄ + cp t),

f (ξ) =
1

2

ˆ

ū0(ξ) −
1

cp

Z ξ

0
v̄0(s)ds

˜

for ξ < 0,

g(ξ) =

(

1
2

ˆ

ū0(ξ) + 1
cp

R ξ
0 v̄0(s)ds

˜

for ξ < 0,

F (ξ/cp) − f (−ξ) for ξ > 0.

Applying the interface equations gives an ODE for F (t) in terms of the initial conditions,

p0

ρ̄c2
p

h

1 +
γ − 1

2a0
Ḟ (t)

i2γ/(γ−1)
+

Ḟ (t)

cp
= −

ˆ

ū′

0(−cp t) −
1

cp
v̄0(−cp t)

˜

, for t > 0.

Alternatively if we choose F (t) = − a
q tq , we can choose initial conditions in the solid as

ū0(x̄) = −
p0

ρ̄0c2
p

Z x̄

0

h

1 +
γ − 1

2a0
Ḟ (−s/cp)

i2γ/(γ−1)
ds, v̄0(x̄) = Ḟ (−x̄/cp), for x̄ < 0,

to give a smooth solution with the specified interface motion.
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The solution of the fluid-solid Riemann (FSR) problem
defines our interface projection.

x

t

x = F (t)
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»
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–

fluidsolid

special case of elastic piston problem - constant initial conditions in fluid
and solid.

the fluid may have a shock or expansion fan on the C+ characteristic.
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Solution of the linearized fluid-solid Riemann problem

Characteristic relations:

Solid: z̄v̄ ∓ σ̄ = z̄v̄0 ∓ σ̄0, on dx̄/dt = ±cp,

Fluid: zv ∓ σ = zv0 ∓ σ0, on dx/dt = v0 ± a0,

where z = ρ̄cp and z̄ = ρ̄a0 are the acoustic impedances.

The state next to the interface is an impedance weighted average of the fluid
and solid states:

v1 = v̄1 =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
,

σ1 = σ̄1 =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1 +
v0 − v̄0

z̄−1 + z−1 .

The solution to the full nonlinear problem can also be determined.

Henshaw (LLNL) Deforming Composite Grids for FSI CSE2011 15 / 28



The FSI-DCG time-stepping algorithm

The FSI-DCG interface approximation is an extension of the scheme of
Banks and Sjögreen:

J. W. Banks and B. Sjögreen, A Normal Mode Stability Analysis of Numerical
Interface Conditions for Fluid/Structure Interaction, Commun. Comput. Phys.,
2011.

The main steps are:
1 The fluid and solid domains are first advanced independently

giving provisional interface values.
2 The provisional interface values are projected based on the

solution to the fluid-solid Riemann problem.
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The FSI-DCG time-stepping algorithm

solid fluid

x̄

w̄n
−1w̄n

0w̄n
1w̄n

2
. . .

xwn
−1 wn

0 wn
1 wn

2
. . .

Define discrete approximations, (vn
i ≈ v(i∆xi , n∆t), v̄n

i ≈ v̄(i∆x̄i , n∆t))

Solid: w̄n
i = [ūn

i , v̄n
i , σ̄n

i ] i= −1, 0, 1, . . .

Fluid: wn
i = [ρn

i , vn
i , pn

i ], i= −1, 0, 1, . . .
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The FSI-DCG time-stepping algorithm

stage condition type assigns

1a Predict grid and grid velocity extrapolation F p, Ḟ p

1b Advance wn
i , w̄n

i , i = 0, 1, 2, . . . PDE interior, interface

2a Eval vI , σI , ρI from FSR projection vI , σI , ρI

2b vn
0 , v̄n

0 = vI , −pn
0 , σ̄n

0 = σI , ρn
0 = ρI projection wn

0, w̄n
0

2c wn
−1 = E

(3)
+1 wn

0, w̄n
−1 = Ē

(3)
+1 w̄n

0, extrapolation wn
−1, w̄n

−1

2d Eval : v̇f = −
1
ρ
∂x p,. . . PDE v̇f , v̇s , σ̇f , σ̇s

2e Eval v̇I , σ̇I from FSR projection v̇I , σ̇I

3a −
1
ρ
∂x p = v̇I , ρa2∂x v = σ̇I compatibility pn

−1, vn
−1

3b ρ̄c2
p∂x v̄ = σ̇I ,

1
ρ̄
∂x σ̄ = v̇I compatibility v̄n

−1, σ̄n
−1

3c Correct grid and grid velocity projection F n, Ḟ n
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The interface projection step

Using the linearized FSR solution, the interface values are an impedance
weighted average of the provisional fluid and solid values:

vI =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
,

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1 +
v0 − v̄0

z̄−1 + z−1

Compare: the standard FSI scheme uses the heavy solid limit, z̄ ≫ z,
velocity-from-solid, stress-from-fluid:

vI = v̄0

σI = σ0 = −p + pe

The standard scheme is unstable for light solids.

Note: for hard problems with shocks hitting the interface, there are
advantages to using the full nonlinear solution to the FSR problem.
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Elastic piston numerical results

Computed solution for a smoothly receding piston.

Fluid Solid
grid N ρ r v r p r ū r v̄ r σ̄ r
G1 20 2.2e-3 2.7e-3 1.6e-3 4.9e-4 9.3e-5 1.2e-4
G2 40 5.4e-4 4.1 6.2e-4 4.3 3.7e-4 4.3 1.2e-4 4.2 2.6e-5 3.6 2.3e-5 5.0
G3 80 1.4e-4 3.9 1.5e-4 4.0 9.3e-5 4.0 2.9e-5 4.1 6.2e-6 4.1 5.0e-6 4.7
G4 160 3.5e-5 3.9 3.9e-5 3.9 2.3e-5 4.0 7.3e-6 4.0 1.5e-6 4.1 1.1e-6 4.4
rate 1.99 2.03 2.03 2.03 1.99 2.24

Max-norm errors for very light solid: ρ̄ = 10−5, z/z̄ = 5.8 × 103.

Fluid Solid
grid N ρ r v r p r ū r v̄ r σ̄ r
G1 20 9.2e-4 9.6e-4 8.5e-4 3.0e-4 1.3e-5 1.1e-5
G2 40 2.1e-4 4.3 2.3e-4 4.2 2.0e-4 4.2 7.3e-5 4.2 3.0e-6 4.4 2.6e-6 4.2
G3 80 5.6e-5 3.8 5.6e-5 4.1 4.9e-5 4.1 1.8e-5 4.0 6.9e-7 4.4 6.3e-7 4.2
G4 160 1.5e-5 3.9 1.4e-5 4.0 1.2e-5 4.0 4.5e-6 4.0 1.6e-7 4.2 1.5e-7 4.2
rate 1.99 2.04 2.04 2.02 2.12 2.07

Max-norm errors for very heavy solid: ρ̄ = 105, z/z̄ = 5.8 × 10−7.

Max-norm errors are converging to second-order accuracy.

Scheme is stable for large and small impedance ratios.
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Two-dimensional verification problems

1 superseismic shock.
2 deforming diffuser.
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The superseismic shock FSI problem

x

y shock

ξ w0w1

fluid

solid

w0w1
w2

interface

θ

p-wave

ηp

s-wave

ηs

S

a fluid shock moving from left to right deflects a solid interface.

an FSI problem with an analytic traveling wave solution.
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Superseismic shock: grids and computed solution

ρ

v̄2

The red grid for the solid domain is shown adjusted for the displacement.
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L1-norm errors and convergence rates for the
superseismic shock

Solid Fluid
Grid |ū| r |v̄| r |σ̄| r ρ r |v| r T r

G
(4)
ss 8.6e-5 2.8e-3 7.9e-3 4.6e-3 2.2e-2 1.1e-2

G
(8)
ss 3.6e-5 2.4 1.7e-3 1.6 5.0e-3 1.6 2.6e-3 1.8 1.3e-2 1.7 6.6e-3 1.7

G
(16)
ss 1.5e-5 2.5 1.1e-3 1.6 3.1e-3 1.6 1.4e-3 1.9 6.7e-3 1.9 3.5e-3 1.9

G
(32)
ss 5.6e-6 2.7 6.9e-4 1.6 2.0e-3 1.6 7.0e-4 2.0 3.4e-3 2.0 1.7e-3 2.0

rate 1.32 0.67 0.67 0.91 0.92 0.91

Due to the discontinuities, the L1-norm errors do not converge at
second-order.

The solid variables v̄ and σ̄ converge at the expected rates of 2/3 (due
to spreading of the linear discontinuities).

In isolation the fluid domain should converge at first order.
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The deforming diffuser
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an FSI problem with a smooth semi-analytic solution.

Fluid: Prandtl-Meyer analytic solution is defined as a function of F (x).

Solid: steady elasticity equations are solved on a fine grid.

The coupled exact solution and F (x) are determined by iteration.
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The deforming diffuser grid and solution

Contours of the fluid pressure, [min, max] = [.5, 1.] and norm of the solid
stress tensor |σ̄|, [min, max] = [0, .054].
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Max-norm errors and convergence rates for the
deforming diffuser

Solid
Grid |ū| r |v̄| r |σ̄| r

G
(2)
dd 2.3e-4 8.6e-4 4.0e-2

G
(4)
dd 5.8e-5 3.9 2.3e-4 3.8 1.2e-2 3.4

G
(8)
dd 9.9e-6 5.9 4.6e-5 5.0 2.0e-3 5.8

G
(16)
dd 1.6e-6 6.2 9.5e-6 4.8 3.4e-4 5.9

rate 2.40 2.18 2.31

Fluid
Grid ρ r v1 r v2 r T r

G
(2)
dd 3.6e-2 1.7e-2 2.3e-2 1.2e-2

G
(4)
dd 8.8e-3 4.1 3.8e-3 4.5 7.1e-3 3.2 2.5e-3 4.7

G
(8)
dd 2.1e-3 4.1 8.6e-4 4.4 2.3e-3 3.1 7.9e-4 3.2

G
(16)
dd 5.0e-4 4.3 2.0e-4 4.3 5.2e-4 4.5 1.7e-4 4.8

rate 2.05 2.15 1.80 2.02

max-norm errors at t = 1 with the Godunov slope-limiter off.

solutions are converging to second-order in the max norm.
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Summary

the deforming composite grid (DCG) approach is being developed
to to model fluid-structure interactions (FSI) for compressible
fluids and elastic solids.

the solution of the fluid-solid Riemann problem can be used to
define stable interface approximations for both light and heavy
solids.

our FSI-DCG approximation was verfied to be second-order
accurate in the max-norm on problems with smooth solutions.

Future work:

support for adaptive mesh refinement (AMR) at the interface.

more general solid mechanics models.

incompressible fluids.

extend to three space dimensions.
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