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Abstract. We describe a split-step finite-difference scheme for solving the incompress-
ible Navier-Stokes equations on composite overlapping grids. The split-step approach
decouples the solution of the velocity variables from the solution of the pressure. The
scheme is based on the velocity-pressure formulation and uses a method of lines ap-
proach so that a variety of implicit or explicit time stepping schemes can be used once
the equations have been discretized in space. We have implemented both second-order
and fourth-order accurate spatial approximations that can be used with implicit or
explicit time stepping methods. We describe how to choose appropriate boundary con-
ditions for the pressure to make the scheme accurate and stable. A divergence damping
term is added to the pressure equation to keep the numerical dilatation small. Several
numerical examples are presented.

1 Introduction

We consider solving the incompressible Navier-Stokes equations with finite dif-
ference methods on composite overlapping grids using an accurate and stable
split-step approach that decouples the solution of the velocity from the solution
of the pressure. Second-order and fourth-order accuracy has been achieved in
space and second or higher order accuracy in time can be easily accomplished.

In primitive-variables the initial-boundary-value problem (IBVP) for the in-
compressible Navier-Stokes equations is

Ou/dt+ (u-V)u+Vp=vAu+F, forxe 2, t>0,
V-u=0, forxe 2, t>0, 1)
B(u,p) =g, forx € 912, t >0,
u(x,0) = f(x), for x € (2.

Here u = (uy,u2, u3) is the velocity, p is the kinematic pressure (pressure divided
by the constant density), v is the kinematic viscosity, F is the forcing per unit
volume, (2 is a bounded open domain in R?%, d = 2 or d = 3, and 92 is the
boundary of (2. The initial conditions should satisfy V - f = 0. There are d
boundary conditions denoted by B(u,p) = 0. On a fixed wall, for example, the
boundary conditions are u = 0. We assume that all data are sufficiently smooth
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and compatible. Depending on the boundary conditions the pressure may only
be determined up to a constant in which case we impose the average pressure to
be zero. We refer to the formulation (1) as the “velocity-divergence” formulation.

An alternative form of this IBVP, which we call the “velocity-pressure” for-
mulation, is

Ou/ot+ (u-V)Iu+Vp=vAu+F, forxe 2, t>0,
Ap+ J(Vu) —a(x)V-u=V-F, forxe, t>0,

B(u,p) =g, for x € 912, t >0, (2)
V-u=0, for x € 012,
u(x,0) = f(x), for x € 12,

where

d
ou
J(Vu) = Z Vi, - ——
~ or

m

Here, the equation V -u = 0 in (1) has been replaced by an elliptic equation
for the pressure, which is obtained by taking the divergence of the momentum
equations, and using V - u = 0. The Poisson equation for the pressure needs
an additional boundary condition and the boundary condition on the dilatation
in (2) fills this purpose. Although V - u = 0 does not look like a boundary
condition for p, once the equations have been discretized the connection will
become apparent. We have also added the divergence damping term,

a(x)V-u, a>0,

to the pressure equation. In the continuous case this term has no effect, but in
the discrete case this term will be important to keep the dilatation small. To
see why this term might be important we can write down the equation satisfied
by the dilatation, § = V - u, formed by taking the divergence of the momentum
equation,

86/t + (u-V)d = vAJ — ad. (3)

The term we have added to the pressure equation appears as a linear damp-
ing term in the evolution equation for the divergence. Note that d(x,t) will be
identically zero for all times since the initial condition is §(x,0) = 0 and the
boundary condition is §(x,t) = 0. This observation motivates the extra bound-
ary condition V - u = 0, since it forces the dilatation to be zero everywhere for
all times and thus guarantees that solutions of the velocity-pressure system (2)
also satisfy the velocity-divergence equations (1).

The incompressible Navier-Stokes equations in primitive variables can be
discretized in a variety of ways. Harlow and Welch [8] provided what was per-
haps the first discretization with the MAC technique using staggered grids.
Later the projection method was devised by Chorin[5] and independently by
Temam[25]. The projection method was extended to an implicit fractional-step



A Split-Step Scheme for the Navier-Stokes Equations 3

Fig. 1. Two falling bodies in an incompressible flow. The overlapping grids are recom-
puted at every time-step.

method by Kim and Moin[15]. The method of artificial compressibility, intro-
duced by Chorin [4], is another popular approach. For example, this method was
used by Kiris et al. [16] to compute the flow in an artifical heart. There have been
numerous other approaches developed based on finite-difference, finite-volume,
finite-element and spectral-element discretizations, such as [1][2][14][26][17][23][9],
to name a few.

There are a number of fundamental issues that must be dealt with when
designing a scheme for the incompressible Navier-Stokes equations:

e The pressure should be free of spurious oscillations. Straight-forward dis-
cretizations of (1) can lead to the checker-board instability (corresponding
to a violation of the Babuska-Brezzi condition in finite-elements).

e Many approaches require extra boundary conditions, either for the pressure
or for an intermediate velocity field, which can be non-trivial to choose.

e If the pressure is only determined up to a constant (for example when Neu-
mann boundary conditions are enforced on 912), there will be a compatibility
condition on the data for the pressure equation.

e For efficiency it is useful to decouple the solution of the velocity from the
solution of the pressure.

e The discrete divergence should be small, i.e., of the order of the truncation
error in the numerical method.
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There have been long discussions in the literature related to these issues, espe-
cially concerning boundary conditions for the pressure [7,18,14,23] and whether
fractional-step projection methods are inherently first-order accurate in the pres-
sure [19,24,22,6]. We refer to Brown et. al. [3] for a discussion of how to get
second-order accuracy in the pressure with the fractional-step projection method.
In the present paper, we summarize the results of our research, and describe how
the above four issues are handled in our approach.

Here we describe a straight-forward approach that leads to an efficient second
(or higher) order accurate scheme in both the velocity and the pressure. We use
a method of lines approach to discretize the velocity-pressure formulation (2).
We begin by discretizing in space. For ease of presentation we consider solving
the equations in two space dimensions on a square grid G, with grid spacing
h=1/N, for N a positive integer:

G = {xi = (wi,ys) = (ih,jh)  i,j=-1,0,1,... ,N+1}

Here i = (7, ) is a multi-index. We include ghost points at the boundaries to aid
in the discretization. To be specific, we consider a Dirichlet boundary condition
for the velocity:

u(x,t) = g(x,1). (4)

We first discretize in space. Let (U;(t), P;(t)) be the numerical approximation
to (u(x,t),p(x,t)) with U;i(t) = (Ui(t), Vi(t)). The spatial approximation is

dU;/dt = —(U; - Vp)U; = VR P+ vAL U + By, 6,j=1,2,... ,N—1 (5)
ApP; = a;Vy - U; — J(VRU;i) + Vi, - Fy, ,7=0,1,2,... /N (6)
U; = g(xi,t) = (9"(xi,1), 9" (%1, 1)) i=0,j=0,1,2,...,N (7)
Do, Ui = —Doy g7 i=0,7=0,1,2,... ,N (8)

The boundary conditions have only been specified at © = 0; similar expres-
sions will hold at the other boundaries. The operators V, Ay are the standard
centered difference approximations to V and A:

Vi Ui = Dy, U; + DOin , AU = (D—i—zD—z + D+yD—y)Ui,
Do, Us = % . DoU; = %
DUy = D=V p g2 Ym0t

We avoid the checker-board instability problem since we have directly discretized
the pressure equation using a compact difference approximation. The discrete
approximation will require extra numerical boundary conditions. Applying the
general principle for deriving numerical boundary conditions described in [13],
we use the equations themselves to tell how the solution should behave at the
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boundary. Note for example, that the pressure equation (6) is applied on the
boundary, ¢ = 0. As a numerical boundary condition, we could also apply the
momentum equations on the boundary and thus determine the values for U_; ;.
However, in order to keep the solution of the pressure decoupled from the veloc-
ity, we instead only apply the normal component of the momentum equation on
the boundary,

Op _

% _ (g - (g Vu+vau), ©)

and extrapolate the tangential component of the velocity,
DizV,lj = Vflj — 3V0j + 3V1j — sz =0. (10)

We call (9) the div-grad pressure boundary condition. Note that by itself it adds
no new information to the continuous PDE and cannot replace V - u = 0 as the
extra boundary condition required by the velocity-pressure formulation. After
discretization, (9) becomes

DOwPOj:VD-i-wD—zUOja jZO,l,...,N, (11)

where we assumed g = 0 for simplicity. We can now see how V - u = 0 provides
a boundary condition for the pressure: the discrete divergence boundary condi-
tion (8) determines the ghost line value of the normal component of the velocity,
U_1,j, which is used in (11). By eliminating that ghost line value, we obtain a
special stencil for the right hand side:

DuuPoj = vy Disllys, §=0,1,...,N.

We believe that the reason (9) is not more widely used is due to the fact
that applying a discrete form of (9) can easily lead to a unstable method since
the second-derivative of u appears on the right hand side. To achieve a stable
scheme using (9), it is extremely important to also enforce the essential boundary
condition V -u = 0.

Equations (5-8, 11, 10) can be solved with a method of lines approach. If we
wish to have a split-step scheme where the solution of the pressure equation is
decoupled from the solution of the velocity components, we should choose a time
stepping scheme for the velocity components that only involves the pressure from
previous time steps. Let us introduce the operators L = Ly + Lj representing
various terms in the momentum equation:

LU; = —(Ui . Vh)Ui — ViuP + I/AhUi,
LEUi = —(Ui . Vh)Ui - thi,
L[Ui = I/AhUi.

L and Lg will be the parts of the operator that we treat implicitly and explicitly,
respectively.
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Fig. 2. Flow past a rotating disk.

1.1 An explicit scheme

As a first example we solve these equations with the explicit second-order Adams-
Bashforth scheme. In this approach we first advance the velocity using

urtt —ur 3 1
= ;LU +F]) - §(LU{‘_1 +FpY), i,j=1,...,N—1, (12)
Urt! = g(xg, 1"+, i=0,j=0,...,N, (13)
Do, UM = —Doyg° (xi, t" 1), i=0,7=0,...,N, (14)
D, Vit =0, j=0,...,N. (15)

Here U} = u(x;,nAt). These equations determine U"*! at all points including
the ghost points. We then solve for the pressure from
ARPPH — oV, - UM 4 (VUMY =0, 0,j=0,1,...,N, (16)
Do P!+ = vD D UM + B, (U™, gft!), i=0,j=0,1,...,N, (17)

where the boundary forcing satisfies

u

0
BP(Uag) = _% - uDOa;U - gvDoygv + VD+yD_ygu.
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To improve the stability properties of the time-integrator, we often use the above
scheme as the predictor followed by a second-order Adams-Moulton corrector.

1.2 A semi-implicit scheme

As another example, we have implemented a semi-implicit method that combines
a Crank-Nicholson treatment for the viscous terms and an Adams-Bashforth
approach for the advection terms and pressure. Instead of equation (12) we use

uptt—ur 3

1 1
A =5 (LU +FY) — §(LEUin_1 +FP7) + §(L1U?+1 + L;UY)

together with equations (13-15) to advance the velocity in time. Again, we can
improve the stability properties by using the above scheme as the predictor
followed by a second order Adams-Moulton corrector.

Since the boundary condition for the pressure (17) depends on v/h? and since
the pressure is taken explicitly in the time stepping scheme, one might suspect
that At must depend on the ratio h%/v. This is indeed the case when a discrete
version of (9) is used as the boundary condition for the pressure. For implicit
time stepping, a more stable pressure boundary condition is formed by explicitly
removing the dilatation on the boundary in the highest order term, Au, by using
the vector identity

Au=V(V-u) -V xV xu,
together with V(V -u) =0, to give

% _

6n_n.(_gt_(g-vu)—l/Vxqu). (18)

We call this the curl-curl boundary condition for the pressure. This boundary
condition was apparently first advocated by Karniadakis, Israeli and Orszag [14]
as the appropriate boundary condition for the pressure. Unlike equation (9)
this new equation does add new information to the system and can be used
as an alternative boundary condition to V - u = 0. Note that the boundary
condition (18) is specifying the normal derivative of the dilatation to be zero on
the boundary since (18) was derived from (9) using

0
—(V-u) =0. 19
~(V ) (19
Referring back to equation (3) we see that the above boundary condition, to-
gether with the initial condition §(x,0) = 0, will also force the dilatation to be
zero for all time.

On the square grid G, the discrete version of (18) becomes

Dog PP = —vDy, Do, V"™ + B, (UM gty §=0,j=0,1,...,N, (20)
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Note that the stencil for the viscous term is significantly different in the dis-
cretized curl-curl (20) and div-grad (17) pressure boundary conditions; this is
the source of the different stability properties of the two boundary conditions.
A detailed stability analysis, Petersson [20], shows that the time step is only
determined by the advection terms (i.e. is independent of v) if (17) is replaced
by the curl-curl boundary condition (20). This is somewhat remarkable, since
the pressure is treated explicitly.

We remark that in our implementation, we use the curl-curl pressure bound-
ary condition both for the explicit and semi-implicit schemes.

It is straight-forward to build time stepping schemes that are accurate to
any desired order in time. The reason for this is that in the approach we have
taken we have effectively reduced the solution of the incompressible Navier-
Stokes equations to solving a system of ODE’s for Uj:

d
dt

since we can treat the pressure simply as a function of the velocity.
The difference approximations presented here can be easily extended to curvi-

linear grids and to composite overlapping grids. The approximations can be also
be made fourth order accurate in space, see [10] for further details.

U; = F(Ui,t),

1.3 The compatibility condition for the pressure equation

If the pressure has a Neumann boundary condition on all boundaries the pressure
equation will be singular and it is only solvable if the right hand side satisfies
a compatibility condition on the velocity. In order to solve this singular system
one could, for example, eliminate one equation and replace it with an equation
that, for example, sets the value of p at a point or sets the mean value for p.
Rather than single out a particular equation to be removed we prefer to use a
different approach which is better conditioned. If we denote the equation for the
pressure as the matrix equation,

Az =b

then we solve the augmented system

41011

Here r is the right null vector of A; the vector with all components equal to one.
It is well-known that this augmented system is non-singular and has an unique
solution. The last equation will set the mean value of p to zero.

1.4 The discrete divergence

In practice it is important to include the divergence damping term, a; Vj - Uj,
in the pressure equation (6). Alternatively, one could apply an extra explicit
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projection to the solution after every step, but this would require a significant
amount of extra work. The damping coefficient a(x,t) can be chosen to be quite
large. When using an explicit time stepping approach, we choose

v
ﬁ;
where the coefficient Cj is usually taken to be about one. On a rectangular grid
this makes a proportional to 1/At. Note that on a curvilinear grid the coefficient
will vary in space. One might wonder whether this divergence damping term,
which is a potentially order one addition to the pressure equation, will destroy
the accuracy of the method. In [12] we analyse this damping term using normal-
mode stability analysis and show that the method retains it’s accuracy even with
this term. In practice we find that increasing Cy will result in a decrease of the
maximum dilatation (up to a point) but it can also increase the error in the
pressure.

A von Neumann stability analysis shows that the allowable time step, At,
will depend on the size of «. For implicit methods we do not want the damping

coeflicient to significantly reduce the time step so it is necessary to limit the size
of a by C'/At for a constant C' = O(1).

Oé:Cd

2 Numerical results

In this section we present some results from a numerical implementation of the
scheme described in this paper. The method was implemented in the OverBlown
flow solver. OverBlown is developed using the Overture object-oriented frame-
work and can solve the incompressible Navier-Stokes equations on composite
overlapping grids in two and three space dimensions. Both OverBlown and
Overture are freely available from the internet at http://www.llnl.gov/-
casc/0Overture. Currently OverBlown only has a second-order accurate spa-
tial approximation implemented, although a fourth-order accurate method has
previously been developed in Fortran [10]. Details on the discretization and so-
lution procedure, as well as more extensive convergence studies can be found
in [11].

As a first test we use the method of analytic solutions to define the follow-
ing exact solution to the (forced) two-dimensional incompressible Navier-Stokes
equations,

utrue(x;y:t) = (12 + 2zy + y2) T(t)7
Utrue(may7t) = (372 - 2:L.y - y2) T(t)7

1
ptrue(mayat) = (372 + 5.’6:1/ + yZ - 1) T(t)a

11
T(t)=1+=t+ =t
() +5t+ 3t

The exact solution has been chosen to be divergence free to simplify the im-
plementation. This test example is extremely useful for our purposes since this
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Fig. 3. Grids used for the convergence studies: circle-in-a-channel (top-left), square-in-
a-square (top right), sphere-in-a-box (bottom left)

solution should also be an ezact solution to the discrete equations on a rectangu-
lar grid. Indeed the errors obtained when solving this problem are of the order
of the round-off error for grids consisting of a single square and also for a com-
posite grid consisting of a rotated square in a square, as shown in Table 1. For
debugging purposes this is an excellent test since, modulo roundoff errors, the
numerical errors should be exactly zero at every time step. For these grids, it is
therefore not necessary to run extensive convergence tests using grid refinement
to check convergence rates.
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Table 1. Maximum errors when the analytic solution is a quadratic polynomial, v = .1,
t = 1.0. Since the grids are rectangular the method gives the exact answer to within
roundoff. The grid “sis” is the square-in-a-square overlapping grid consisting of a square
embedded in a larger square shown in figure (3). The 3D grid “rbib” is a rotated box
within a box.

grid method [|p — pelloo  [lu = telloc [[v—velloo [[w—twello IV -1l
squarel0 explicit 3.1107!® 18107 8910716 6.2 10°1°
squarel0 implicit 1.2 107'* 9.8107'®* 3.8107!° 5.0 107
sis explicit 1.3107' 3.6107* 3.210°'° 121071
box10 explicit 1.8107'% 27107 16107 181071 161074
rbib explicit 1.31071% 641072 821072 12107 1.1107%"

In three dimensions we use the exact solution

Utrue (T, Y, 1) = (2% + 2zy + y2 + 22) T(t),
Verue (2,9, 1) = (2% — 2zy — y? + 3z2) T(2),
Werue(T, Y, 1) = (.’E2 + 92 - 222) T(t),

1
ptrue(mayat) = (1'2 + §$y + y2 + Z2 - 1) T(t)a

with results shown in Table 1 for a box (box10) and a rotated-box in a box
(rbib).

On curvilinear grids, the above polynomial functions are not exact solutions
to the discrete equations due to the variable coefficients in the metric terms. Here
the order of accuracy can be checked by performing a grid refinement study, see
Tables 2-3. In these runs, the convergence rates were estimated by least squares
fits to the data.

The discrete pressure equation has an additional divergence damping term,
aV - u. To illustrate the effect this term has on the solution we present some
convergence studies. We force the equations so that the exact solution is known.
In two space dimensions we use

Werno (2, Y, 1) = ( sin?(fz) sin(2fy) cos(2mt) , — sin(2fz) sin®(fy) cos(2nt) )
Dtrue(T,y,t) = sin(fz) sin(fy) cos(2nt).

We solve the IBVP with and without the damping term turned on. The domain
is taken to be the unit square with all boundaries being walls where the velocity
is specified. The results for the fourth-order method are given in Tables 4 and 5,
where the maximum errors in u, p and V -u are reported. The estimated conver-
gence rate o, error  h7, is also shown. Here, ¢ is estimated by a least squares
fit to the maximum errors given in the table.
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The results show that although the methods are converging at the expected
rates without the damping term, the errors are significantly reduced when damp-
ing term is used.

2.1 Remarks on the pressure boundary condition

To illustrate the benefits of using the curl-curl boundary condition (18) we com-
pare the numerically determined largest stable time-step to that of the div-grad
boundary condition (9), for the semi-implicit time-stepping scheme described
in Section 1.2. The results are presented in Table 6. The grid is a circle-in-a-
channel and the Reynolds number based on the diameter of the circular cylinder
is Re = 100. Note that the allowable time step for the curl-curl boundary con-
dition is independent of v/h? so that At only depends on the advection terms
(which are treated explicitly). In contrast, the div-grad boundary condition (9)
requires a significantly smaller At that depends on v/h2.

In practice, it is not uncommon for application codes to use the simpler
pressure boundary condition

op

B 0. (21)
Using this boundary condition, it is not difficult to attain a stable scheme; a
likely reason for the popularity of the approach. On the other hand, a naive
implementation of the accurate condition dp/dn = vn - Au can easily lead to
an unstable method. For high-Reynolds number laminar boundary layer flow,
equation (21) could be a good approximation since dp/dn = O(Re~'/?) tends
to zero as Re — 00. To evaluate this approximation at a finite Reynolds number,
we computed the unsteady flow around two circular cylinders in a channel using
both the curl-curl pressure boundary condition and (21). In this case, Re = 10°
based on the diameter of one cylinder. As can be seen in Figure 4, the flow

Table 2. Maximum errors at ¢ = .5 for a polynomial analytic solution with v = .1.
The domain is discretized by the circle-in-a-channel grid shown in figure (3) where
the coarsest grid (g = 1) has 13 x 13|J 16 x 3 grid points. The time stepping was a
second-order explicit predictor corrector method. The column entitled hq/hg denotes
the ratio of the grid spacing on grid 1 to the spacing on grid g.

grid  hifhg lp—pelloo lu—uelloo [0 —velloo 1V - ulloo

g=1 1 3.3 10° 2810 4010 65107t
g=2 2 3.0107" 421077  44107% 1.5107!
g=3 4 601072 10102 8210°% 35102
g=4 8 70107  22107° 1.4107% 9.8107°
rate 2.9 2.3 2.7 2.0
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Table 3. Maximum errors at ¢ = .1 for a polynomial analytic solution with v = .1.
The grid is a sphere-in-a-box. The coarse grid, g=1, consists of component grids with
17x17%x17(J12x12%x 4| J12 x 12 x 4 grid points. The column entitled h;/hy denotes
the ratio of the grid spacing on grid 1 to the spacing on grid g.

grid /by [P =pelloo v —uelloo [[v=velloo |lw = wello IV -1l

g=1 1 24x10° 83x1072 71x1072 85x1072 6.0x 1071
g=2 2 6.4x107" 26x107% 19x107% 20x107% 1.6x 107!
g=3 3 26x107" 11x107% 7.7x107°® 7.6x107% 7.8x 107’
rate 2.0 1.8 2.0 2.2 1.9

Table 4. Maximum errors at ¢ = 1. with the 4th order spatial approximation and
v = .05. The divergence damping coefficient is Cq = 1. Compare these results to
Table 5 where no divergence damping is used.

grid  flu—ucllos [P =Pelloc IV -ullo

20x20 9.3107* 8.0107% 22102

30x30 121074 1.4107% 241073

40 x40 2.810°° 43107% 5.110°*
rate 5.0 4.2 5.4

Table 5. Maximum errors at ¢ = 1. with the 4th order spatial approximation and
v = .05. The divergence damping coefficient is Cq = 0. Compare these results to
Table 4 where divergence damping is used.

grid  [u—tclloo [P =Pelloc IV -1l

20x20 241073 131072  6.41072

30x30 5.1107* 25107  1.31072

40 x40 1.7107* 82107* 441073
rate 3.8 4.0 3.9

is laminar on the leading sides and detached on the trailing sides of the cylin-
ders. The pressure on the boundary of the upper cylinder using both pressure
boundary conditions is presented in Figure 5. Clearly, the simplified pressure
boundary condition (21) leads to an inaccurate boundary pressure. To validate
the computational results, we use the laminar boundary layer results provided by
Schlichting [21], pp.170-173, for 2—d flow around a circular cylinder. Schlichting
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Fig. 4. The vorticity around two circular cylinders in a channel at time ¢t = 2 plotted
with 18 equally spaced contour lines between +130. The Reynolds number based on
the diameter of one cylinder is Re = 10°.
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Fig.5. The (kinematic) pressure on the boundary of the upper cylinder using the
curl-curl pressure boundary condition (solid) and the simple boundary condition (21)
(dashed) at time ¢ = 2. The Reynolds number is Re = 10%. Note that the inflow velocity
Uin = 1 in this computation, so the pressure coefficient C), = 2p/UZ,, equals twice the
kinematic pressure p.
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Table 6. A comparison of the div-grad boundary condition (9) and the curl-curl bound-
ary condition (18) for semi-implicit time-stepping. Shown are the largest stable time-
steps and maximum errors for a forced computation. The time-step for the curl-curl
boundary condition can be chosen much larger since it is does not depend on the ratio
v/h?. The coarse grid had 41 x 21U21 x 14 points and the fine grid had 81 x 41U41 x 27
points.

BC Grid At P —pelloo llu—tello  [lv—vello [V -ulle

div-grad coarse 2.0-107® 58.1072 42.107? 86-107% 1.1.-107!
div-grad  fine 5.0-107* 57-107% 88-107®* 1.5-107% 24-1072
curl-curl coarse 1.1-1072 5.8-1072 4.2-107> 8.6-1072 1.1-107"
curl-curl  fine 55-107% 58.107% 88.107® 1.5.-107% 24.1072

provides a graph for the boundary shear stress,

ou®
TO = /J’ an Y

along the leading side of the cylinder. (Here, u(*) denotes the tangential velocity
component and p is the dynamic viscosity.) By evaluating the slope of that
graph, we obtain 8%u(®)/9s0n, where s is the arclength along the boundary of
the cylinder. This term is proportional to the normal derivative of the pressure,
since

24,(8)
@z—un-Vxquz—Vau

on 0sOn

(22)

In Figure 6, we plot (22) for Re = 103. At this Reynolds number, the normal
derivative of the pressure is not small even in the laminar region on the leading
side of the cylinder. On the trailing side of the cylinder, where the flow is de-
tached, the normal derivative is of the order O(1). We believe this will be the case
also for higher Reynolds numbers, since the assumptions of laminar boundary
layer theory do not apply for detached flows. We conclude that it is important
to use one of the accurate boundary conditions (9) or (18) for laminar flows at
low and medium Reynolds numbers as well as detached flows at any Reynolds
number.

As an illustration of some more advanced applications of our approach, in
Figure 1 we show the solution to an incompressible flow containing two rigid
cylinders. The cylinders fall under the influence of gravity and their motion is
determined by the forces exerted by the fluid. In this computation, the overlap-
ping grids are recomputed at every time step. Figure 2 shows the flow past a
rotating disk and Figure 7 shows the flow past a valve.
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15 I I I I I I I
-4 -3 -2 -1 0 1 2 3 4

Fig. 6. The normal derivative of the pressure along the boundary of the circular cylin-
der for Re = 2UR/v = 10%. The solid line was evaluated from the slope of the boundary
shear stress for a single cylinder, provided by Schlichting [21]. The dashed line was cal-
culated along the upper cylinder in the flow shown in Figure 4.

3 Software availability

The OverBlown flow solver and Overture are freely available from the internet
at http://www.1llnl.gov/casc/Overture.
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