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Outline

1 Background: overlapping grids, Overture and CG.
2 Incompressible flows and rigid bodies.

1 high-order accurate factored scheme and boundary conditions.
2 matrix-free multigrid.
3 moving grid generation.

3 Compressible flow and light rigid bodies (partitioned algorithms).
1 a one-dimensional model problem.
2 the added-mass Newton Euler equations.
3 overcoming the added-mass instability for light solids.

4 Compressible flow and deforming bodies (partitioned algorithms).
1 Deforming Composite Grids (DCG).
2 a one-dimensional model problem.
3 an interface projection scheme (fluid-solid Riemann problem).
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The Overture project is developing PDE solvers for a
wide class of continuum mechanics applications.

Overture is a toolkit for solving PDE’s on overlapping grids and includes CAD,
grid generation, numerical approximations, AMR and graphics.

The CG (Composite Grid) suite of PDE solvers (cgcns, cgins, cgmx, cgsm,
cgad, cgmp) provide algorithms for modeling gases, fluids, solids and E&M.

Overture and CG are available from www.llnl.gov/CASC/Overture.

We are looking at a variety of applications:

wind turbines, building flows (cgins),

explosives modeling (cgcns),

fluid-structure interactions (e.g. blast effects) (cgmp+cgcns+cgsm),

conjugate heat transfer (e.g. NIF holhraum) (cgmp+cgins+cgad),

damage mitigation in NIF laser optics (cgmx).
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What are overlapping grids and why are they useful?

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

Cartesian grids for efficiency.

Smooth grids for accuracy at
boundaries.

Efficient for high-order methods.
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What are overlapping grids and why are they useful?

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be rapidly
generated as bodies move.

High quality grids under large
displacements.

Cartesian grids for efficiency.

Smooth grids for accuracy at
boundaries.

Efficient for high-order methods.

Asymptotic Performance Principle for overlapping grids

As grids are refined, CPU/memory usage can approach that of a Cartesian grid.
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Components of an overlapping grid

G1

G2

G1

interpolation
ghost

unused

G2

Left: an overlapping grid consisting of two structured curvilinear component
grids, x = G1(r) and x = G2(r). Middle and right: component grids for the
square and annular grids in the unit square parameter space r. Grid points
are classified as discretization points, interpolation points or unused points.
Ghost points are used to apply boundary conditions.
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Incompressible flows and rigid bodies.
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Cgins: an efficient solver for the incompressible
Navier-Stokes (INS) equations

A parallel split-step solver is being developed based on:
1 Fourth-order accurate approximate-factored/compact

time-stepping scheme for the momentum equations.
2 Fourth-order accurate multigrid solver for the pressure equation.
3 Fast overlapping grid generation for moving geometry.

• WDH., A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids, J. Comput.
Phys, (1994).
• WDH, N.A. Petersson, A Split-Step Scheme for the Incompressible Navier-Stokes Equations, 2003.
• WDH., K. K. Chand, A Composite Grid Solver for Conjugate Heat Transfer in Fluid-Structure Systems, J. Comput. Phys, 2009.
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Incompressible Navier-Stokes.

ut + (u · ∇)u +∇p − ν∆u− f = 0, t > 0, x ∈ Ω

∇ · u = 0 t > 0, x ∈ Ω

Divergence damping term: α∇ · u is important.

Wall boundary conditions:

u = 0, ∇ · u = 0, (pressure BC) x ∈ ∂Ω,

with numerical boundary condition:

pn = −n · ( ν∇×∇× u ) + n · f.

Use −∇×∇× u instead of ∆u for implicit time-stepping.
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Incompressible Navier-Stokes.

Split-step, velocity-pressure formulation:
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PDE based numerical boundary conditions (NBCs)
• High-order FD schemes with wide stencils require additional NBCs.
• One-sided difference approximations can be less stable and accurate.

NBC Principle
Derive NBCs from the PDE and physical boundary conditions.

Example (heat equation):

ut = ν(uxx + uyy ) + f (x , y , t), 0 < x < 1, −∞ < y < ∞,

u(0, y , t) = g(y , t), (Dirichlet boundary condition),
ux(1, y , t) = k(y , t). (Neumann boundary condition),

Compatibility conditions are used as NBCs:

gt(y , t) = ν(uxx(0, y , t) + gyy (0, y , t)) + f (0, y , t),
kt(y , t) = ν(uxxx(1, y , t) + kyy (1, y , t)) + fx(1, y , t).

Normal mode theory shows why compatibility conditions can be applied to
lower order accuracy.
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BCs and NBCs for the incompressible Navier-Stokes.

No-slip wall
Condition Type Assigns

u = g physical bndry
∇ · u = 0 physical ghost

tµ · L(u, p) = 0 compatibility ghost
∂n(∇ · u) = 0 compatibility ghost
Extrap tµ · u numerical ghost
pn = P(u) compatibility ghost (p)
∆p = G compatibility bndry (p)
Extrap p numerical ghost (p)

L(u, p) := ut + (u · ∇)u +∇p + ν∇×∇× u− f,
P(u) := n · (ut + (u · ∇)u + ν∇×∇× u− f).

Henshaw (LLNL) FSI on overlapping grids MIT 11 / 63



Approximate factorization & compact discretizations -
a key point is maintaining accuracy at boundaries.

Approximate factorization (AF) schemes offer larger timesteps
with second order accuracy in time:

(I +
∆t
2

(A + B))Un+1 = (I − ∆t
2

(A + B))Un

becomes

(I +
∆t
2

A)(I +
∆t
2

B)Un+1 = (I − ∆t
2

A)(I − ∆t
2

B)Un

Compact schemes can be integrated into the AF solves
Special “combined” compact schemes have been developed:
→ reduce the number of factors

(a∂r + b∂2
rr )u → P−1(Dr a + Drr b)u + corrections

→ preserve accuracy at boundaries
→ 4th and 6th order accuracy with a 5 point stencil
→ special penta-diagonal solvers that handle wider boundary
stencils
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Smallest Scale LES (SSLES) model

Our high-order accurate schemes all use central differences.

Nonlinear dissipation is used to stablize the schemes.

It can be proved [HKR] that the minimum scale of the INS locally satisfies

λmin ∝
√

ν

‖∇u‖loc + c
.

Setting h = λmin leads to the non-linear dissipation operators:

D2(ui) = (a21 + a22‖∇hui‖)h2∆hui,

D4(ui) = (a41 + a42‖∇hui‖)h4(−∆2
h)ui.

1 These serve as simple LES models (Smagorinsky type).

2 These terms stabilize the scheme even if ν = 0.

[HKR1] On the smallest scale for the incompressible Navier-Stokes equations, WDH, H.-O. Kreiss, L.G.M. Reyna, Theoret.
Comput. Fluid Dynamics, 1989.
[HKR2] Smallest scale estimates for the incompressible Navier-Stokes equations, WDH, H.-O. Kreiss, L.G.M. Reyna, Arch.
Rational Mech. Anal., 1990.
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Code verification: an integral part of our development

Twilight zone solutions (a.k.a. manufactured solutions) are extensively
supported by the Overture framework.

hmax |ep|∞ |eu |∞ |ev |∞ |ew |∞ |∇ · u|∞
1.34e-01 1.91e-01 3.42e-01 2.14e-01 1.23e-01 2.80e+00
6.68e-02 1.20e-02 (15.9) 1.84e-02 (18.6) 1.01e-02 (21.2) 6.43e-03 (19.1) 2.71e-01 (10.3)
3.34e-02 1.02e-03 (11.8) 1.49e-03 (12.3) 7.50e-04 (13.5) 3.01e-04 (21.4) 3.10e-02 (8.7)
1.67e-02 7.90e-05 (12.9) 1.25e-04 (11.9) 6.55e-05 (11.5) 1.74e-05 (17.3) 4.00e-03 (7.8)

rate 3.7 3.8 3.9 4.3 3.1
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AFS performance: flow past two cylinders.

Grid tcilce64, Ng = 22M grid-points
Method P-solver Np TPSM TTS RPG
PC24 BICGS(5) 16 840 16000 205
PC24 MG 16 15 210 67
AFS24 MG 16 34 54 32

1 Speed-up from baseline PC24-BICGS(5) to AFS24-MG is
16000/54 ≈ 300.

2 Memory is reduced by a factor of 205/32 ≈ 6.

Np : number of processors.
Ng : number of grid-points.
TPS : CPU (s) time-per-step.
TPSM : CPU time (s) per-step, per-million-grid-points, per-processor = Np × TPS/(Ng/106).
TTS : normalized time-to-solution = TPSM / CFL-number.
RPG : memory usage in real-per-grid-point.
PC24: predictor-corrector, 2nd-order time, 4th-order space.
AFS24: approximate-factored scheme, 2nd-order time, 4th-order space.
BICGS(5) : bi-Conjugate-Gradient-Stabilized with ILU(5) preconditionner.
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AFS results - pitching plunging airfoil

A pitching and plunging airfoil, computed in parallel with Cgins. Contour plots of the vorticity.

Grid joukowsky32, Ng = 7M grid-points
Method P-solver Np TPSM TTS RPG
AFS24 BICGS(5) 16 1100 1800 235
AFS24 MG 16 52 76 66

1 Speed-up from baseline AFS24-BICGS(5) to AFS24-MG is
1800/76 ≈ 24.

2 Memory is reduced by a factor of 235/66 ≈ 3.5.
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Fourth-order Accurate Parallel Multigrid Solver for the
Pressure Equation.
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The Ogmg overlapping grid multigrid solver has been
extended to 4th-order accuracy and parallel.

Ogmg is many times faster than Krylov methods.

matrix-free; optimized for Cartesian grids.

automatic coarse grid generation.

adaptive smoothing

variable sub-smooths per component grid.
interpolation-boundary smoothing (IBS).

Galerkin coarse grid operators (operator
averaging).

PDE-based numerical boundary conditions for
Dirichlet and Neumann problems.

WDH., On Multigrid For Overlapping Grids, SIAM J. Sci. Comput. 26, no. 5, (2005) 1547–1572.
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Automatic coarse grid generation is a key feature.

overlap increases interpolation accuracy reduced
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Local Fourier analysis significantly improves convergence rates.
Over-relaxed Red-Black smoothers and Galerkin coarse grid operators.
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V [m, n] : MG V-cycle, m pre-smooths and n-post smooths.
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Henshaw (LLNL) FSI on overlapping grids MIT 20 / 63



Accuracy and convergence of the new fourth-order
accurate parallel version of Ogmg.
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Multigrid is much faster than Krylov based methods.
And uses much less memory.
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Rapid grid generation for moving geometry is critical.
Ogen is the overlapping grid generator in Overture.

Overlapping grid generation consists of two major steps:

1 construct component grids (Mappings).

2 grid connectivity: cut holes and determine
interpolation information using Ogen (this is the step
that requires most of the CPU time).

In recent work changes have been made to support

the generation of large (billion point +) grids.

parallel moving-grid flow simulations (Ogen is called
at each time step).

Grid order of grid points processors cpu (s)
accuracy (nodes× p/n)

Sphere in a box 2 2.1 billion 16 (8× 2) 136
Re-entry vehicle 4 215 million 128 (16× 8) 1990
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FSI for compressible fluids and light rigid bodies
(partitioned algorithms).
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Light rigid body in a fluid - model problem

fluid (acoustics) fluid (acoustics)solid (rigid body)

»
vL

σL

–
i

vb

»
vR

σR

–
i

x−wb/2 0 wb/2

0 1 2 3 . . .0−1−2−3. . .

Fluid domains (acoustics):

∂

∂t

[
vk
σk

]
−

[
0 1

ρ

ρc2 0

]
∂

∂x

[
vk
σk

]
= 0, k=L,R,

Rigid body:
mbv̇b = F , F = σR |x=wb/2 − σL|x=−wb/2

Interface conditions:

vL|x=−wb/2 = vb, vR |x=wb/2 = vb.
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The fluid-solid Riemann problem for a rigid body.

x

t
x = rb(t)

vb, σb

C− : σ + zv = σ0 + zv0

v0, σ0

bodyfb fluid

From characteristics we obtain the fluid force on the body:

σ(rb, t) = σ(rb+, t−) + z
(
v(rb+, t−)− vb(t)

)
. (1)

where z = ρc is the fluid impedence.
Equation (1) defines our stress projection.
Note the dependence of the stress on the velocity of the body vb.
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Light rigid body in a fluid - algorithm

First order upwind scheme[
vk
σk

]n+1

i
=

[
vk
σk

]n

i
+ ∆tRkΛ−k R−1

k D−

[
vk
σk

]n

i
+ ∆tRkΛ+

k R−1
k D+

[
vk
σk

]n

i
,

Partitioned time-stepping algorithm (new scheme: α = z, traditional: α = 0),

1 Advance fluid domans:
[

vk
σk

]n+1

i

2 Set Fn+1 = σn+1
R,1 + α(vn+1

R,1 − vn+1
b )− σn+1

L,−1 − α(vn+1
b − vn+1

L,−1),

3 Solve for rigid body: mbvn+1
b = mbvn

b + ∆tFn+1,

vn+1
b =

[
mb + 2∆tα

]−1[
mbvn

b + ∆t
(
σn+1

R,1 − σn+1
L,−1 + α(vn+1

R,1 + vn+1
L,−1)

)]
.

4 Set ghost values from projection.

Note the added mass term 2∆tα.
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Normal mode stability analysis

Theorem
The first-order upwind scheme with projection parameter α = z is
stable for λ = c ∆t

∆x < 1 and any mb ≥ 0.

Theorem
The first-order upwind scheme with projection parameter α = 0 has
the time-step restriction λ < 1 and ∆t < mb(4− λ)/(zλ).

Note 1: The projection scheme (α = z) remains stable with the usual
time-step restriction for any mb ≥ 0.
Note 2: The traditional scheme (α = 0) is formally stable for mb > 0
but the time-step ∆t goes to zero at mb → 0.
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The Newton-Euler equations for rigid body dynamics

The equations of motion for the rigid body are the Newton-Euler equations:

ẋb = vb,

mbv̇b = F ,

Aω̇ = −WAω + T ,

Ė = WE .

mb : mass of the body,
xb(t) ∈ R3 : position of the center of mass,
vb(t) ∈ R3 : is the velocity of the center of mass,
ω(t) ∈ R3 : is the angular velocity,
A(t) ∈ R3×3 : moment of inertia matrix,
E(t) ∈ R3×3 : matrix with columns being the principle axes of inertia,
W (t) ∈ R3×3 : angular velocity matrix, Wa = ω × a,
F(t) ∈ R3 : resultant force on the body,
T (t) ∈ R3 : resultant torque the body.
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Extension to 3D: added mass matrices
For a point r on the rigid body in 3D, the interface projection is

−p(r, t)n = −pf n + zf
[
nT (

vf − v(r, t)
)]

n.

Force and torque: (v(r, t) = vb(t)− y(r, t)× ω(t)),

F =

∫
r∈∂B

−p(r, t)n ds = −Avv vb − Avωω + F̃ ,

T =

∫
r∈∂B

y× (−p(r, t)n) ds = −Aωv vb − Aωωω + T̃

where y = r− xb(t) and Aij are the added-mass matrices

Avv =

∫
∂B

zf nnT ds, Avω =

∫
∂B

zf n(Yn)T ds, (2)

Aωv =

∫
∂B

zf (Yn)nT ds Aωω =

∫
∂B

zf Yn(Yn)T ds, (3)

and where Y is the matrix corresponding to y×.
Henshaw (LLNL) FSI on overlapping grids MIT 30 / 63



Extension to 3D: added mass matrices
For a point r on the rigid body in 3D, the interface projection is

−p(r, t)n = −pf n + zf
[
nT (

vf − v(r, t)
)]

n.

Force and torque: (v(r, t) = vb(t)− y(r, t)× ω(t)),

F =

∫
r∈∂B

−p(r, t)n ds = −Avv vb − Avωω + F̃ ,

T =

∫
r∈∂B

y× (−p(r, t)n) ds = −Aωv vb − Aωωω + T̃

where y = r− xb(t) and Aij are the added-mass matrices

Avv =

∫
∂B

zf nnT ds, Avω =

∫
∂B

zf n(Yn)T ds, (2)

Aωv =

∫
∂B

zf (Yn)nT ds Aωω =

∫
∂B

zf Yn(Yn)T ds, (3)

and where Y is the matrix corresponding to y×.
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The added-mass Newton Euler Equations

The rigid body equations become:
I 0 0 0
0 mbI 0 0
0 0 A 0
0 0 0 I




ẋb
v̇b
ω̇

Ė

 +


0 −I 0 0
0 Avv Avω 0
0 Aωv Aωω + WA 0
0 0 0 −W




xb
vb
ω
E

 =


0
F̃
T̃
0

 .

(4)

Note: These added-mass Newton-Euler equations can be solved
using an implicit time-stepping scheme.
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Multi-dimensional algorithm

1 second-order accurate Godunov based scheme for the (reactive)
Euler equations.

2 Implicit Runge-Kutta (DIRK) time-stepping for added-mass
rigid-body equations.

3 Second-order accurate in the max norm for smooth solutions (with
limiter turned off).

4 First-order accurate in the discrete L1-norm for problems with
shocks.

5 Adaptive mesh refinement.
6 Equations are solved in the moving grid coordinate system.
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Shock driven zero mass ellipse

t = 0.4

.07

4.3

p

t = 0.6

.12

6.1

p

t = 1.0

.3

4.6

p
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Shock driven zero mass ellipse
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−0.5

0

0.5

1

1.5

2

2.5

t

Shock driven ellipse, M=0

 

 
x

1

x
2

v
1

v
2

w
3

Time histories of rigid-body properties. Colour: grid G(8)
re , black: fine grid G(32)

re

Grid G(j) hj e(j)
ρ r e(j)

u r e(j)
v r e(j)

p r
G(8)

re 1/40 2.1e-3 9.3e-4 9.6e-4 2.1e-3
G(16)

re 1/80 9.9e-4 2.1 4.3e-4 2.1 4.6e-4 2.1 9.6e-4 2.2
G(32)

re 1/160 4.7e-4 2.1 2.0e-4 2.1 2.2e-4 2.1 4.5e-4 2.2
rate 1.08 1.09 1.07 1.11

A posteriori estimated errors (L1-norm) and convergence rates for the accelerated ellipse at t = 1.0.
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Shock driven zero mass ellipse

Coarse grid G(32)
re (left), medium grid G(16×4)

re (middle), fine (AMR) grid G(8×4×4)
re (right).
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FSI for compressible fluids and deforming elastic
solids (partitioned algorithms).
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Deforming composite grids (DCG) for Fluid-Structure
Interactions (FSI)

Goal: To perform coupled simulations of compressible fluids and
deforming solids.

A mixed Eulerian-Lagrangian approach:

Fluids: general moving coordinate system with overlapping grids.

Solids : fixed reference frame with overlapping-grids (later:
unstructured-grids, or beam/plate models).

Boundary fitted deforming grids for fluid-solid interfaces.

Strengths of the approach:

maintains high quality grids for large deformations/displacements.

efficient structured grid methods (AMR) optimized for Cartesian grids.
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A sample FSI-DCG simulation

fluid

solid

solid

Mach 2 shock in a gas hitting two elastic cylinders.

Solve Euler equations in the fluid domains on moving grids.

Solve equations of linear elasticity in the solid domains.

Fluid grids at the interface deform over time (hyperbolic grid generator).
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Fluid and Solid Solvers

Fluid solver: we solve the inviscid Euler equations with a second-order
extension of Godunov’s method (cgcns).

• WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using
Overlapping Grids with Adaptive Mesh Refinement, J. Comp. Phys. 227 (2008).
• WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed
Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
• WDH., DWS, An adaptive numerical scheme for high-speed reactive flow on overlapping grids,
J. Comp. Phys. 191 (2003).

Solid solver: we solve the elastic wave equation as a first order system
with a second-order upwind characteristic scheme (cgsm).

• Daniel Appelö, JWB, WDH, DWS, "Numerical Methods for Solid Mechanics on Overlapping
Grids: Linear Elasticity, J. Comp. Phys., (2012)
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The elastic piston - a 1D FSI model problem

solid

ρ̄ : density
ū : displacement
v̄ : velocity
σ̄ : stress
cp : speed of sound
z̄ = ρ̄cp : impedance

fluid

ρ : density

v : velocity
σ = −p : stress, pressure
a : speed of sound
z = ρa : impedance
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The elastic piston

x

t
x = F (t)
x̄ = 0

C+

(x , t)

(F (τ), τ)

x = a0t24ρ0
v0
p0

35
x̄ = −cp t24ū0(x̄)

v̄0(x̄)
σ̄0(x̄)

35
fluidsolid

The governing equations for the solid and fluid are8><>:
ūt − v̄ = 0

v̄t − σ̄x̄/ρ̄ = 0

σ̄t − ρ̄c2
p v̄x̄ = 0

, for x̄ < 0,

8><>:
ρt + (ρv)x = 0

(ρv)t + (ρv2 + p)x = 0

(ρE)t + (ρEv + pv)x = 0

, for x > F (t),

where ρE = p/(γ − 1) + ρv2/2. The interface conditions are

v̄(0, t) = v(F (t), t),

σ̄(0, t) = σ(F (t), t) ≡ −p(F (t), t) + pe.

Henshaw (LLNL) FSI on overlapping grids MIT 41 / 63



The elastic piston

x

t
x = F (t)
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C+

(x , t)

(F (τ), τ)

x = a0t24ρ0
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35
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35
fluidsolid

The governing equations for the solid and fluid are8><>:
ūt − v̄ = 0

v̄t − σ̄x̄/ρ̄ = 0

σ̄t − ρ̄c2
p v̄x̄ = 0

, for x̄ < 0,

8><>:
ρt + (ρv)x = 0

(ρv)t + (ρv2 + p)x = 0

(ρE)t + (ρEv + pv)x = 0

, for x > F (t),

where ρE = p/(γ − 1) + ρv2/2. The interface conditions are

v̄(0, t) = v(F (t), t),

σ̄(0, t) = σ(F (t), t) ≡ −p(F (t), t) + pe.
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An exact solution to the elastic piston problem
For a given x = F (t), and constant ρ0, p0, v0 = 0, the solution in the fluid region F (t) < x < a0t is (assuming no shocks)

v(x, t) = Ḟ (τ(x, t)),
a(x, t)

a0
= 1 +

γ − 1

2

 
v(x, t)

a0

!
,

p(x, t)

p0
=

 
ρ(x, t)

ρ0

!γ

=

 
a(x, t)

a0

!2γ/(γ−1)

,

x − F (τ) =

»
a0 +

γ + 1

2
Ḟ (τ)

–
(t − τ).

The general solution for the solid follows from the d’Alembert solution,

ū(x̄, t) = f (x̄ − cp t) + g(x̄ + cp t),

f (ξ) =
1

2

ˆ
ū0(ξ) −

1

cp

Z ξ

0
v̄0(s)ds

˜
for ξ < 0,

g(ξ) =

(
1
2
ˆ
ū0(ξ) + 1

cp

R ξ
0 v̄0(s)ds

˜
for ξ < 0,

F (ξ/cp) − f (−ξ) for ξ > 0.

Applying the interface equations gives an ODE for F (t) in terms of the initial conditions,

p0

ρ̄c2
p

h
1 +

γ − 1

2a0
Ḟ (t)

i2γ/(γ−1)
+

Ḟ (t)

cp
= −

ˆ
ū′0(−cp t) −

1

cp
v̄0(−cp t)

˜
, for t > 0.

Alternatively if we choose F (t) = − a
q tq , we can choose initial conditions in the solid as

ū0(x̄) = −
p0

ρ̄0c2
p

Z x̄

0

h
1 +

γ − 1

2a0
Ḟ (−s/cp)

i2γ/(γ−1)
ds, v̄0(x̄) = Ḟ (−x̄/cp), for x̄ < 0,

to give a smooth solution with the specified interface motion.
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The solution of the fluid-solid Riemann (FSR) problem
defines our interface projection.

x

t

x = F (t)
x̄ = 0

x = St
x = (v1 + a1)t

x = (v0 + a0)t24ρ0
v0
p0

35

24ρ1
v1
p1

35
x̄ = −cp t

»
v̄1
σ̄1

–
»

v̄0
σ̄0

–
fluidsolid

special case of elastic piston problem - constant initial conditions in fluid
and solid.

the fluid may have a shock or expansion fan on the C+ characteristic.
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Solution of the linearized fluid-solid Riemann problem

Characteristic relations:

Solid: z̄v̄ ∓ σ̄ = z̄v̄0 ∓ σ̄0, on dx̄/dt = ±cp,
Fluid: zv ∓ σ = zv0 ∓ σ0, on dx/dt = v0 ± a0,

where z = ρ̄cp and z̄ = ρ̄a0 are the acoustic impedances.

The state next to the interface is an impedance weighted average of the fluid
and solid states:

v1 = v̄1 =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
,

σ1 = σ̄1 =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1 +
v0 − v̄0

z̄−1 + z−1 .

The solution to the full nonlinear problem can also be determined.
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The FSI-DCG time-stepping algorithm

The FSI-DCG interface approximation is an extension of the scheme of
Banks and Sjögreen:

J. W. Banks and B. Sjögreen, A Normal Mode Stability Analysis of Numerical
Interface Conditions for Fluid/Structure Interaction, Commun. Comput. Phys.,
2011.

The main steps are:
1 The fluid and solid domains are first advanced independently

giving provisional interface values.
2 The provisional interface values are projected based on the

solution to the fluid-solid Riemann problem.
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The FSI-DCG time-stepping algorithm

solid fluid

x̄

w̄n
−1w̄n

0w̄n
1w̄n

2
. . .

xwn
−1 wn

0 wn
1 wn

2
. . .

Define discrete approximations, (vn
i ≈ v(i∆xi , n∆t), v̄n

i ≈ v̄(i∆x̄i , n∆t))

Solid: w̄n
i = [ūn

i , v̄n
i , σ̄n

i ] i= −1, 0, 1, . . .

Fluid: wn
i = [ρn

i , vn
i , pn

i ], i= −1, 0, 1, . . .
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The FSI-DCG time-stepping algorithm

stage condition type assigns

1a Predict grid and grid velocity extrapolation F p , Ḟ p

1b Advance wn
i , w̄n

i , i = 0, 1, 2, . . . PDE interior, interface

2a Eval vI , σI , ρI from FSR projection vI , σI , ρI

2b vn
0 , v̄n

0 = vI , −pn
0 , σ̄n

0 = σI , ρn
0 = ρI projection wn

0, w̄n
0

2c wn
−1 = E(3)

+1 wn
0, w̄n

−1 = Ē(3)
+1 w̄n

0, extrapolation wn
−1, w̄n

−1

2d Eval : v̇f = − 1
ρ
∂x p,. . . PDE v̇f , v̇s , σ̇f , σ̇s

2e Eval v̇I , σ̇I from FSR projection v̇I , σ̇I
3a − 1

ρ
∂x p = v̇I , ρa2∂x v = σ̇I compatibility pn

−1, vn
−1

3b ρ̄c2
p∂x v̄ = σ̇I , 1

ρ̄
∂x σ̄ = v̇I compatibility v̄n

−1, σ̄n
−1

3c Correct grid and grid velocity projection F n, Ḟ n
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The interface projection step

Using the linearized FSR solution, the interface values are an impedance
weighted average of the provisional fluid and solid values:

vI =
z̄v̄0 + zv0

z̄ + z
+

σ0 − σ̄0

z̄ + z
,

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1 +
v0 − v̄0

z̄−1 + z−1

Compare: the standard FSI scheme uses the heavy solid limit, z̄ � z,
velocity-from-solid, stress-from-fluid:

vI = v̄0

σI = σ0 = −p + pe

The standard scheme is unstable for light solids.

Note: for hard problems with shocks hitting the interface, there are
advantages to using the full nonlinear solution to the FSR problem.
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Elastic piston numerical results

Computed solution for a smoothly receding piston.
Fluid Solid

grid N ρ r v r p r ū r v̄ r σ̄ r
G1 20 2.2e-3 2.7e-3 1.6e-3 4.9e-4 9.3e-5 1.2e-4
G2 40 5.4e-4 4.1 6.2e-4 4.3 3.7e-4 4.3 1.2e-4 4.2 2.6e-5 3.6 2.3e-5 5.0
G3 80 1.4e-4 3.9 1.5e-4 4.0 9.3e-5 4.0 2.9e-5 4.1 6.2e-6 4.1 5.0e-6 4.7
G4 160 3.5e-5 3.9 3.9e-5 3.9 2.3e-5 4.0 7.3e-6 4.0 1.5e-6 4.1 1.1e-6 4.4
rate 1.99 2.03 2.03 2.03 1.99 2.24

Max-norm errors for very light solid: ρ̄ = 10−5, z/z̄ = 5.8× 103.

Fluid Solid
grid N ρ r v r p r ū r v̄ r σ̄ r
G1 20 9.2e-4 9.6e-4 8.5e-4 3.0e-4 1.3e-5 1.1e-5
G2 40 2.1e-4 4.3 2.3e-4 4.2 2.0e-4 4.2 7.3e-5 4.2 3.0e-6 4.4 2.6e-6 4.2
G3 80 5.6e-5 3.8 5.6e-5 4.1 4.9e-5 4.1 1.8e-5 4.0 6.9e-7 4.4 6.3e-7 4.2
G4 160 1.5e-5 3.9 1.4e-5 4.0 1.2e-5 4.0 4.5e-6 4.0 1.6e-7 4.2 1.5e-7 4.2
rate 1.99 2.04 2.04 2.02 2.12 2.07

Max-norm errors for very heavy solid: ρ̄ = 105, z/z̄ = 5.8× 10−7.

Max-norm errors are converging to second-order accuracy.

Scheme is stable for large and small impedance ratios.
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The superseismic shock FSI problem

x

y shock

ξ w0w1

fluid

solid

w0w1
w2

interface

θ

p-wave

ηp

s-wave

ηs

S

a fluid shock moving from left to right deflects a solid interface.

an FSI problem with an analytic traveling wave solution.
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Superseismic shock: grids and computed solution

ρ

v̄2

The red grid for the solid domain is shown adjusted for the displacement.
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L1-norm errors and convergence rates for the
superseismic shock

Solid Fluid
Grid |ū| r |v̄| r |σ̄| r ρ r |v| r T r

G(4)
ss 8.6e-5 2.8e-3 7.9e-3 4.6e-3 2.2e-2 1.1e-2

G(8)
ss 3.6e-5 2.4 1.7e-3 1.6 5.0e-3 1.6 2.6e-3 1.8 1.3e-2 1.7 6.6e-3 1.7

G(16)
ss 1.5e-5 2.5 1.1e-3 1.6 3.1e-3 1.6 1.4e-3 1.9 6.7e-3 1.9 3.5e-3 1.9

G(32)
ss 5.6e-6 2.7 6.9e-4 1.6 2.0e-3 1.6 7.0e-4 2.0 3.4e-3 2.0 1.7e-3 2.0

rate 1.32 0.67 0.67 0.91 0.92 0.91

Due to the discontinuities, the L1-norm errors do not converge at
second-order.

The solid variables v̄ and σ̄ converge at the expected rates of 2/3 (due
to spreading of the linear discontinuities).

In isolation the fluid domain should converge at first order.
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The deforming diffuser grid and solution

Contours of the fluid pressure, [min, max] = [.5, 1.] and norm of the solid
stress tensor |σ̄|, [min, max] = [0, .054].
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Max-norm errors and convergence rates for the
deforming diffuser

Solid
Grid |ū| r |v̄| r |σ̄| r

G(2)
dd 2.3e-4 8.6e-4 4.0e-2

G(4)
dd 5.8e-5 3.9 2.3e-4 3.8 1.2e-2 3.4

G(8)
dd 9.9e-6 5.9 4.6e-5 5.0 2.0e-3 5.8

G(16)
dd 1.6e-6 6.2 9.5e-6 4.8 3.4e-4 5.9

rate 2.40 2.18 2.31

Fluid
Grid ρ r v1 r v2 r T r

G(2)
dd 3.6e-2 1.7e-2 2.3e-2 1.2e-2

G(4)
dd 8.8e-3 4.1 3.8e-3 4.5 7.1e-3 3.2 2.5e-3 4.7

G(8)
dd 2.1e-3 4.1 8.6e-4 4.4 2.3e-3 3.1 7.9e-4 3.2

G(16)
dd 5.0e-4 4.3 2.0e-4 4.3 5.2e-4 4.5 1.7e-4 4.8

rate 2.05 2.15 1.80 2.02

max-norm errors at t = 1 with the Godunov slope-limiter off.

solutions are converging to second-order in the max norm.
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Summary

We have been developing efficient algorithms for modeling
1 incompressible flows and rigid body motion,
2 compressible flows and rigid/deforming bodies.

The approach is based on
1 overlapping grids for flexible representation of geometry,
2 high-order accurate algorithms,
3 accurate treatment of interfaces and boundary conditions.
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Backup Slides

Henshaw (LLNL) FSI on overlapping grids MIT 56 / 63



Half-plane problem analysis
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Parallel overlapping grid generation
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AFS results

IM
22

-K
3

P
C

22
-K

3

IM
24

-K
3

IM
24

-M
G

IM
24

M
G

-M
G

A
FS

22
-M

G

A
FS

24
-M

G

0

100

200

300

54 62

170

29 20 16 21

200

67

314

171

49
27 31

TT
S

/R
P

G
P

Cgins, tcilc16 (1.4M pts)

CPU Memory

Performance of Cgins for different time stepping methods for flow past two cylinders in a channel.

The CPU is a normalized time-to-solution (TTS). The memory usage is measured in

reals-per-grid-point. K3 stands for the Krylov solver BiCGStab-ILU(3).
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Fluid Structure Interactions

Our approach to fluid structure interactions is based on

Moving and deforming overlapping grids.

Adaptive mesh refinement.

Accurate interface approximations (e.g. incorporation of the fluid-solid
Riemann problem to handle added-mass instabilities).

• WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed
Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
• WDH., K. K. Chand, A Composite Grid Solver for Conjugate Heat Transfer in Fluid-Structure
Systems, J. Comput. Phys, 2009.
• J. W. Banks and B. Sjögreen, A Normal Mode Stability Analysis of Numerical Interface
Conditions for Fluid/Structure Interaction, Commun. Comput. Phys., 2011.
• J. W. Banks, WDH, D.W. Schwendeman, Deforming Composite Grids for Solving Fluid
Structure Problems, J. Comput. Phys, 2012.
• J. W. Banks, WDH, B. Sjögreen, A stable FSI algorithm for light rigid bodies in compressible
flow, LLNL-JRNL-558232, submitted.
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Euler equations on a mapped moving grid

Todo – solid mechanics equations
For the Euler equations, consider a mapping for a (possibly moving)
component grid given by x = G(r, t). Following the work in [?], the mapped
equations are

∂tw +
1
J
∇r · F +

w
J
∇r · V = 0, (5)

where J = |xr| is the Jacobian of the mapping, F is the mapped flux tensor,
and V is related to the grid velocity Ġ. In particular, the vector components of
F and the scalar components of V are given by

Fi =
(

J
nd∑

j=1

∂ri

∂xj
fj

)
− Viw, Vi = J

nd∑
j=1

∂ri

∂xj
Ġj , i = 1, . . . , nd . (6)
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Deforming Composite Grids for FSI

fluid

solid

solid

interfaces

t=1.0 t=1.5 t=2.0

Composite grids at different times from the FSI-DCG simulation a shock
hitting two solid elastic cylinders. The green fluid grids deform over time to
follow the fluid-solid interfaces. The blue background Cartesian grid for the
fluid remains fixed.
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Summary

the deforming composite grid (DCG) approach is being developed
to to model fluid-structure interactions (FSI) for compressible
fluids and elastic solids.
the solution of the fluid-solid Riemann problem can be used to
define stable interface approximations for both light and heavy
solids.
our FSI-DCG approximation was verfied to be second-order
accurate in the max-norm on problems with smooth solutions.

Future work:
support for adaptive mesh refinement (AMR) at the interface.
more general solid mechanics models.
incompressible fluids.
extend to three space dimensions.

Henshaw (LLNL) FSI on overlapping grids MIT 63 / 63


	Background
	The Elastic Piston Problem and FSR problem
	The FSI algorithm
	The superseismic shock


