CG
Version 25
|
#include "DomainSolver.h"
#include "ApproximateFactorization.h"
#include "App.h"
#include "gridFunctionNorms.h"
#include "ParallelUtility.h"
#include "ParallelGridUtility.h"
#include "TridiagonalSolver.h"
#include "PlotIt.h"
#include "AdvanceOptions.h"
#include "AdamsPCData.h"
#include "InterpolationData.h"
#include "ExposedPoints.h"
#include "InterpolateRefinements.h"
#include "kkcdefs.h"
Macros | |
#define | EXTRAP_2(UP, I1, I2, I3, II, C) 2*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C) |
#define | EXTRAP_3(UP, I1, I2, I3, II, C) 3*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-3*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) |
#define | EXTRAP_4(UP, I1, I2, I3, II, C) 4*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-6*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+4*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C) |
#define | EXTRAP_5(UP, I1, I2, I3, II, C) 5*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-10*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+10*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - 5*A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C)+A_4D(UP,I1+5*II[0],I2+5*II[1],I3+5*II[2],C) |
#define | EXTRAP_6(UP, I1, I2, I3, II, C) 6*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-15*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+20*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - 15*A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C)+6*A_4D(UP,I1+5*II[0],I2+5*II[1],I3+5*II[2],C)-A_4D(UP,I1+6*II[0],I2+6*II[1],I3+6*II[2],C) |
#define | GET_LOCAL_INTERPOLATION_POINTS(CG, GRID, NPTS, INTERPOLATION_POINTS) const int NPTS = CG.numberOfInterpolationPoints(GRID); IntegerArray & INTERPOLATION_POINTS = CG.interpolationPoint[GRID]; |
#define | OV_BARRIER |
#define EXTRAP_2 | ( | UP, | |
I1, | |||
I2, | |||
I3, | |||
II, | |||
C | |||
) | 2*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C) |
Referenced by DomainSolver::takeTimeStepAF().
#define EXTRAP_3 | ( | UP, | |
I1, | |||
I2, | |||
I3, | |||
II, | |||
C | |||
) | 3*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-3*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) |
#define EXTRAP_4 | ( | UP, | |
I1, | |||
I2, | |||
I3, | |||
II, | |||
C | |||
) | 4*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-6*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+4*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C) |
#define EXTRAP_5 | ( | UP, | |
I1, | |||
I2, | |||
I3, | |||
II, | |||
C | |||
) | 5*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-10*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+10*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - 5*A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C)+A_4D(UP,I1+5*II[0],I2+5*II[1],I3+5*II[2],C) |
Referenced by DomainSolver::takeTimeStepAF().
#define EXTRAP_6 | ( | UP, | |
I1, | |||
I2, | |||
I3, | |||
II, | |||
C | |||
) | 6*A_4D(UP,I1+II[0],I2+II[1],I3+II[2],C)-15*A_4D(UP,I1+2*II[0],I2+2*II[1],I3+2*II[2],C)+20*A_4D(UP,I1+3*II[0],I2+3*II[1],I3+3*II[2],C) - 15*A_4D(UP,I1+4*II[0],I2+4*II[1],I3+4*II[2],C)+6*A_4D(UP,I1+5*II[0],I2+5*II[1],I3+5*II[2],C)-A_4D(UP,I1+6*II[0],I2+6*II[1],I3+6*II[2],C) |
#define GET_LOCAL_INTERPOLATION_POINTS | ( | CG, | |
GRID, | |||
NPTS, | |||
INTERPOLATION_POINTS | |||
) | const int NPTS = CG.numberOfInterpolationPoints(GRID); IntegerArray & INTERPOLATION_POINTS = CG.interpolationPoint[GRID]; |
Referenced by DomainSolver::takeTimeStepAF().
#define OV_BARRIER |