CG  Version 25
Macros | Functions
mx/src/plot.C File Reference
#include "Maxwell.h"
#include "PlotStuff.h"
#include "GL_GraphicsInterface.h"
#include "DialogData.h"
#include "UnstructuredMapping.h"
#include "CompositeGridOperators.h"
#include "ParallelUtility.h"
#include "display.h"
Include dependency graph for mx/src/plot.C:

Macros

#define FOR_3D(i1, i2, i3, I1, I2, I3)   int I1Base =I1.getBase(), I2Base =I2.getBase(), I3Base =I3.getBase(); int I1Bound=I1.getBound(), I2Bound=I2.getBound(), I3Bound=I3.getBound(); for(i3=I3Base; i3<=I3Bound; i3++) for(i2=I2Base; i2<=I2Bound; i2++) for(i1=I1Base; i1<=I1Bound; i1++)
 
#define FOR_3(i1, i2, i3, I1, I2, I3)   I1Base =I1.getBase(), I2Base =I2.getBase(), I3Base =I3.getBase(); I1Bound=I1.getBound(), I2Bound=I2.getBound(), I3Bound=I3.getBound(); for(i3=I3Base; i3<=I3Bound; i3++) for(i2=I2Base; i2<=I2Bound; i2++) for(i1=I1Base; i1<=I1Bound; i1++)
 
#define exTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[0]
 
#define eyTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[1]
 
#define hzTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[5]
 
#define extTrue(x, y, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[0]
 
#define eytTrue(x, y, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[1]
 
#define hztTrue(x, y, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[5]
 
#define exLaplacianTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[0])
 
#define eyLaplacianTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[1])
 
#define hzLaplacianTrue(x, y, t)   sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[5])
 
#define hzGaussianPulse(xi)   exp(-betaGaussianPlaneWave*((xi)*(xi)))
 
#define exGaussianPulse(xi)   hzGaussianPulse(xi)*(-ky/(eps*cc))
 
#define eyGaussianPulse(xi)   hzGaussianPulse(xi)*( kx/(eps*cc))
 
#define hzLaplacianGaussianPulse(xi)   ((4.*betaGaussianPlaneWave*betaGaussianPlaneWave*(kx*kx+ky*ky))*xi*xi-(2.*betaGaussianPlaneWave*(kx*kx+ky*ky)))*exp(-betaGaussianPlaneWave*((xi)*(xi)))
 
#define exLaplacianGaussianPulse(xi)   hzLaplacianGaussianPulse(xi,t)*(-ky/(eps*cc))
 
#define eyLaplacianGaussianPulse(xi)   hzLaplacianGaussianPulse(xi,t)*( kx/(eps*cc))
 
#define exTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[0]
 
#define eyTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[1]
 
#define ezTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[2]
 
#define extTrue3d(x, y, z, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[0]
 
#define eytTrue3d(x, y, z, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[1]
 
#define eztTrue3d(x, y, z, t)   (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[2]
 
#define hxTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[3]
 
#define hyTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[4]
 
#define hzTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[5]
 
#define exLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[0])
 
#define eyLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[1])
 
#define ezLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[2])
 
#define hxLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[3])
 
#define hyLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[4])
 
#define hzLaplacianTrue3d(x, y, z, t)   sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[5])
 

Functions

int convertToVertexCentered (const realMappedGridFunction &u, const Range &Ru, realMappedGridFunction &v, const Range &Rv, bool plotDSIMaxVertVals=false)
 Convert specified components of u (cellCentered of faceCentered) to vertexCentered values in v.
 

Macro Definition Documentation

#define exGaussianPulse (   xi)    hzGaussianPulse(xi)*(-ky/(eps*cc))
#define exLaplacianGaussianPulse (   xi)    hzLaplacianGaussianPulse(xi,t)*(-ky/(eps*cc))
#define exLaplacianTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[0])
#define exLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[0])
#define exTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[0]
#define exTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[0]
#define extTrue (   x,
  y,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[0]
#define extTrue3d (   x,
  y,
  z,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[0]
#define eyGaussianPulse (   xi)    hzGaussianPulse(xi)*( kx/(eps*cc))
#define eyLaplacianGaussianPulse (   xi)    hzLaplacianGaussianPulse(xi,t)*( kx/(eps*cc))
#define eyLaplacianTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[1])
#define eyLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[1])
#define eyTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[1]
#define eyTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[1]
#define eytTrue (   x,
  y,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[1]
#define eytTrue3d (   x,
  y,
  z,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[1]
#define ezLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[2])
#define ezTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[2]
#define eztTrue3d (   x,
  y,
  z,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[2]
#define FOR_3 (   i1,
  i2,
  i3,
  I1,
  I2,
  I3 
)    I1Base =I1.getBase(), I2Base =I2.getBase(), I3Base =I3.getBase(); I1Bound=I1.getBound(), I2Bound=I2.getBound(), I3Bound=I3.getBound(); for(i3=I3Base; i3<=I3Bound; i3++) for(i2=I2Base; i2<=I2Bound; i2++) for(i1=I1Base; i1<=I1Bound; i1++)
#define FOR_3D (   i1,
  i2,
  i3,
  I1,
  I2,
  I3 
)    int I1Base =I1.getBase(), I2Base =I2.getBase(), I3Base =I3.getBase(); int I1Bound=I1.getBound(), I2Bound=I2.getBound(), I3Bound=I3.getBound(); for(i3=I3Base; i3<=I3Bound; i3++) for(i2=I2Base; i2<=I2Bound; i2++) for(i1=I1Base; i1<=I1Bound; i1++)
#define hxLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[3])
#define hxTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[3]
#define hyLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[4])
#define hyTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[4]
#define hzGaussianPulse (   xi)    exp(-betaGaussianPlaneWave*((xi)*(xi)))
#define hzLaplacianGaussianPulse (   xi)    ((4.*betaGaussianPlaneWave*betaGaussianPlaneWave*(kx*kx+ky*ky))*xi*xi-(2.*betaGaussianPlaneWave*(kx*kx+ky*ky)))*exp(-betaGaussianPlaneWave*((xi)*(xi)))
#define hzLaplacianTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky))*pwc[5])
#define hzLaplacianTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*(-(twoPi*twoPi*(kx*kx+ky*ky+kz*kz))*pwc[5])
#define hzTrue (   x,
  y,
 
)    sin(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[5]
#define hzTrue3d (   x,
  y,
  z,
 
)    sin(twoPi*(kx*(x)+ky*(y)+kz*(z)-cc*(t)))*pwc[5]
#define hztTrue (   x,
  y,
 
)    (-twoPi*cc)*cos(twoPi*(kx*(x)+ky*(y)-cc*(t)))*pwc[5]

Function Documentation

int convertToVertexCentered ( const realMappedGridFunction &  u,
const Range &  Ru,
realMappedGridFunction &  v,
const Range &  Rv,
bool  plotDSIMaxVertVals = false 
)

Convert specified components of u (cellCentered of faceCentered) to vertexCentered values in v.

References all, assert(), c, e, mg, n, u, v, and x.