Contact

Journal Articles, Book Chapters, and Conference Papers.

Journal Articles

  1. Allen Alvarez Loya, Daniel Appelö, and William D. Henshaw.
    High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions.
    Journal of Computational Physics, 522:113597, 2025.
    publications/hcbc_AlvarezLoyaAppeloHenshaw2025.pdf.
  2. Allison M. Carson, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    High-order accurate implicit-explicit time-stepping schemes for wave equations on overset grids.
    Journal of Computational Physics, 520:113513, 2025.
    publications/implicitExplicitWave_CarsonBanksHenshawSchwendeman2025.pdf.
  3. Baoshun Zhou, Mostafa Amini-Afshar, Harry B. Bingham, Yanlin Shao, and William D. Henshaw.
    Solving for hydroelastic ship response using Timoshenko beam modes at forward speed.
    Ocean Engineering, 300:117267, 2024.
  4. Jeffrey W. Banks, William D. Henshaw, Arthur Newell, and Donald W. Schwendeman.
    Fractional-step finite difference schemes for incompressible elasticity on overset grids.
    J. Comput. Phys., 488, 2023.
    publications/ism_BanksHenshawNewellSchwendeman2023.pdf.
  5. Chang Liu and William D. Henshaw.
    Multigrid with nonstandard coarse-level operators and coarsening factors.
    Journal of Scientific Computing, 94(58):1-27, 2023.
    publications/MultigridWithNonStandandardCoarsening_LiuHenshaw2023.pdf.
  6. Nour G. Al Hassanieh, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    Local compatibility boundary conditions for high-order accurate finite-difference approximations of PDEs.
    SIAM J. Sci. Comput., 44:A3645-A3672, 2022.
    publications/lcbc_AlHassaniehBanksHenshawSchwendeman2022.pdf.
  7. Qing Xia, Jeffrey W. Banks, William D. Henshaw, Alexander V. Kildishev, Gregor Kovacic, Ludmila J. Prokopeva, and Donald W. Schwendeman.
    High-order accurate schemes for Maxwell's equations with nonlinear active media and material interfaces.
    J. Comput. Phys., 456:111051, 2022.
    publications/MaxwellsEquationsWithNonlinearMaterials_2022.pdf.
  8. Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman, and Alexander V. Kildishev.
    Time domain modeling with the generalized dispersive material model.
    In Douglas H. Werner, Sawyer D. Campbell, and Lei Kang, editors, Nanoantennas and Plasmonics, Modelling, Design and Fabrication, The ACES Series on Computational Numerical Modelling in Electrical Engineering, pages 125-152. The Institution of Engineering and Technology, 2020.
  9. Jeffrey W. Banks, Benjamin Buckner, William D. Henshaw, Michael J. Jenkinson, Alexander V. Kildishev, Gregor Kovacic, Ludmila J. Prokopeva, and Donald W. Schwendeman.
    A high-order accurate scheme for Maxwell's equations with a generalized dispersive material (GDM) model and material interfaces.
    J. Comput. Phys., 412:109424, 2020.
    publications/AHighOrderAccurateSchemeForMaxwellsEquationsGDMMaterialInterfaces_BanksEtAl2020.pdf.
  10. Fanlong Meng, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier-Stokes equations on moving overlapping grids.
    Computer Methods in Applied Mechanics and Engineering, 366:113040, 2020.
    publications/FourthOrderAccurateFractionalStepIMEXSchemeForINSOnMovingGrids_MengBanksHenshawSchwendeman2020.pdf.
  11. Daniel A. Serino, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow.
    J. Comput. Phys., 399:1-30, 2019.
    publications/AStableAddedMassPartitionedAlgorithmForElasticSolidsAndIncompressibleFlow_SerinoBanksHenshawSchwendeman2019.pdf.
  12. Daniel A. Serino, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow: Model problem analysis.
    SIAM J. Sci. Comput., 41(4):A2464-A2484, 2019.
    publications/AStableAddedMassPartitionedAlgorithmForElasticSolidsAndIncompressibleFlowModelProblemAnalysis_SerinoBanksHenshawSchwendeman2019.pdf.
  13. Jordan Angel, Jeffrey W. Banks, William D. Henshaw, Michael J. Jenkinson, Alexander V. Kildishev, Gregor Kovacic, Ludmila J. Prokopeva, and Donald W. Schwendeman.
    A high-order accurate scheme for Maxwell's equations with a generalized dispersion model.
    J. Comput. Phys., 378:411-444, 2019.
    publications/AHighOrderAccurateSchemeForMaxwellsEquationsGDM_AngelEtAl2019.pdf.
  14. Mostafa Amini-Afshar, Harry B. Bingham, and William D. Henshaw.
    Stability analysis of high-order finite-difference discretizations of the linearized forward-speed seakeeping problem.
    Applied Ocean Research, 92:101913, 2019.
  15. Jeffrey W. Banks, William D. Henshaw, Donald W. Schwendeman, and Qi Tang.
    A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions.
    J. Comput. Phys., 373:455-492, 2018.
    publications/AStablePartitionedFSIAlgorithmForRigidBodiesAndIncompressibleFlowInThreeDimensions_BanksHenshawSchwendemanTang2018.pdf.
  16. Jordan Angel, Jeffrey W. Banks, and William D. Henshaw.
    High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form.
    J. Comput. Phys., 352:534-567, 2018.
    publications/HighOrderUpwindSchemesForWaveEquationsOnOverlappingGridsMaxwellsEquations_AngelBanksHenshaw2019.pdf.
  17. Jeffrey W. Banks, William D. Henshaw, Donald W. Schwendeman, and Qi Tang.
    A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General formulation.
    J. Comput. Phys., 343:469-500, 2017.
    publications/AStablePartitionedFSIAlgorithmForRigidBodiesAndIncompressibleFlowPartII_BanksHenshawSchwendemanTang.pdf.
  18. Jeffrey W. Banks, William D. Henshaw, Donald W. Schwendeman, and Qi Tang.
    A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis.
    J. Comput. Phys., 343:432-468, 2017.
    publications/AStablePartitionedFSIAlgorithmForRigidBodiesAndIncompressibleFlowPartI_BanksHenshawSchwendemanTang.pdf.
  19. A.R. Koblitz, S. Lovett, N. Nikiforakis, and William D. Henshaw.
    Direct numerical simulation of particulate flows with an overset grid method.
    J. Comput. Phys., 343:414-431, 2017.
  20. L. Li, R. J Braun, T. A. Driscoll, W. D. Henshaw, and P.E. King-Smith.
    Computed flow and fluorescence over the ocular surface.
    Mathematical Medicine and Biology, 2017.
  21. Fanlong Meng, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    A stable and accurate partitioned algorithm for conjugate heat transfer.
    J. Comput. Phys., 344:51-85, 2017.
    publications/ChampMengBanksHenshawSchwendeman2016.pdf.
  22. Longfei Li, William D. Henshaw, Jeffrey W. Banks, Donald W. Schwendeman, and Geoffrey A. Main.
    A stable partitioned FSI algorithm for incompressible flow and deforming beams.
    J. Comput. Phys., 312:272-306, 2016.
    publications/AStablePartitionedFSIAlgorithmForIncompressibleFlowAndDeformingBeams_Li_Henshaw_Banks_Schwendeman_Main_2016.pdf.
  23. Jeffrey W. Banks, William D. Henshaw, A.K. Kapila, and Donald W. Schwendeman.
    An added-mass partitioned algorithm for fluid-structure interactions of compressible fluids and nonlinear solids.
    J. Comput. Phys., 305:1037-1064, 2016.
    publications/AddedMassPartitionedFSIofCompressibleFluidsAndNonlinearSolids_Banks_Henshaw_Kapila_Schwendeman_2016.pdf.
  24. Ashwana K. Kapila, Donald W. Schwendeman, J. Gambino, and William D. Henshaw.
    A numerical study of the dynamics of detonation initiated by cavity collapse.
    Shock Waves, 25(6):545-572, 2015.
    publications/NumericalStudyOfTheDynamicsOfDetonationInitiatedByCavityCollapse_Kapila_Schwendeman_Gambino_Henshaw_2015.pdf.
  25. Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids.
    J. Comput. Phys., 269:108-137, 2014.
    publications/AMPInsBulkBanksHenshawSchwendeman2014.pdf.
  26. Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells.
    J. Comput. Phys., 268:399-416, 2014.
    publications/AMPInsShellBanksHenshawSchwendeman2014.pdf.
  27. Jeffrey W. Banks, William D. Henshaw, and Björn Sjögreen.
    A stable FSI algorithm for light rigid bodies in compressible flow.
    J. Comput. Phys., 245:399-430, 2013.
    publications/BanksHenshawSjogreenFSIforLightRigidBodies2012.pdf.
  28. D. W. Schwendeman, A. K. Kapila, and W. D. Henshaw.
    A hybrid two-phase mixture model of detonation diffraction with compliant confinement.
    Comptes Rendus Mechanique, 340(11-12):804-817, 2012.
    publications/HybridTwoPhaseSchwendemanKapilaHenshaw2012.pdf.
  29. Jeffrey W. Banks and William D. Henshaw.
    Upwind schemes for the wave equation in second-order form.
    J. Comput. Phys., 231(17):5854-5889, 2012.
    publications/BanksHenshawSOSUP2012.pdf.
  30. Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    Deforming composite grids for solving fluid structure problems.
    J. Comput. Phys., 231(9):3518-3547, 2012.
    publications/BanksHenshawSchwendemanDeformingCompositeGrids.pdf.
  31. Daniel Appelö, Jeffrey W. Banks, William D. Henshaw, and Donald W. Schwendeman.
    Numerical methods for solid mechanics on overlapping grids: Linear elasticity.
    J. Comput. Phys., 231(18):6012-6050, 2012.
    publications/AppeloBanksHenshawSchwendemanSmog2012.pdf.
  32. Andrea Lani, Björn Sjögreen, H. C. Yee, and William D. Henshaw.
    Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part II: hypersonic nonequilibrium flows.
    Commun. Comput. Phys., 13(2):583-602, 2012.
  33. M. Ozlem, D. Schwendeman, A. Kapila, and W. Henshaw.
    A numerical study of shock-induced cavity collapse.
    Shock Waves, 22:89-117, 2012.
    publications/OzlemSchwedemanKapilaHenshawShockInducedCavityCollapse2012.pdf.
  34. Donald W. Schwendeman, Ashwana K. Kapila, and William D. Henshaw.
    A comparative study of two macro-scale models of condensed-phase explosives.
    IMA Journal of Applied Math, 77:2-17, 2012.
    publications/SchwendemanKapilaHenshawMacroModels2011.pdf.
  35. T.M. Broering, Y Lian, and W.D. Henshaw.
    Numerical investigation of energy extraction in a tandem flapping wing configuration.
    AIAA Journal, 50(11):2295-2307, 2012.
  36. D. W. Schwendeman, A. K. Kapila, and W. D. Henshaw.
    A study of detonation diffraction and failure for a model of compressible two-phase reactive flow.
    Combust. Theory and Modeling, 14(3):331-366, 2010.
    publications/SchwendemanKapilaHenshawMPRXN2010.pdf.
  37. J. W. Banks and B. Sjögreen.
    A normal mode stability analysis of numerical interface conditions for fluid/structure interaction.
    Commun. Comput. Phys., 10(2):279-304, 2011.
    publications/BanksSjogreenFSI2011.pdf.
  38. J. W. Banks, R. L. Berger, S. Brunner, B. I. Cohen, and J. A. F. Hittinger.
    Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss.
    Physics Of Plasmas, 18:1-16, 2011.
    publications/BanksBergerBrunnerCohenHittingerVlasov2011.pdf.
  39. J. W. Banks.
    A note on compressive limiting for two-material flows.
    Int. J. Numer. Meth. Fl., 65(5):475-608, 2011.
    publications/BanksLimiting2011.pdf.
  40. J. W. Banks.
    On exact conservation for the Euler equations with complex equations of state.
    Commun. Comput. Phys., 8(5):995-1015, 2011.
    publications/BanksConservation2010.pdf.
  41. Jeffrey W. Banks and Jeffrey A. F. Hittinger.
    A new class of non-linear, finite-volume methods for Vlasov simulation.
    38(9):2198-2207, 2010.
    publications/BanksHittingerVlasov2010.pdf.
  42. William D. Henshaw.
    Encyclopedia of Aerospace Engineering, chapter Adaptive Mesh and Overlapping Grid Methods, pages 623-630.
    Wiley, 2010.
  43. K. L. Maki, R. J. Braun, W. D. Henshaw, and P. E. King-Smith.
    Tear film dynamics on an eye-shaped domain I: Pressure boundary conditions.
    Mathematical Medicine and Biology, 27(3):227-254, 2010.
  44. K. L. Maki, R. J. Braun, P. Ucciferro, W. D. Henshaw, and P. E. King-Smith.
    Tear film dynamics on an eye-shaped domain II: Flux boundary conditions.
    Journal of Fluid Mechanics, 647:361-390, 2010.
  45. M. A. Singer, W. D. Henshaw, and S. L. Wang.
    Computational modeling of blood flow in the Trapease inferior Vena Cava filter.
    Journal of Vascular and Interventional Radiology, 20:S136-S137, 2009.
  46. Jeffrey W. Banks, William D. Henshaw, and John N. Shadid.
    An evaluation of the FCT method for high-speed flows on structured overlapping grids.
    J. Comput. Phys., 228:5349-5369, 2009.
    publications/BanksHenshawShadidOversetFCT2009.pdf.
  47. William D. Henshaw and Kyle K. Chand.
    A composite grid solver for conjugate heat transfer in fluid-structure systems.
    J. Comput. Phys., 228:3708-3741, 2009.
    publications/henshawChandCHT2009.pdf.
  48. William D. Henshaw and Donald W. Schwendeman.
    Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement.
    J. Comput. Phys., 227(16):7469-7502, 2008.
    publications/henshawSchwendemanPOG2008.pdf.
  49. J. W. Banks, T. Aslam, and W. J. Rider.
    On sub-linear convergence for linearly degenerate waves in capturing schemes.
    J. Comput. Phys., 227(14):6985-7002, 2008.
    publications/BanksAslamRiderSubLinear2008.pdf.
  50. A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, and William D. Henshaw.
    A study of detonation diffraction in the ignition-and-growth model.
    Combustion Theory and Modeling, 11(5):781-822, 2007.
    publications/diffraction5sch.pdf.
  51. Veronica Eliasson, William D. Henshaw, and Daniel Appelö.
    On cylindrically converging shock waves shaped by obstacles.
    Physica D: Nonlinear Phenomena, 237:2203-2209, August 2008.
    publications/EliassonHenshawAppelo2008.pdf.
  52. Jeffrey W. Banks, William D. Henshaw, Donald W. Schwendeman, and Ashwana K. Kapila.
    A study of detonation propagation and diffraction with compliant confinement.
    12(4):769-808, 2008.
    publications/mfRXN.pdf.
  53. Jeffrey W. Banks, Donald W. Schwendeman, Ashwana K. Kapila, and William D. Henshaw.
    A high-resolution Godunov method for compressible multi-material flow on overlapping grids.
    J. Comput. Phys., 223:262-297, 2007.
    publications/mfJWL.pdf.
  54. E.J. Reed, L.E. Fried, W.D. Henshaw, and C.M. Tarver.
    Analysis of simulation technique for steady shock waves in materials with analytical equations of state.
    Physical Review E, 74(5):056706, 2006.
  55. William D. Henshaw.
    A high-order accurate parallel solver for Maxwell's equations on overlapping grids.
    SIAM J. Sci. Comput., 28(5):1730-1765, 2006.
    publications/henshawMaxwell2006.pdf.
  56. William D. Henshaw and Donald W. Schwendeman.
    Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow.
    J. Comput. Phys., 216(2):744-779, 2006.
    publications/mog2005.pdf.
  57. William D. Henshaw.
    On multigrid for overlapping grids.
    SIAM J. Sci. Comput., 26(5):1547-1572, 2005.
    publications/automg.pdf.
  58. William D. Henshaw and Donald W. Schwendeman.
    An adaptive numerical scheme for high-speed reactive flow on overlapping grids.
    J. Comput. Phys., 191:420-447, 2003.
    publications/reactamr.pdf.
  59. William D. Henshaw, H.-O. Kreiss, and J. Yström.
    Numerical experiments on the interaction between the large- and small-scale motions of the Navier-Stokes equations.
    SIAM Journal of Multiscale Modeling and Simulation, 1(1):119-149, 2003.
    publications/HenshawKreissYstromLargeAndSmallScalesNavierStokes2003.pdf.
  60. P. Fast and W. D. Henshaw.
    Applications involving moving grids and adaptive mesh refinement on overset grids.
    AIAA paper 2002-1411, American Institute of Aeronautics and Astronautics, 2002.
    Also available as Lawrence Livermore National Laboratory Report UCRL-JC-147263 DR. (2002).
  61. William D. Henshaw.
    An algorithm for projecting points onto a patched CAD model.
    Engineering with Computers, 18:265-273, 2002.
    publications/HenshawCadProjection2002.pdf.
  62. P. Fast and W. D. Henshaw.
    Time-accurate computation of viscous flow around deforming bodies using overset grids.
    AIAA paper 2001-2604, American Institute of Aeronautics and Astronautics, 2001.
  63. William D. Henshaw.
    Overture: An object-oriented system for solving PDEs in moving geometries on overlapping grids.
    In L. Sakell and D. D. Knight, editors, First AFOSR Conference on Dynamic Motion CFD, June 1996, pages 281-290, 1996.
  64. W. D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    Estimates of the local minimum scale for the incompressible Navier-Stokes equations.
    Numerical Functional Analysis and Optimization, 16(3&4):315-344, 1995.
  65. William D. Henshaw.
    A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids.
    J. Comput. Phys., 113(1):13-25, July 1994.
    publications/icns1994.pdf.
  66. William D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    A fourth-order accurate difference approximation for the incompressible Navier-Stokes equations.
    Comput. Fluids, 23(4):575-593, 1994.
    publications/HenshawKreissReynaFouthOrderINS1994.pdf.
  67. G. S. Chesshire and W. D. Henshaw.
    A scheme for conservative interpolation on overlapping grids.
    SIAM J. Sci. Comput., 15(4):819-845, July 1994.
  68. M. J. Ward, William D. Henshaw, and J. B. Keller.
    Summing logarithmic expansions for strong localized perturbations of linear and nonlinear eigenvalue problems.
    SIAM J. of Applied Math, 53(3):799-828, 1993.
  69. William D. Henshaw, L. G. M. Reyna, and J. A. Zufiria.
    Compressible Navier-Stokes computations for slider air-bearings.
    Journal of Tribology, 113:73-79, 1991.
  70. R. G. Brewer, J. Hoffnagle, R. G. Devoe, L. Reyna, and W. Henshaw.
    Collision-induced two-ion chaos.
    Nature, 344:305-309, 1990.
  71. G. S. Chesshire and W. D. Henshaw.
    Composite overlapping meshes for the solution of partial differential equations.
    J. Comput. Phys., 90(1):1-64, 1990.
    publications/cgns1990.pdf.
  72. William D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    Smallest scale estimates for the incompressible Navier-Stokes equations.
    Arch. Rational Mech. Anal., 112:21-44, 1990.
  73. William D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    On the smallest scale for the incompressible Navier-Stokes equations.
    Theoretical and Computational Fluid Dynamics, 1:65-95, 1989.
  74. William D. Henshaw and G. S. Chesshire.
    Multigrid on composite meshes.
    SIAM J. Sci. Stat. Comput., 8(6):914-923, 1987.
    publications/cgmg1987.pdf.
  75. William D. Henshaw.
    A scheme for the numerical solution of hyperbolic systems of conservation laws.
    J. Comput. Phys., 68:25-47, 1987.
  76. William D. Henshaw, N. F. Smyth, and D. W. Schwendeman.
    Numerical shock propagation using geometrical shock dynamics.
    Journal of Fluid Mechanics, 171:519-545, 1986.

Book Chapters, Book Editor

[top]
  1. Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman, and Alexander V. Kildishev.
    Time domain modeling with the generalized dispersive material model.
    In Douglas H. Werner, Sawyer D. Campbell, and Lei Kang, editors, Nanoantennas and Plasmonics, Modelling, Design and Fabrication, The ACES Series on Computational Numerical Modelling in Electrical Engineering, pages 125-152. The Institution of Engineering and Technology, 2020.
  2. William D. Henshaw.
    Encyclopedia of Aerospace Engineering, chapter Adaptive Mesh and Overlapping Grid Methods, pages 623-630.
    Wiley, 2010.
  3. W. D. Henshaw.
    Automatic grid generation.
    Acta Numerica 1996, 5:121-148, 1996.
    publications/autoGrid.pdf.
  4. I. Babuska, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger, and T. Tezduyar.
    Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations.
    Springer-Verlag, New York, 1995.

Conference papers

[top]
  1. J. B. Angel, J. W. Banks, and W. D. Henshaw.
    A high-order accurate FDTD scheme for Maxwell's equations on overset grids.
    In Proceedings of the 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 2018.
    (2 pages).
  2. J. W. Banks, W. D. Henshaw, A. V. Kildishev, G. Kovav civ c, L. J. Prokopeva, and D. W. Schwendeman.
    Solving Maxwell's equations with a generalized dispersive material model on overset grids.
    In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), 2019.
    (2 pages).
  3. J. W. Banks, B.B. Buckner, W. D. Henshaw, A. V. Kildishev, G. Kovav civ c, L. J. Prokopeva, and D. W. Schwendeman.
    A high-order accurate scheme for the dispersive Maxwell's equations and material interfaces on overset grids.
    In Proceedings of the 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 2020.
    (2 pages).
  4. A. Fedoseyev, E. J. Kansa, S. Tsynkov, S. Petropavlovskiy, M. Osintcev, U. Shumlak, and W. D. Henshaw.
    A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics.
    AIP Conference Proceedings, 1773(1):020001, 2016.
  5. J. W. Banks and W. D. Henshaw.
    High-order upwind methods for wave equations on curvilinear and overlapping grids.
    In Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 14, volume 107 of Lecture Notes in Computational Science and Engineering, pages 137-145. Springer, 2015.
  6. K.K. Chand and M.A. Singer.
    Verification and validation of CgWind: a high-order accurate simulation tool for wind engineering.
    In 13th International Conference on Wind Engineering (ICWE13), 2011.
    (8 pages) publications/cgWindChandSinger2011.pdf.
  7. Andrea Lani, Björn Sjögreen, H. C. Yee, and William D. Henshaw.
    Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part II: hypersonic nonequilibrium flows.
    paper LLNL-CONF-490192, AIAA, 2011.
  8. K.K. Chand, W.D. Henshaw, K.A. Lundquist, and M.A. Singer.
    CgWind: A high-order accurate simulation tool for wind turbines and wind farms.
    In The Fifth International Symposium on Computational Wind Engineering (CWE2010), 2010.
    (8 pages.
  9. B. Sjögreen, H. C. Yee, J. Djomehri, A. Lazanoff, and W. D. Henshaw.
    Parallel performance of ADPDIS3D - a high order multiblock overlapping grid solver for hypersonic turbulence.
    In 21st International Conference on Parallel Computational Fluid Dynamics, page , Moffett Field, California, USA, May 2009.
  10. N. Shen, M.J. Matthews, J.E. Fair, J.A. Britten, H.T. Nguyen, J.D. Cooke, S. Elhadj, W.D. Henshaw, G.M. Guss, I.L. Bass, et al.
    Study of CO2 laser smoothing of surface roughness in fused silica.
    In Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers, pages 750411-750411. International Society for Optics and Photonics, 2009.
  11. William D. Henshaw.
    Solving partial differential equations on overlapping grids.
    In Nikolai V. Pogorelov, Edouard Audit, Phillip Colella, and Gary P. Zank, editors, Numerical Modeling of Space Plasma Flows: ASTRONUM - 2008, volume 406, pages 231-236. Astronomical Society of the Pacific, 2009.
    publications/astronum08.pdf.
  12. G. de Oliveira, A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, William D. Henshaw, and C. M. Tarver.
    Detonation diffraction, dead zones, and the ignition-and-growth model.
    In Proceedings of the Thirteenth Detonation Symposium (International), 2006.
  13. William D. Henshaw.
    Solving fluid flow problems on moving and adaptive overlapping grids.
    In Anil Deane et al., editors, Parallel Computational Fluid Dynamics, pages 21-30. Elsevier, 2006.
  14. William D. Henshaw.
    Adaptive mesh refinement on overlapping grids.
    Research Report UCRL-PROC-201757, Lawrence Livermore National Laboratory, 2004.
    To appear in Springer Lecture Notes in Computational Sciences and Engineering.
  15. William D. Henshaw and N. Anders Petersson.
    A split-step scheme for the incompressible Navier-Stokes equations.
    In M. M. Hafez, editor, Numerical Simulation of Incompressible Flows, pages 108-125. World Scientific, 2003.
    publications/henshawPetersson2001.pdf.
  16. William D. Henshaw.
    Overture: An object-oriented framework for overlapping grid applications.
    Research Report UCRL-JC-147889, Lawrence Livermore National Laboratory, 2002.
    Paper for the 2002 AIAA conference on Applied Aerodynamics, St Louis, MO.
  17. William D. Henshaw.
    Generating composite overlapping grids on CAD geometries.
    Research Report UCRL-JC-147161, Lawrence Livermore National Laboratory, 2002.
    Proceedings of the Eighth International Conference on Numerical Grid Generation in Computational Field Simulations, June 2-6, 2002, Waikiki Beach Marriott Resort, Honolulu, Hawaii, (2002).
  18. William D. Henshaw.
    An algorithm for projecting points onto a patched CAD model.
    Engineering with Computers, 18:265-273, 2002.
    publications/HenshawCadProjection2002.pdf.
  19. D. L. Brown, William D. Henshaw, and Daniel J. Quinlan.
    Overture: Object-oriented tools for overset grid applications.
    Research Report, for the AIAA conference on Applied Aerodynamics UCRL-JC-134018, Lawrence Livermore National Laboratory, 1999.
  20. D. L. Brown, William D. Henshaw, and Daniel J. Quinlan.
    Overture: An object-oriented framework for solving partial differential equations on overlapping grids.
    In Object Oriented Methods for Interoperable Scientific and Engineering Computing, pages 245-255, 1999.
  21. D. L. Brown, Geoffrey S. Chesshire, William D. Henshaw, and Daniel J. Quinlan.
    Overture: An object oriented software system for solving partial differential equations in serial and parallel environments.
    In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, page , 1997.
  22. D. L. Brown, William D. Henshaw, and Daniel J. Quinlan.
    Overture: An object oriented framework for solving partial differential equations.
    In Scientific Computing in Object-Oriented Parallel Environments, pages 177-194, 1997.
  23. William D. Henshaw.
    Overture: An object-oriented system for solving PDEs in moving geometries on overlapping grids.
    In L. Sakell and D. D. Knight, editors, First AFOSR Conference on Dynamic Motion CFD, June 1996, pages 281-290, 1996.
  24. William D. Henshaw.
    Overture: An object-oriented framework for solving PDEs in moving geometries on overlapping grids using C++.
    In Proceedings of the Third Symposium on Overset Composite Grid and Solution Technology, 1996.
  25. I. Babuska, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger, and T. Tezduyar.
    Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations.
    Springer-Verlag, New York, 1995.
  26. W. D. Henshaw, G. S. Chesshire, and M. E. Henderson.
    On constructing three dimensional overlapping grids with CMPGRD.
    In R. E. Smith, editor, Software Systems for Surface Modeling and Grid Generation, number 3143 in Conference Publication, pages 415-434. NASA, 1992.
  27. W. D. Henshaw and H.-O. Kreiss.
    A numerical study of the propagation of perturbations in the solutions of the 2D incompressible Navier-Stokes equations.
    In B. Engquist and B. Gustafsson, editors, Third International Conference on Hyperbolic Problems, pages 54-61. Chartwell-Bratt, 1991.
  28. W. D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna.
    On smallest scale estimates and a comparison of the vortex method to the pseudo-spectral method.
    In C. R. Anderson and C. Greengard, editors, Vortex Dynamics and Vortex Methods, pages 303-326. American Mathematical Society, 1991.
  29. D. L. Brown, G. S. Chesshire, William D. Henshaw, and H.-O. Kreiss.
    On composite overlapping grids.
    In T. J. Chung and G. R. Karr, editors, Finite Element Analysis in Fluids, pages 544-559. UAH Press, 1989.